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Abstract 
Advanced powertrain technologies, specifically fuel cell electric powertrains, have gained attention as 
viable alternatives for medium- and heavy-duty (M/HD) vehicles. However, it is unclear how these 
alternative powertrain vehicles stack up against their diesel counterparts in terms of performance and 
total cost of ownership (TCO). Furthermore, there are vehicle segments within the M/HD sector that 
have remained unstudied for fuel cell electric applications. This analysis aims to provide a comparative 
scoping-level TCO and performance analysis for two heavy-duty vocation vehicles (Class 8 U.S. port-
side yard tractor and Class 8 U.S.-based refuse truck) for both conventional diesel and heavy-duty fuel 
cell electric (HDFC) powertrains. The refuse truck analysis also considered compressed natural gas 
powertrains (CNG) for comparison. The analysis includes seven timeframes (2020, 2025, 2030, 2035, 
2040, 2045, and 2050) for comparison. This simplified TCO analysis includes only direct costs (fuel 
price, glider purchase price, and operating & maintenance costs) and excludes any associated indirect 
cost (e.g., dwell time costs and other opportunity based costs). Representative drive cycles for each 
vehicle were based on on-board GPS logged data and chosen by the analysis team to represent average, 
non-extreme driving conditions. At the time the analysis was performed, the Inflation Reduction Act 
was not in effect and therefore any potential subsidies and future cost reductions enacted under the 
Inflation Reduction Act were not included. 

Based on the operational setpoints used in this analysis, HDFC powertrains for both yard tractors and 
refuse trucks have the potential to achieve TCO advantages over conventional diesel powertrains (and 
CNG for refuse truck applications) in the near- to mid-term future while meeting the necessary duty 
cycle performance requirements. Yard tractors and refuse trucks spend a significant amount of time 
operating at low speeds, with long durations of idling, and experience numerous start/stop occurrences. 
These operational characteristics favor fuel cell performance as fuel cells operate with higher 
efficiencies at lower percentages of total power output. Conversely, conventional diesel and CNG 
engines are most efficient at higher percentages of total power output. This helps HDFC powered yard 
tractors and refuse trucks realize improved fuel economy when compared to their diesel counterparts, 
which helps reduce total fuel costs and therefore, total TCO. The analysis demonstrates that fuel prices 
play a significant role in determining TCO for each vehicle and should remain an R&D focus area. 
Overall, under the analysis’ specified conditions, HDFC yard tractors have the potential to achieve cost 
parity with diesel yard tractors as early as 2025. For refuse trucks, HDFC refuse trucks have the 
potential to achieve cost parity with diesel and CNG refuse trucks in 2030 and 2040, respectively.
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Executive Summary 
Analysis of hydrogen fuel cell applications in the transportation sector has advanced considerably in 
recent years. Within the on-road sector, light-duty vehicles have been studied over the last two decades, 
while medium- and heavy-duty (M/HD) truck and bus electrification has become more of a focus in the 
last four years. However, the evaluation of fuel cells in the contexts of other vocational on-road vehicles 
(utility, parcel delivery, box vans), off-road vehicles including captive trucking (mining, ports, heavy 
machinery), rail, marine, and aviation is also important and these applications have not been areas of 
focus by the research community. 
This report compares conventional diesel powertrain technologies with hydrogen fuel cell powertrain 
(FCEV) technologies for port-side yard tractors and refuse trucks using an extensive analytical 
framework applied to each vehicle technology application. This report includes a scoping-level analysis 
of the Total Cost of Ownership (TCO), techno-economic analysis (TEA), and powertrain performance 
for two separate Class 8 vehicle types and applications: a U.S.-based refuse truck (on-road, 200-mile 
range) and a U.S.-based port-side yard tractor (off-road, 200-mile range). The analysis for the refuse 
truck also included a compressed natural gas (CNG) powertrain for comparison to conventional diesel 
and FCEV as CNG refuse trucks have a significant market share within this segment.  

Both vocational, heavy-duty on-road and off-road vehicles primarily exist for commercial and business 
purposes; therefore, the value proposition and costs associated with these vehicles can help identify 
future advanced powertrain technology adoption within these sectors. TCO and TEA provide metrics 
that fleet owners and vehicle operators can use to determine an on-road or off-road truck’s value 
proposition and whether the truck purchase makes economic sense for the fleet. TCO is not the only 
metric ultimately needed to be considered by fleet owners and operators; however, TCO is a critical 
benchmarking tool for comparing various powertrains and truck options directly. TCO also helps 
identify fuel cell market applications with more near-term potential, which is critical for determining 
early adopter applications and scaling of fuel cell technology. 

We used NREL’s Transportation Technology Total Cost of Ownership (T3CO) modeling framework to 
complete this analysis. T3CO enables users to flexibly evaluate the TCO of vocational vehicles in this 
context and leverages two of NREL’s established models and tools: FASTSim (Future Automotive 
Systems Technology Simulator) and SERA (Scenario Evaluation and Regionalization Analysis). The 
combination of these models to form T3CO allows for vehicle performance and cost modeling as well as 
spatially resolved TCO analysis. Representative duty cycles from NREL’s Fleet DNA data repository 
were used for both the refuse truck and yard tractor applications. Direct costs, which include upfront 
purchase costs, vehicle operating and maintenance costs (O&M), and purchase price, are applied to each 
vehicle’s operation, ownership, and specific powertrain and are included in the TCO analysis. Indirect 
costs such as dwell time costs and payload opportunity costs were not included in this scoping-level 
analysis but can be included in future work. At the time this analysis was performed, the Inflation 
Reduction Act was not in effect and therefore any potential subsidies and future cost reductions enacted 
under the Inflation Reduction Act were not included.  

Vehicle models for the refuse truck and yard tractor were built in FASTSim by matching the 
performance and cost of both vehicles under the conventional diesel application. Input data used in this 
report is based on current technology statuses (2018 baseline), projections from literature and U.S. 
Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE EERE) technology 
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targets, and additional model defaults and scenario assumptions. The vehicles were evaluated starting in 
the technology year 2020 and expanded out to 2050 in five-year increments.  

 

Figure 1. Fuel economy projections for technology years 2020 through 2050 for Class 8 Yard Tractors (200-mile 
range) for conventional diesel and heavy-duty fuel cell (HDFC) powertrains.  

Figure 1 summarizes fuel economy results for the Class 8 yard tractor diesel and HDFC powertrains. 
Our results project HDFC yard tractors have the potential to exceed diesel fuel economy projections by a 
factor of approximately three. The assumed duty cycle for our modeled refuse truck is a significant 
driver of this results. Yard tractors generally experience a significant amount of starts and stops as well 
as idling time during their duty cycle, both of which are favorable operational conditions for HDFC 
powertrains. These findings suggest fuel cell technology may provide significant operational benefits to 
yard tractor fleets under such conditions.  

Figure 2 below summarizes the fuel economy results for the three Class 8 refuse truck powertrains 
studied.  Our results project similar fuel economy trends for diesel and CNG refuse trucks. We also 
project that HDFC refuse trucks may have the potential to exceed both diesel and CNG fuel economy 
projections by a factor of approximately two to three. Here as well, the assumed duty cycle for our 
modeled refuse truck is a significant driver of these results. Refuse trucks generally experience a 
significant amount of starts and stops during their duty cycles, especially when operating in areas of 
high population density. As with yard tractors, our results demonstrate this is a favorable operational 
characteristic for HDFCs compared to diesel and CNG. Again, these findings suggest fuel cell 
technology may provide significant operational benefits to refuse truck fleets under such conditions.  
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Figure 2. Fuel economy projections for technology years 2020 through 2050 for Class 8 Refuse Trucks (200-mile 
range) for conventional diesel, CNG, and heavy-duty fuel cell (HDFC) powertrains.  

Figure 3 summarizes the TCO results for both HDFC and conventional diesel U.S. port-side yard 
tractors. We project HDFC yard tractors to have a significantly higher TCO compared to the diesel yard 
tractor in the year 2020. Because of projected improvements around HDFC performance and cost, 
HDFC yard tractors have the potential to achieve cost parity with diesel yard tractors in 2025. Beyond 
2025, HDFC yard tractors project to have a lower TCO than their diesel counterparts. These findings 
suggest fuel cell technology may yield near-term TCO benefits for port-side yard tractor fleets relative 
to diesel under the cost, performance, and duty cycle conditions we assumed. Figure 4 shows that, in our 
modeling results, the refuse truck TCO for the HDFC powertrain option is again considerably higher 
than both the conventional diesel and CNG powertrain options in 2020. However, the HDFC TCO 
decreases rapidly because of assumed improvements in technology performance, increased component 
manufacturing rates, and cost projected in 2025 and beyond. Under these assumed conditions, HDFC 
refuse trucks have the potential to achieve cost parity with conventional diesel refuse trucks and CNG 
refuse trucks in the tech years 2035 and 2040, respectively. We project a slightly lower TCO for CNG 
compared to conventional diesel because of CNG’s lower projected fuel cost. In the years 2045 and 
2050, HDFC refuse trucks project to have the lowest TCO of the three powertrain options. These 
findings suggest fuel cell technology may not yield near-term TCO benefits for refuse truck fleets 
relative to diesel or CNG, under the cost, performance, and duty cycle conditions we assumed. However, 
this fuel cell technology may become an attractive option for refuse truck fleets in the medium- to long-
term. 
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Figure 3. Total Cost of Ownership projections for technology years 2020 through 2050 for Class 8 Yard Tractors 
(200-mile range) for conventional diesel and heavy-duty fuel cell (HDFC) powertrains. 

 

Figure 4. Total Cost of Ownership projections for technology years 2020 through 2050 for Class 8 Refuse Trucks 
(200-mile range) for conventional diesel, CNG, and heavy-duty fuel cell (HDFC) powertrains.  

The decarbonization of M/HD commercial vehicles continues to play a critical role in achieving a net-
zero carbon emissions economy. While this report focuses primarily on yard tractors and refuse trucks, it 
more broadly is successful at building upon NREL’s blueprint for reproducing simplified TCO for 
numerous M/HD commercial vehicle segments across the advanced powertrain landscape. Spatial and 
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Temporal Analysis of the Total Cost of Ownership for Class 8 Tractors and Class 4 Parcel Delivery 
Trucks (Hunter et al. 2021), Comprehensive  Total  Cost  of  Ownership  Quantification  for  Vehicles  
with  Different  Size  Classes  and  Powertrains (Burnham et al. 2021), Vehicle Technologies  and  
Hydrogen  and  Fuel  Cells  Technologies  Research  and Development  Programs  Benefits  Assessment 
Report  for  2020 (Brooker et al. 2021) are recent reports produced by NREL and the U.S. national 
laboratory system that complement this analysis and help outline further data gaps and evaluation 
processes for understanding advanced powertrain adoption within the commercial vehicle market.  
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1 Introduction 
Analysis of low-temperature, hydrogen fuel cell powertrains (FCEV) in the transportation sector has 
advanced considerably in recent years, especially in the context of medium- and heavy-duty (M/HD) 
truck applications (Heid et al. 2017; Hyundai 2020; Tesla 2021; Nikola 2021; O’Dell 2018). A majority 
of recent studies have focused on Class 8 long-haul or day cab freight trucks. While these long-haul and 
day cab freight applications represent a majority of M/HD truck energy consumption and emissions, 
other M/HD applications may have characteristics which align as well or better with the strengths of fuel 
cell technology. These other applications may, in some cases, represent near-term opportunities to 
deploy and scale up FCEVs. However, little research has been done on FCEV applications and 
powertrains for both M/HD on-road vocational trucks (e.g., refuse, dump, delivery, utility) and M/HD 
off-road vocational trucks (mining, yard tractors, construction, agriculture). Being vocational vehicles, 
these trucks are closely tied to fleet and individual operators for providing services, and inherently, 
generating revenue. Therefore, the economics surrounding these truck segments is crucial for vehicle 
adoption and market penetration. Total cost of ownership (TCO) is therefore a central metric for directly 
comparing and evaluating the potential for FCEVs among vocational truck applications.  

The goal of TCO analysis is to compile all direct costs associated with each vehicle into a single metric, 
which can then be leveraged to compare different vehicle types, options, and powertrain applications. 
TCO does not provide detailed financial breakdowns such as payback periods, debt equity financing 
metrics, and other opportunity costs, but it does provide a useful indicator of the overarching economics 
associated with each vehicle type. TCO information enables operators to make economic evaluations 
and decisions that directly affect their vehicle fleets and operational requirements. Generating and 
disseminating this information can influence FCEV adoption within the vocational vehicle sector.  

Hunter et al. 2021 demonstrated methods for performing TCO analysis and projections of drivetrain 
options for M/HD vehicles in the context of Class 4 and 8 on-road freight trucks. These methods use 
comprehensive dynamic vehicle models, variable duty cycles to allow for non-vertical powertrain 
integration and benchmark against conventional diesel powertrains (including diesel improvements and 
future projections). These analyses by Hunter et al. do not extend into other vocational Class 8 trucks 
beyond long-haul and short-haul tractors. However, they do serve as a roadmap and framework for 
investigating the TCO of other M/HD vehicle sectors while enabling estimations of powertrain 
efficiency (fuel economy). 

The work performed in this report extends the methodology of Hunter et al. to additional vocational 
Class 8 trucks. The two vehicles selected for this analysis include a Class 8 on-road refuse truck and a 
Class 8 off-road, port-side yard tractor (also known as a yard hustler). FCEV applications for these truck 
types have not been studied heavily by the research community to date. Both trucks offer centralized 
refueling opportunities as well as unique duty cycles when compared to other on-road Class 8 freight 
trucks.  

The powertrain options considered for each of these trucks include conventional diesel (diesel) and 
heavy-duty fuel cell electric (HDFC). An additional compressed natural gas (CNG) option was included 
for comparison for the Class 8 refuse truck scenario. CNG refuse trucks have gained a significant market 
share and major fleets owners like Waste Management are aiming for CNG make up over 80% of their 
collections fleets (Maria Rachal 2021). This is largely because CNG provides similar performance to 
diesel with typically lower fuel costs (Sandhu et al. 2021).  
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2 Methodology  
The Class 8 heavy-duty transportation sector encompasses a wide variety of vehicle types and vocational 
uses. Significant attention has been dedicated to advanced powertrain considerations for on-road Class 8 
tractors (long-haul and day cab) (Heid et al. 2017; Phadke et al. 2021; Hunter and Laboratory 2019; 
NACFE 2020; Adams 2020; Marcinkoski 2019), but further research is needed to extend analyses to 
other sectors within the Class 8 designation for both on-road and off-road vocational applications. 

This report utilizes NREL’s Transportation Technology Total Cost of Ownership tool (T3CO)1, which is 
a combination of NREL’s Future Automotive Systems Technology Simulator (FASTSim)2 and NREL’s 
Scenario Evaluation and Regionalization Analysis Model (SERA)3. The goal of these models is to 
enable levelized assessments of full vehicle life cycle costs for advanced powertrain technologies for 
commercial vehicle segments. T3CO takes a holistic approach when assessing TCO, which allows fleet 
owners and operators to objectively evaluate TCO comparisons across several powertrain options. It also 
allows for direct cost comparisons for buying, operating, maintaining, fueling, and cost of driving a 
commercial vehicle. T3CO leverages duty cycles from NREL’s Fleet DNA database4, which is a 
clearinghouse of commercial fleet vehicle operating data. Representative duty cycles for both Class 8 
yard tractors and refuse trucks were pulled from NREL’s Fleet DNA repository. 

Typical direct costs associated with TCO were considered for Class 8 yard tractors and Class 8 refuse 
trucks. These include vehicle purchase price, fuel feedstock costs, powertrain component costs, balance-
of-plant (BOP) costs, and operating and maintenance (O&M) costs. The analysis was simplified by 
assuming the vehicle purchase cost to be an upfront cost versus being financed by fleet owners over a 
longer period. Future iterations of this analysis could leverage user-defined financing assumptions for a 
more detailed TCO. The following sections in this chapter detail the evaluation process and approaches 
taken to model component costs and other vehicle performance metrics. 

Indirect costs associated with dwell time due to refueling and/or payload reductions from the potentially 
heavier powertrain components were not included in this scoping-level analysis but can be included in 
future iterations of this analysis. However, details around the dwell times and load capacities 
experienced by each vehicle type are highly variable depending on the duty cycle and representative 
data with a greater fidelity in these sectors is needed. Based on similar analyses within Class 8 segments, 
dwell times and load capacities could have a significant effect on TCO (Hunter et al. 2021). The 
included direct costs were combined to output the TCO and net present value (NPV) of each Class 8 
vehicle and powertrain option studied. Also, any future cost reductions or subsidies enacted by the 
Inflation Reduction Act were not considered or assumed for this analysis.  

Detailed designs such as light-weighting and unique chassis for each powertrain and vehicle option were 
not considered for this analysis. Further work is needed to complete appropriate storage volume 
packaging and chassis designs for the implementation of the advanced hydrogen fuel cell powertrain and 
necessary BOP components.  

 
1 NREL’s T3CO Tool (https://www.nrel.gov/transportation/t3co.html) 
2 NREL’s FASTSim Tool (https://www.nrel.gov/transportation/fastsim.html) 
3 NREL’s SERA model (https://www.nrel.gov/hydrogen/sera-model.html) 
4 NREL Fleet DNA Database (https://www.nrel.gov/transportation/fleettest-fleet-dna.html) 

https://www.nrel.gov/transportation/t3co.html
https://www.nrel.gov/transportation/fastsim.html
https://www.nrel.gov/hydrogen/sera-model.html
https://www.nrel.gov/transportation/fleettest-fleet-dna.html
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2.1 Down-Selection of Class 8 Vocations Evaluated 
The down-selection of the vehicles evaluated in this report was influenced by interests of the analysis 
team and the funding source, the Environmental Protection Agency’s Office of Transportation and Air 
Quality (EPA OTAQ).  

2.1.1 Class 8 Yard Tractors 
While U.S. port energy consumption is a relatively small component of the total U.S. energy 
consumption (approximately 1.2% of the total U.S. energy consumption), their proximity and overall 
energy localization with respect to populated areas offers incentives for ports to assess and consider 
clean energy options (EIA 2021; Steele and Myers 2019; California Air Resource Board 2015). At major 
U.S. container ports, the vehicle typically with the highest fleet size, usage hours, and energy 
consumption is the Class 8 yard tractor or yard hustler (California Air Resource Board 2015). Recent 
work by Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL) 
helps demonstrate the percent of energy consumption consumed by yard tractors. A supporting graphic 
can be seen in Figure 5 (Steele and Myers 2019).  

 

Figure 5. Energy consumption breakdown by port-side vehicle type at major U.S. ports (Steele and Myers 2019).  

Figure 5 also demonstrates that Class 8 drayage vehicles realize the highest potential energy 
consumption at major ports and therefore have garnered the most attention in literature and 
demonstration projects. While these trucks were not the focus of this study, understanding that these 
trucks have a large potential for energy demand could help increase hydrogen demand at U.S. ports and 
influence the infrastructure needed to support these other non-road and off-road cargo handling vehicles. 
Yard tractors are specifically near-port vehicles with highly consistent, predictable duty cycles. This 
supports the need for centralized, on-site refueling infrastructure for these tractors, which can both help 
operators plan for refueling times within the duty cycle and also make hydrogen fuel deliveries more 
economical and streamlined. 

Port-side yard tractors also offer operational characteristics that could benefit from advanced powertrain 
types like hydrogen fuel cells. These characteristics include high amounts of starts/stops, overall low 
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operational speeds, high idle times, and low fuel economy (3-4 mile per diesel gallon equivalent) 
(Deloitte and Ballard 2020; National Renewable Energy Laboratory 2020).  

2.1.2  Class 8 Refuse Trucks 
Approximately 90% of all refuse trucks on-road today (out of ~180,000 total trucks) have diesel 
powertrains (Daniel C. Vock 2014). However, fleet operators are pushing for their new truck purchases 
to be CNG refuse trucks (Sandhu et al. 2021; Maria Rachal 2021). This could result in fleet owners 
being incentivized in the near-term to continue to seek advanced powertrain options for their fleets as 
diesel trucks become outdated, in need of retirement, and more strictly monitored to reduce emissions. 
DOE estimates that refuse trucks and haulers have an average fuel economy between 2-35 miles per 
gallon diesel equivalent (mpdge). As a nationwide fleet, one study estimates refuse trucks can consume 
greater than 1.2 million gallons of diesel annually (Shea 2011). Like Class 8 yard tractors, refuse trucks 
offer unique drive and duty cycle characteristics such as a high number of starts/stops, lower average 
driving speeds, and medium to high idling times during trash collection (Deloitte and Ballard 2020; 
National Renewable Energy Laboratory 2020). These operational attributes can be characterized and 
confirmed by leveraging NREL’s Fleet DNA database6 and are shown in Figure 6 and Figure 7. Other 
attractive attributes seen by refuse trucks include the fleet’s potential to have centralized refueling 
depots, power take-off (PTO) considerations, and potential for multi-shift operations year-round.  

 

Figure 6. Distribution for daily average driving speeds for U.S. based refuse trucks. Data from NREL’s Fleet DNA 
database.  

 
5 Average Fuel Economy by Major Vehicle Category (https://afdc.energy.gov/data/10310) 
6 NREL Fleet DNA Database (https://www.nrel.gov/transportation/fleettest-fleet-dna.html) 

https://afdc.energy.gov/data/10310
https://www.nrel.gov/transportation/fleettest-fleet-dna.html
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Figure 7. Distribution for average daily stops per mile for U.S. based refuse trucks. Data from NREL’s Fleet DNA 
database. 

2.2 Vehicle Powertrain Modeling & Key Parameters 
NREL’s FASTSim model enables rigorous vehicle evaluations for light-, medium-, and heavy-duty 
vehicle performance. The following vehicle powertrains were assessed in this report: 

• Conventional diesel (diesel) 
• Fuel cell electric vehicles (FCEVs) 
• Compressed Natural Gas (CNG, refuse trucks only) 

The FASTSim model uses a total of 53 vehicle parameters and specifications. These are summarized 
and listed as the following: 

• Vehicle and cargo mass and weight distribution 
• Frontal area 
• Drag coefficient 
• Glider weight and cost 
• Fuel storage system weight, volume, and cost 
• Engine power, efficiency curve, mass, and cost 
• Battery energy, power, degradation, and cost 
• Electric motor power, efficiency map, ramp rate, and cost 
• Wheel inertia, tire rolling resistance, tire radius, wheelbase, number of wheels, and friction 
• Energy management specifications and components 
• Specification for power electronics, auxiliary loads, transmission, and other balance-of-plant 

(BOP) specifications 
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Using the duty cycles for each vehicle, the FASTSim model simulated the selected vehicle 
characteristics defined while vehicle speed and observed road grade are updated on a second-by-second 
basis. Vehicle acceleration and other performance metrics are also calculated each second. The result of 
this simulation yields vehicle fuel efficiency and road performance. 

Ultimately, FASTSim evaluates alternative powertrain options for hypothetical scenarios where 
specified driving and duty cycle requirements are met for a certain vocation. Non-powertrain related 
attributes such as aerodynamics, glider mass, drag coefficient, rolling resistance, and transmission are all 
kept constant during the simulation as FASTSim focuses primarily on powertrain related differences. 
For this analysis, light-weighting and other modifications, which may be necessary for real 
implementation of alternative powertrains, were not considered. For example, non-powertrain 
components, fuel storage layout, and general chassis design was kept constant for each alternative 
powertrain analysis. This leads to the glider mass being augmented with the additional mass brought on 
by each powertrain type considered. A similar approach is taken for vehicle costs as well (i.e., glider 
cost is augmented with the additional costs of each powertrain type). 

FASTSim sizes the vehicle’s powertrain based on the duty requirements determined by the duty cycle. 
Each powertrain is appropriately sized to meet performance metrics like acceleration, road gradeability 
experienced, and vehicle range. From this operational analysis, fuel economy projections can be made 
for the vehicle over the selected duty cycle. Various duty cycles can be analyzed and may yield different 
fuel economy projections. Baseline, representative duty cycles were used for both Class 8 yard tractors 
and refuse trucks. No extreme conditions or rare occurrences were selected to represent either duty 
cycle. 

Major outputs of the FASTSim component of the T3CO model are vehicle fuel economy, vehicle 
specifications, a breakdown of component costs, and the upfront vehicle manufacturer suggested retail 
price (MSRP).  

2.2.1 Powertrain and Fuel Storage Sizing Estimations 
FASTSim is designed to compare select powertrains by removing the conventional powertrain 
components and outfitting the vehicle with the alternative powertrain components. Therefore, 
replacement fuel cell powertrain and related components were sized by FASTSim to match the 
performance of the conventional diesel powertrain for both the Class 8 yard tractor and refuse truck. A 
visual example of this can be seen in Figure 8 (Hunter et al. 2021).  



 

7 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 

Figure 8. Overview of the FASTSim methodology for estimating alternative powertrains for comparison to 
conventional diesel propulsion systems. Alternative powertrain components are sized to match the vocational 

requirements and performance of the diesel system (Hunter et al. 2021). 

The acceleration experienced by the conventional diesel powertrain during the representative duty cycle 
was used as a key metric for the powertrain conversion (i.e., the fuel cell powertrain power output for 
the yard tractor or truck was sized to meet the same performance seen by the conventional diesel 
powertrain option). The CNG power converter was assumed to be the same engine as the conventional 
diesel power converter for simplicity. For the CNG scenario, the main change was made to fuel prices 
and the fuel efficiency curve for the power converter. 

Table 1 shows the representative conventional diesel powertrain sizes for the Class 8 yard tractor and 
refuse truck used for the analysis and for matching the fuel cell powertrain power output.  

Table 1. Engine output power for conventional diesel options for the selected vehicle. The corresponding fuel cell 
powertrain was sized to match the power outputs of these diesel engines. 

Vehicle Type Engine Power Output 
(Horsepower) 

Engine Output Power 
(kW) 

Class 8 Yard Tractor 225 168 

Class 8 Refuse Truck 380 283 

Fuel storage capacity was estimated similarly to the powertrain. A representative fuel storage (e.g., tank 
size in gallons) was determined and the relative hydrogen fuel storage tank and capacity was sized to 
hold the same quantity of fuel energy to meet the range requirements set by the diesel fuel tank. The 
conventional diesel tank sizes, corresponding storage weights (diesel fuel included), and estimated 
hydrogen fuel storage capacity needed can be seen in Table 2. 
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Table 2. Engine output power for conventional diesel options for the selected vehicle. The corresponding fuel cell 
powertrain was sized to match the power outputs of these diesel engines. 

Vehicle Type Fuel Storage Capacity 
(gallons diesel) 

Fuel Storage Weight 
(kg) 

H2 Fuel Storage Energy 
Equivalent (kg-H2) 

Class 8 Yard Tractor 50 160 16 

Class 8 Refuse Truck 75 240 30 

These powertrain sizes were determined by the analysis team to be representative of each vehicle 
segment for this scoping-level analysis. Future iterations of this work are flexible to include various 
powertrain sizing that may be seen within each of these segments.  

2.2.2 Vehicle Mass, Frontal Area, and Other Key Parameter Estimations 
Representative vehicle models for both Class 8 yard tractors and refuse trucks were developed for this 
analysis and are key input parameters for the FASTSim model, specifically frontal area and glider mass. 
However, for both these vehicle types, because typical operation is at low speeds, frontal area does not 
play a significant role in drag and determination of fuel economy.  

The Class 8 yard tractor chassis dimensions were based on a Kalmar Ottawa T2 6x4 DOT/EPA Certified 
Yard Tractor Standard Specifications (Kalmar Ottawa 2019). Figure 9 shows the dimensions of the yard 
tractor specified for this analysis. 

 

Figure 9. Kalmar Ottawa 6x4 yard tractor size and dimensions used for FASTSim vehicle model. 

During the yard tractor’s duty cycle, a shipping container is typically hauled and adds to the vehicle’s 
overall height and frontal area calculation. A generic container height and width was assumed and added 
to the frontal area calculation. Below in Table 3 are the frontal area estimations for the Class 8 yard 
tractor used as an input to the FASTSim model. 
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Table 3. Total frontal area calculation for the Class 8 yard tractor. Includes the additional height added by the 
container during handling. 

Parameter Height (m) Width (m) 

Front of Truck 3.20 2.46 

Front of Container 2.27 2.29 

Fifth Wheel Height 1.58 - 

Container + Fifth Wheel 
Height 3.85 - 

Total Frontal Height & Width 3.85 2.46 

Total Frontal Area 9.47 m2 

For the glider mass estimation, the yard tractor (without cargo) chassis, fuel storage (including fuel), 
transmission, and engine were estimated and summed to get a total glider mass input for FASTSim. The 
mass estimations can be seen below in Table 4. 

Table 4. Total glider mass calculation for the Class 8 yard tractor. 

Weight lbs. kg 

Yard Tractor Vehicle 22,700 10,300 

Fuel Storage (50 gal) 350 160 

Transmission 790 360 

Engine (225 HP, 168 kW) 1,710 774 

Total Glider Mass 19,850 9,000 

A weighted-average cargo mass estimation and maximum total vehicle weight as well as maximum 
cargo mass estimation was made for the Class 8 yard tractor based on vehicle duty cycle data from 
NREL’s Fleet DNA (Figure 10) (Kotz et al. 2020).  

 

Figure 10. Estimated total yard tractor mass (tractor + cargo) based on NREL Fleet DNA data and duty cycle used in 
this analysis (Kotz et al. 2020). 
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The select cargo mass estimations for the Class 8 yard tractor can be viewed in Table 5. The weighted-
average cargo mass value for the yard tractor was further used in this analysis when estimating the 
average fuel economy results. 

Table 5. Weighted-average cargo mass (vehicle mass with average cargo load minus vehicle mass without cargo), and 
maximum cargo estimations for the Class 8 yard tractor. 

Weight lbs. kg 

Weighted-average Cargo Mass 39,300 17,960 

Maximum Total Vehicle Mass 151,000 68,300 

Maximum Cargo Mass 128,000 58,000 

The Class 8 yard tractor had a design mileage range of 200 miles, a vehicle lifetime (projected lifespan 
before needing a major powertrain overhaul) of 10 years, and a vehicle miles traveled (VMT) estimate 
of 16,000 miles per year. 

The Class 8 refuse truck’s chassis dimensions were based on a readily available specification sheet for 
an Autocar ACX 6x4 Refuse Truck. Dimensions for the specification sheet are shown below in Figure 
11. 

 

Figure 11. Representative dimensions for the Class 8 refuse truck7. 

 
7 Autocar ACX 6x4 Refuse Truck (https://d3w5dxa1iffln.cloudfront.net/media/1759/acx_6x4_specs_v2.pdf) 

https://d3w5dxa1iffln.cloudfront.net/media/1759/acx_6x4_specs_v2.pdf
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A general container (trash collector body) dimension was also added to the refuse truck to account for 
the addition frontal area measurement considerations. For this specific refuse truck, only additional 
height was added by the container as the container was assumed to have the same width contribution as 
the main truck chassis. Using these generic dimensions, a frontal area estimation for the representative 
refuse truck was made and can be viewed in Table 6. 

Table 6. Total frontal area calculation for the Class 8 refuse truck. An additional height was added to the truck’s 
chassis to account for the height added by the trash collection container. 

Parameter Height (m) Width (m) 

Front of Truck 2.59 2.56 

Front of Container 3.50 2.56 

Total Frontal Height & Width 3.50 2.56 

Total Frontal Area 8.96 m2 

For the refuse truck’s glider mass estimation, the chassis (without cargo), fuel storage (including fuel 
mass), transmission, and engine were estimated and summed to get a total glider mass input for 
FASTSim. The mass estimations can be seen below in Table 7. 

Table 7. Total glider mass calculation for the Class 8 refuse truck. 

Weight lbs. kg 

Refuse Truck (empty) 33,000 15,000 

Fuel Storage (75 gal) 530 240 

Transmission (incl. Power 
Take-Off 1,070 400 

Engine (380 HP, 283 kW) 2,880 1,310 

Total Glider Mass 37,480 16,950 

A weighted-average cargo mass estimation and maximum total vehicle weight as well as maximum 
cargo mass estimation was made for the Class 8 refuse truck based on vehicle duty cycle data from 
NREL’s Fleet DNA. The select cargo mass estimations for the Class 8 refuse truck can be viewed in 
Table 8. Unlike the yard tractor, the refuse truck must adhere to on-road vehicle weight specifications 
and gross vehicle weight ratio (GVWR) limits. The weighted-average cargo mass estimation was further 
used in this analysis to assist in estimating the fuel economy of the refuse truck.  

Table 8. Weighted-average cargo mass (vehicle mass with average cargo load minus vehicle mass without cargo), 
maximum total vehicle weight (GVWR), and maximum cargo estimations for the Class 8 refuse truck. 

Weight lbs. kg 

Weighted-average Cargo Mass 17,000 7,700 

Maximum Total Vehicle Mass 66,000 30,000 

Maximum Cargo Mass 33,000 15,000 

The Class 8 refuse truck had a design mileage range of 190 miles, a vehicle lifetime (projected lifespan 
before needing a major powertrain overhaul) of 10 years, and a VMT estimate of 25,000 miles per year. 
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Other key vehicle parameters used by FASTSim for each vehicle are wheel inertia, number of vehicle 
wheels, a generic component mass multiplier, an estimated transmission efficiency, and default cost 
mark-up. The parameters are available for reference in Table 9 below. 

Table 9. Other key parameter inputs used as inputs for FASTSim modeling for both the Class 8 yard tractor and 
Class 8 refuse truck. 

Parameter Class 8 Yard 
Tractor 

Class 8 Refuse 
Truck 

Wheel Inertia (kg-m2) 10 10 

Number of Wheels 148 10 

Component Mass Multiplier9 1.2 1.2 

Transmission Efficiency (%)8 95 95 

Cost Markup8 1.5 1.5 

FASTSim also requires input coefficients for drag and wheel rolling resistance projected out by each 
technology year studied. Those parameters along with the relative improvements over time are displayed 
in Table 10. These values were used as defaults for both the Class 8 yard tractor as well as the refuse 
truck. Also included in the analysis for each vehicle was a small, 20 kW Li-ion battery within the 
balance-of-plant. This was added to cover any regenerative breaking captured by the HDFC powertrains. 
The magnitude or quality of the regenerative breaking however was not assessed in this study. 

Table 10. Drag coefficient, wheel rolling resistance coefficient, and projected fuel costs for technology years 2020 
through 2050. 

Commercial Year 2020 2025 2030 2035 2040 2045 2050 

Drag Coefficient10 0.60 0.55 0.52 0.50 0.48 0.47 0.45 

Wheel Rolling Resistance 
Coefficient9 

0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 

2.2.3 Representative Duty cycles & Fuel Economy Estimations 
Representative duty cycles for each Class 8 vehicle consist of second-by-second speed data during the 
duration of the duty cycle. Key characteristics, such as start/stop time, idle time, and average speed were 
taken into account when selecting the appropriate duty cycle for both the yard tractor and the refuse 
truck. Both duty cycles were derived from NREL’s Fleet DNA Database (National Renewable Energy 
Laboratory 2020). For the yard tractor, the duty cycle data was collected by on-board GPS 
instrumentation for a select yard tractor operating at the Port Authority of New York and New Jersey 
(Kotz, Kelly, and Gagne 2020). For the refuse truck, the duty cycle data was also collected via on-board 
GPS instrumentation for a refuse truck operating in the Miami Dade County area. Raw visualizations 
and the important cycle metrics for the yard tractor and the refuse truck duty cycles can be seen in 
Figure 12 and Figure 13, respectively. 

 
8 Includes container trailer wheel set 
9 FASTSim defaults 
10 FASTSim default values for Class 8 Tractors 
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Figure 12. Representative duty cycle for the Class 8 yard tractor with accompanying duty cycle attributes and 
metrics. 

The representative yard tractor cycle demonstrates a low average moving speed (~5 mph) and a 
significant amount of stopped/idle time (greater than a third of the total cycle time). As previously 
mentioned, these attributes offer favorable operational characteristics for fuel cell powertrains as fuel 
cells typically achieve peak efficiency at lower percentages of power output and consume little to no 
fuel while idle or at a complete stop. 

 

Figure 13. Representative duty cycle for the Class 8 refuse truck with accompanying duty cycle attributes and 
metrics. *Note the sections of the duty cycle below a speed of 30 mph pertain to the truck’s trash collection period 

while the sections approaching 60 mph reference the time that the refuse truck is traveling from one collection zone to 
the next. 

As with the yard tractor cycle, the refuse truck cycle demonstrates low average moving speeds (~11 
mph) and a significant amount of stopped/idle time (slightly less than a third of the total cycle time). 
Again, these attributes offer favorable operations for fuel cell powertrains. Unlike the yard tractor, the 
refuse truck does reach highway speeds. Diesel powertrains reach peak efficiency as power demand 
increases; therefore, during highway driving and at the time of writing this report, diesel powertrains can 
potentially have more favorable operations versus fuel cell powertrains during these instances of the 
duty cycle.  
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All fuel economy estimations generated in the results section of this report use these representative duty 
cycles with powertrain components and fuel storage sized to meet the cycle’s operational characteristics 
and requirements with the relevant weighted-average cargo load discussed in the previous sections. No 
individual duty cycle for either of these vehicles can capture every duty cycle experienced by real-world 
users of these vehicle types. The cycles used in this study were vetted by the analysis team and the 
members of the EPA clients for relevancy to the project and analysis goals. However, the use of a single 
duty cycle for each representative vehicle represents a source of uncertainty in our results. Further work 
could investigate the robustness of our results to variations in duty cycle characteristics. 

2.3 Powertrain Performance and Cost Data Assumptions 
Vehicle performance benchmarking for each powertrain type was completed for both the Class 8 yard 
tractor and refuse truck. These benchmarks combined with the specific vocational vehicle duty cycles 
and powertrain power profiles help FASTSim make fuel economy estimations. Engine efficiency curves 
were created using DOE efficiency tech targets for Class 8 long-haul truck powertrains (Marcinkoski 
2019). These target efficiency values were interpolated to create profiles on a year-by-year basis 
allowing for curves to represent each target year assessed in this report (e.g., 2020, 2025, 2030, 2035, 
2040, 2045, 2050). The efficiency curves were then adjusted using the relevant duty cycle and engine 
power profiles to be representative of either the Class 8 yard tractor or refuse truck. 

The diesel, HDFC, and CNG (applicable to the refuse truck only) engine efficiency curve estimations 
used for the Class 8 yard tractor and Class 8 refuse truck are shown in Figure 14. 

 
Figure 14. Class 8 yard tractor and refuse truck engine efficiency curve estimations for diesel, HDFC, and CNG 

(refuse truck only) powertrains based on representative duty cycle.  
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Diesel engines tend to be more efficient as power output increases while HDFCs reach peak efficiency 
more in the 15-25% power output range. This drivetrain feature strengthens the case for using HDFCs in 
yard tractor applications. Available data suggests most of the yard tractor duty cycle is spent in idle or at 
low power outputs during the process of loading, unloading, and waiting for cargo containers. Refuse 
truck duty cycles may also benefit from this drivetrain feature of HDFCs as, during trash collection, 
refuse trucks spend a majority of the duty cycle at low speeds and power outputs with numerous 
start/stop characteristics. Combining these engine efficiency curves with the representative duty cycles 
for both the yard tractor and refuse truck, we can extract expected average engine efficiencies for each 
vehicle. These averages for the yard tractor and refuse truck can be seen in Table 11 and  

Table 12, respectively.  

Table 11. Class 8 yard tractor average powertrain efficiency based on efficiency curve, representative duty cycle, 
power profile, and DOE class 8 engine tech and performance targets. 

Conventional Diesel 2020 2025 2030 2035 2040 2045 2050 

Average Engine Efficiency (%) 21.2 24.4 27.1 28.9 30.7 32.4 34.1 

HDFC 2020 2025 2030 2035 2040 2045 2050 

Average Engine Efficiency (%) 56.3 57.2 58.8 60.6 61.9 63.2 64.5 

Table 12. Class 8 refuse truck average engine efficiency based on efficiency curve, representative duty cycle, power 
profile, and DOE class 8 engine tech and performance targets. 

Conventional Diesel 2020 2025 2030 2035 2040 2045 2050 

Average Engine Efficiency (%) 28.2 32.6 35.6 37.5 39.3 41.1 42.7 

HDFC 2020 2025 2030 2035 2040 2045 2050 

Average Engine Efficiency (%) 59.5 60.6 62.3 64.1 65.4 66.7 68.1 

CNG 2020 2025 2030 2035 2040 2045 2050 

Average Engine Efficiency (%) 31.7 34.1 36.1 37.3 38.5 39.7 40.9 

Table 13 displays the baseline powertrain performance metrics and cost data used as inputs for the 
FASTSim and T3CO models. This data was leveraged from previous NREL studies assessing Class 8 
vehicle types (Hunter et al. 2021; Hunter and Laboratory 2019).  
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Table 13. Technology cost and performance metrics used in FASTSim and T3CO modeling framework for Class 8 
yard tractors and refuse trucks for select powertrain types (Hunter et al. 2021). 

Conventional Diesel 2020 2025 2030 2035 2040 2045 2050 

Engine Cost ($/kW) 47.3 47.3 47.3 47.3 47.3 47.3 47.3 

Fuel Storage ($/kWh) 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

Engine Specific Power (kW/kg) 0.275 0.275 0.275 0.275 0.275 0.275 0.275 

Storage Specific Mass (kWh/kg) 9.88 9.88 9.88 9.88 9.88 9.88 9.88 

FCEV 2020 2025 2030 2035 2040 2045 2050 

Engine Cost ($/kW) 190 135 120 105 90 75 60 

Fuel Storage ($/kWh) 36 16 14.4 12.8 11.2 9.6 8 

Engine Specific Power (kW/kg) 0.96 1.02 1.03 1.04 1.06 1.07 1.08 

Storage Specific Mass (kWh/kg) 1.48 1.80 1.88 1.96 2.04 2.12 2.20 

Auxiliary Battery Cost ($/kWh) 197 170 152 134 116 98 80 

CNG (Refuse Only) 2020 2025 2030 2035 2040 2045 2050 

Engine Cost ($/kW) 55 55 55 55 55 55 55 

Fuel Storage ($/kWh) 7.47 4.70 4.52 4.35 4.17 4.00 3.82 

Engine Specific Power (kW/kg) 0.28 0.28 0.28 0.28 0.28 0.28 0.28 

Storage Specific Mass (kWh/kg) 4.21 4.47 4.60 4.72 4.85 4.97 5.10 

Specific engine power for the conventional diesel powertrain is based on defaults set by the FASTSim 
model (National Renewable Energy Laboratory 2018a). Diesel engine costs are provided by previous 
NREL FASTSim and T3CO completed work (Brooker et al. 2021). 

For the HDFC powertrain applications, projected fuel cell specific power values were taken from work 
completed by Strategic Analysis, Inc. (James et al. 2018), which has been extensively reviewed by the 
Hydrogen and Fuel Cell Technology Office (HFTO) at DOE. Fuel cell powertrain and power related 
component costs were also based on work provided by Strategic Analysis, Inc. for medium- and heavy-
duty fuel cells and by target-setting guidance from HFTO (James, Houchins, and Huya-Kouadio 2021; 
Hunter et al. 2021). The storage mass and cost data are based on status updates via DOE Hydrogen and 
Fuel Cells Program Record (Adams, Houchins, and Ahluwalia 2019).  

Peak efficiency, engine cost data, and other performance metrics for the CNG powertrain comes from 
previous NREL work and through personal communication with the Vehicle Technology Office (VTO)  
at DOE (Hunter et al. 2021). CNG refuse trucks continue to gain market share within this segment, 
which again is why CNG powertrains were included in the refuse truck portion of this study. 

Note that all the cost data provided above reference component manufactured costs only and not 
purchase prices. To determine a purchase price or vehicle MSRP, a cost markup must be applied. A 
markup of 1.5 is provided by the FASTSim modeling framework as a default and is used accordingly in 
the analysis. To reiterate, price and cost implications brought on by the newly implemented Inflation 
Reduction Act are not included or considered in this analysis. 



 

17 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

2.3.1 Fuel Costs 
Fuel costs are determined by the powertrain fuel consumption rates as well as the input fuel price tables 
used by FASTSim. The fuel prices used in this study are listed in Table 14. Diesel and CNG fuel price 
historical estimates and future projections are taken from the U.S. Energy Information Administration’s 
2021 Annual Energy Outlook (AEO) (U.S. Energy Information Administration 2021). Hydrogen fuel 
prices were taken directly from Hunter et al. 2021 but were ultimately based on HFTO cost targets and 
observed fuel cost data for hydrogen fuel cell buses in California (Eudy 2019).  Note that again, this 
analysis does not consider any potential impacts or other subsidy programs on hydrogen fuel prices as a 
result of the Inflation Reduction Act.  

Table 14. Project fuel prices for each powertrain type studied. 

Conventional Diesel 2020 2025 2030 2035 2040 2045 2050 

Diesel Fuel Cost ($/gal)11 2.93 3.08 3.29 3.47 3.57 3.76 3.88 

Hydrogen Fuel Cost ($/kg)12 10 7 6.4 5.8 5.2 4.6 4 

CNG Fuel Cost ($/gge)13 1.71 1.58 1.56 1.47 1.44 1.43 1.45 

2.3.2 Operation & Maintenance Cost Assumptions 
Operation and maintenance (O&M) costs can be significant for vocational vehicles and must be 
accounted for to make accurate TCO projections through the T3CO model. Vocational vehicles like yard 
tractors are subjected to harsh and aggressive environments, underscoring the importance of timely and 
proper maintenance. These impacts can have significant effects on vehicle lifetime and performance. 
Included in O&M costs are typical vehicle maintenance service items such as oil changes, engine 
maintenance, system adjustments, and other general maintenance items. O&M data was collected in 
previous NREL work and helped inform cost assumptions for each powertrain type (Hunter et al. 2021). 
O&M data for yard tractors and refuse trucks is not as readily available, so literature findings for 
advanced powertrain buses were used as a representative baseline for developing a maintenance cost for 
the diesel, CNG, and HDFC powertrains in these vocational vehicle contexts (Hunter et al. 2021; Eudy 
and Post 2021). Figure 15 shows a spread of the O&M cost data found in literature for Class 6 buses. 
This data was used to create a summary table shown in Table 15.  

 
11 AEO 2021 Fuel Price Table: Diesel 
12 Chad Hunter et al. 2021 
13 AEO 2021 Fuel Price Table: CNG 
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Figure 15. O&M cost data for select advance powertrain types based on literature finds and summarized by Hunter et 
al. 2021.  

The data points shown in red in Table 15 were used to derive a maintenance scale factor for going from 
diesel O&M to HDFC O&M. The percent increase from the median diesel O&M value to the median 
HDFC O&M value is roughly 25%. A diesel O&M cost for typical U.S.-based yard tractors was found 
in literature (Jon Leonard 2012); this is shown in Table 16. Similarly, refuse truck O&M cost data was 
found for both the diesel and CNG powertrains (Ballard 2021; Kevin Chandler, Paul Norton, and Nigel 
Clark 2001). To get the relative HDFC O&M costs assumed for the yard tractor and refuse truck, the 
25% cost markup was applied to the diesel O&M value. The resulting HDFC O&M cost reference used 
as a FASTSim input can be seen in Table 16. 

Table 15. Summary of O&M cost data for Class 6 buses seen in Figure 15. Data points shown in red were baseline 
values used to develop a cost markup for value between diesel and HDFC yard tractor and refuse truck O&M ($/mi). 

O&M Cost ($/mi) Bound Diesel HDFC EV Hybrid CNG 

Class 6 Bus 

Lower 0.344 0.521 0.320 0.636 0.356 

Median 0.497 0.622 0.410 0.799 0.456 

Upper 0.837 0.968 0.530 1.27 0.619 

Table 16. Yard tractor diesel and HDFC O&M cost values used in the T3CO model. 

O&M Cost ($/mi) Diesel HDFC CNG 

Class 8 Yard Tractor 0.198 0.248 - 

Class 8 Refuse Truck 0.45 0.55 0.72 

2.4 SERA model contributions to T3CO 
NREL’s SERA modeling components in T3CO aim to provide a vehicle stock module that tracks 
VMTs, energy consumption, and vehicles expenses spatially and temporally (Hunter et al. 2021). SERA 
is also able to guide infrastructure planning and development within transportation sectors but was not 
leveraged for this report. This report also studies individual vehicles, but SERA can additionally provide 
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regionally explicit analysis for entire vehicle fleets, which could be considered as supplemental work to 
complement this analysis.  

A process flow diagram, outline, and overview for how FASTSim (vehicle powertrain cost modeling) 
and SERA (TCO) feed into T3CO can be seen in Figure 16. The TCO determined in this analysis is 
based on a total vehicle lifetime interval versus a specific ownership timeframe. This vehicle lifetime is 
represented by annual vehicle miles traveled (miles/year), the specific powertrain’s performance, and 
design mileage discussed in Sections 2.2 and 2.3.  

 

Figure 16. T3CO, FASTSim, and SERA modeling approach and flow process. 

3 Results 
The results from this analysis are outlined in this section and include the modeling results for fuel 
economy estimations, vehicle weight, price, and total cost of ownership for both the Class 8 yard tractor 
as well as the Class 8 refuse truck. 

3.1 Vehicle Modeling and Performance 
NREL’s FASTSim model was used to determine the vehicle fuel economy, weight, and total MSRP for 
each powertrain type studied for the Class 8 yard tractor and refuse truck. Components for each vehicle 
were sized to meet vocational requirements set by each vocation’s representative duty cycle. Vehicle 
weight inputs used in the FASTSim model can be referenced in Section 2.2.2, while vehicle baseline 
production cost is comprised of the following: 



 

20 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

• Vehicle glider (with no light-weighting or modifications made for advanced powertrains) 

• Fuel converter (powertrain) 

• Fuel storage 

• Auxiliary batteries 

• Power electronics 

• Electric motor 

• Transmission 

3.1.1 Weight Breakdown: Class 8 Yard Tractors 
The powertrain sizing methodology can again be referenced in Section 2.2.2. Figure 17 shows a 
breakdown of the weight distribution for the conventional diesel and heavy-duty fuel cell vehicles for 
the Class 8 yard tractor. The breakdown does not include the weight-average cargo rating or maximum 
cargo rating for viewing simplicity. The most influential component weight (outside of glider) for the 
diesel tractor is the diesel engine and for the hydrogen fuel cell tractor, it is the fuel storage system. 
Diesel engines add significant weight while diesel storage system can be extremely light comparatively. 
Fuel cells add significant weight as well, but the advance materials needed for hydrogen storage tend to 
make the fuel storage system significantly heavier than the diesel storage counterpart. Overall, the diesel 
system (diesel engine + diesel fuel storage) is heavier than the fuel cell system (fuel cell + hydrogen 
storage tank) as the relative weight difference between the heavier diesel engine and the fuel cell is more 
significant than the weight differences between the two storage system types.  

  

Figure 17. Weight breakdown for the Class 8 yard tractor for diesel and HDFC powertrain options.  

Table 17 is included to show the specific weight contributions (in lbs.) for each powertrain type for 
Class 8 yard tractors.   
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Table 17. Class 8 yard tractor breakdown of weight contributions by major vehicle component. 

Conventional Diesel Weight Contribution (lbs.) 

Major Component 2020 2025 2030 2035 2040 2045 2050 

Transmission 794 794 794 794 794 794 794 

Fuel Storage 510 510 510 510 510 510 510 

Diesel Engine 1,619 1,619 1,619 1,619 1,619 1,619 1,619 

Glider 19,847 19,847 19,847 19,847 19,847 19,847 19,847 

HDFC Weight Contribution (lbs.) 

Major Component 2020 2025 2030 2035 2040 2045 2050 

Transmission 794 794 794 794 794 794 794 

Motor & Electronics 148 118 104 90 75 61 46 

Auxiliary Battery 447 412 395 379 363 347 331 

Fuel Storage 983 808 774 742 713 686 661 

Fuel Cell 463 436 431 426 421 416 412 

Glider 19,847 19,847 19,847 19,847 19,847 19,847 19,847 

3.1.2 Weight Breakdown: Class 8 Refuse Trucks 
The same powertrain sizing methodology was applied to the Class 8 refuse trucks. The weight 
breakdown for the diesel, HDFC, and CNG powertrain options can be seen in Figure 18. As expected, 
the diesel engine and the hydrogen fuel storage are the major contributors to the weight breakdown 
outside of the glider mass, similar to the yard tractors. For the CNG powertrain option, both the fuel 
storage and the CNG engine play a significant role in contributing to the weight. This is because the 
CNG engine has some added engine weight to account for the CNG fuel change and the heavier fuel 
storage (as compared to diesel) is due to the reinforced materials needed to store the compressed gas at 
the needed pressure. As seen with yard tractors, the total fuel cell system projects to be a lighter system 
by weight overall when compared to the diesel and CNG systems. Table 18 is also included for a more 
specific viewing of the weight contributions brought on by each major vehicle component for all three 
powertrain types considered. 
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Figure 18. Weight breakdown for the Class 8 refuse truck for diesel, HDFC, and CNG powertrain options.  
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Table 18. Class 8 refuse truck breakdown of weight contributions by major vehicle component. 

Conventional Diesel Weight Contribution (lbs.) 

Major Component 2020 2025 2030 2035 2040 2045 2050 

Transmission 1,071 1,071 1,071 1,071 1,071 1,071 1,071 

Fuel Storage 765 765 765 765 765 765 765 

Diesel Engine 2,731 2,731 2,731 2,731 2,731 2,731 2,731 

Glider 28,518 28,518 28,518 28,518 28,518 28,518 28,518 

HDFC Weight Contribution (lbs.) 

Major Component 2020 2025 2030 2035 2040 2045 2050 

Transmission 1,071 1,071 1,071 1,071 1,071 1,071 1,071 

Motor & Electronics 250 200 175 151 127 103 78 

Auxiliary Battery 447 412 395 379 363 347 331 

Fuel Storage 1,807 1,486 1,423 1,365 1,311 1,262 1,216 

Fuel Cell 781 735 726 718 710 702 694 

Glider 28,518 28,518 28,518 28,518 28,518 28,518 28,518 

CNG Weight Contribution (lbs.) 

Major Component 2020 2025 2030 2035 2040 2045 2050 

Transmission 1,071 1,071 1,071 1,071 1,071 1,071 1,071 

Fuel Storage 1,613 1,521 1,480 1,440 1,403 1,367 1,333 

CNG Engine 2,677 2,677 2,677 2,677 2,677 2,677 2,677 

Glider 28,518 28,518 28,518 28,518 28,518 28,518 28,518 
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3.1.3 Projected Fuel Economy 
The representative duty cycles and vehicle specifications (e.g., frontal area, rolling resistance, drag 
coefficient) described in Section 2.2 above are used as inputs into FASTSim to estimate each vehicle’s 
fuel economy. Figure 19 shows the estimated fuel economies for the conventional diesel and HDFC 
Class 8 yard tractor with a 200-mile range and a payload capacity of approximately 39,300 lbs. To 
validate the model, a benchmark fuel economy of 3.4 miles per diesel gallon equivalent (mpdge) was 
used to compare model fuel economy results for 2020. This benchmark value was based on real-world 
data from representative yard tractors studied by NREL at the Port Authority of New York and New 
Jersey (Kotz et al. 2020). Figure 19 shows the average fuel economy projections for the HDFC are 
roughly three times greater than fuel economy for the conventional diesel vehicle, due to the fuel cell’s 
higher operational powertrain efficiency (refer to Table 11 for average engine efficiencies) during the 
yard tractor duty cycle, which includes numerous starts and stops and spends a significant amount of 
time idling while loading and unloading cargo. HDFC yard tractor fuel economy trends towards 
improvement into future technology years as HDFCs  are projected to become lighter and more 
efficient14. Diesel yard tractor fuel economy also realizes an improvement as new diesel regulations 
come online and push diesel powertrains to become more efficient in the near-term15. 

 

Figure 19. Fuel economy projections out to 2050 for Class 8 Yard Tractors (200-mile range) for conventional diesel 
and HDFC powertrains.  

Figure 20 shows the FASTSim-projected fuel economies for the conventional diesel, CNG, and HDFC 
Class 8 refuse truck with a 190-mile range and payload capacity of approximately 17,000 lbs. A 
benchmark diesel fuel economy for real-world refuse trucks was set at approximately 2-316 mpdge in 

 
14 Hydrogen and Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan 
15 Diesel Fuel Standards and Rulemakings 
16 Alternative Fuels Data Center: Average Fuel Economy by Major Vehicle Category 

https://www.energy.gov/eere/fuelcells/articles/hydrogen-and-fuel-cell-technologies-office-multi-year-research-development
https://www.epa.gov/diesel-fuel-standards/diesel-fuel-standards-and-rulemakings
https://afdc.energy.gov/data/10310
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2020 to validate the FASTSim model. Our 2020 diesel refuse truck (Figure 20) fuel economy is between 
2-3 mpdge, confirming our vehicle model and model inputs. As was seen with the yard tractors, HDFC 
refuse truck projects to have a fuel economy of approximately three times that of the conventional 
diesel. Again, this is due to the fuel cells powertrain efficiency (refer to  

Table 12 for average engine efficiencies) during the duty cycle of the refuse truck, which includes 
numerous starts and stops and idling times during trash collection; a major component of the truck’s 
cycle. CNG realizes a slightly higher fuel economy relative to diesel during the timeframe between 2020 
and 2030 as CNG engines operate more efficiently than diesel engines. But the two come to near parity 
in 2030 and 2035 as projected improvements in diesel engines outpace improvements in CNG 
technology. Diesel becomes more efficient beyond 2035 as diesel engines are projected to continue to 
become more efficient in future technology years.  

 

Figure 20. Fuel economy projections out to 2050 for Class 8 Refuse Trucks (200-mile range) for conventional diesel, 
CNG, and HDFC powertrains.  

The modeled fuel economies shown in Figure 19 and Figure 20 were used to approximate the fuel 
consumption for each vehicle and therefore helps determine the projected fuel expense component to the 
TCO analysis.  

3.1.4 Vehicle MSRP 
The cost projections in Table 13 and the size requirements set for the powertrain components are used to 
help determine the baseline cost of each vehicle and powertrain option. FASTSim uses the default cost 
markup factor of 1.5x and purchase tax to project an estimated MSRP. The component cost breakdown 
can be referenced at the beginning of Section 3.1. Figure 21 shows the projected MSRP for the 
conventional diesel and HDFC Class 8 yard tractor. During the timeframe of 2020 through 2030, the 
hydrogen fuel cell and fuel storage adds significant cost to the MSRP, making the HDFC yard tractor 
more expensive up front versus the conventional diesel option. As HDFC powertrain costs are assumed 
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to approach DOE tech targets, the projected MSRP of the HDFC yard tractor reduces and approaches 
cost parity with conventional diesel yard tractors. 

 

Figure 21. MSRP projections for conventional diesel and HDFC Class 8 yard tractors from 2020 to 2050.  

Figure 22 displays the projected MSRP breakdown for the conventional diesel, CNG, and HDFC Class 8 
refuse truck. Again, the high cost of fuel cells and fuel storage in the early years of the projection make 
the MSRP of the HDFC option much more expensive versus the conventional diesel and CNG option for 
refuse trucks. As these component costs are also assumed to come down over time, however, the HDFC 
refuse truck trends down towards cost parity with the other two powertrains. The CNG refuse truck 
tracks nearly identically with the conventional diesel for the glider plus engine cost, but the advanced 
storage needed for the fuel adds a significant cost to the CNG refuse truck MSRP; making it more 
expensive than the diesel refuse truck over the entire modeled time series.
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Figure 22. MSRP projections for conventional diesel, CNG, and HDFC Class 8 refuse trucks from 2020 to 2050.
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For the diesel scenario presented in Figure 21 and both the diesel and CNG scenarios presented in 
Figure 22, the engine cost experiences an uptick in total cost between 2020 and 2025. This is driven by 
assumed powertrain efficiency improvements (e.g., increased production costs and performance 
enhancements) expected to be made in the near-term to meet emissions and fuel economy regulations17.  

These projections suggest that, in the near-term, relatively high costs of hydrogen fuel cell power 
components may continue to be a barrier for HDFC vehicle adoption in each of these segments. Progress 
towards achieving DOE component cost targets, greater fuel cell market adoption across all sectors, and 
increased manufacturing economies of scale will help drive hydrogen-related costs down. But costs will 
need to decrease at an accelerated rate, relative to the projected costs assumed in this analysis, to have a 
competitive MSRP in the near future. However, as we discuss in the next section, cost savings in other 
areas may lead to lower near-term TCO for HDFC vehicles relative to their conventional counterparts 
for some applications, despite the higher upfront purchase costs we present in this section. 

3.2 Total Cost of Ownership 
Section 3.2 describes the results of the TCO analysis for both the Class 8 yard tractor and Class 8 refuse 
truck. TCO results presented in this section are comprised of the total MSRP (shown in Section 3.1.4), 
the projected O&M cost, and the fuel price (determined by fuel consumption combined with fuel prices 
referenced in Table 14).  

3.2.1 TCO Projections: Class 8 Yard Tractors 
For Class 8 yard tractors, the model assumes a 10-year operating life at 16,000 miles per year. Our 
FASTSim modeling assumes a discount rate of 4.1% for the purposes of this study; a default discount 
rate used in this version of FASTSim. Figure 23 presents the projected total cost of ownership of both 
the conventional diesel and HDFC Class 8 yard tractors in thousands of dollars (USD).  

 

Figure 23. Total cost of ownership (TCO) projections for conventional diesel and HDFC Class 8 yard tractors 
projected from 2020 to 2050.  

Because of the lower powertrain efficiency and expected fuel economy for conventional diesel, 
projected diesel fuel costs are greater than the fuel costs for the HDFC yard tractor. This gap grows over 
time in favor of HDFC TCO as the assumed cost of hydrogen and efficiency of fuel cells both improve. 
While the modeled 2020 HDFC yard tractor achieves only a $20,000 fuel cost savings relative to its 

 
17 Diesel Fuel Standards and Rulemakings 

https://www.epa.gov/diesel-fuel-standards/diesel-fuel-standards-and-rulemakings
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diesel equivalent, the modeled 2030 HDFC achieves a $35,000 savings. This projected advantage grows 
to $55,000 by 2050. These results demonstrate that, if hydrogen fuel prices continue to decline as they 
have in recent years, and meet future DOE targets, the drop in hydrogen fuel costs would be significant. 
This would greatly influence TCO for a HDFC yard tractor, leading to nearer-term TCO parity with the 
conventional diesel tractor. 

2020 MSRP estimates for HDFCs see a roughly a $30,000 decrease heading towards 2025 as 
manufacturing rates and end use applications for hydrogen fuel cells increase. However, cost drops from 
2025 to 2050 level off to approximately $6,000 per 5-year increment as market adoption settles in and 
manufacturing trends towards production capacity. 2025 diesel MSRP estimates realize an increase from 
2020 MSRP projections, which again is a result of anticipated powertrain improvements needed to 
adhere to EPA emission standards and regulations.  

Both diesel and HDFC O&M cost projections remain static throughout this simplified TCO calculation 
as future O&M projections for these vehicle types are not readily available. Understanding 
improvements around HDFC reliability could help lower O&M costs, further reducing the estimated 
TCO.  

Figure 24 summarizes the TCO of the two yard tractor powertrain options to demonstrate the potential 
tech year in which the HDFC yard tractor can become cost competitive with the conventional diesel 
tractor. Based on our estimations, HDFC yard tractors have the potential to achieve cost parity with 
diesel yard tractors as early as 2025. Beyond 2025, we project that HDFC yard tractor will continue to 
see a reduction in overall TCO, ultimately reaching approximately a $33,000 total cost advantage over 
diesel yard tractors. 

 

Figure 24. Total cost of ownership comparison for the conventional diesel and HDFC Class 8 yard tractor.  
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3.2.2 TCO Projection: Class 8 Refuse Trucks 
For Class 8 refuse trucks, the model assumes a 10-year operation at 25,000 miles per year. The same 
FASTSim default discount rate of 4.1% is assumed again as an input for the model. Figure 25 presents 
the projected total cost of ownership for the conventional diesel, CNG, and HDFC Class 8 refuse truck 
in thousands of dollars (USD). 
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Figure 25. Total cost of ownership (TCO) projections for conventional diesel, CNG, and HDFC Class 8 refuse trucks projected out to 2050 (ultimate). 
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As was seen for the Class 8 yard tractors, the more efficient hydrogen fuel cell helps yield a lower fuel 
consumption and therefore a lower relative fuel cost basis for the HDFC refuse truck compared to diesel. 
This fuel cost advantage over diesel continues to become more pronounced for HDFCs beyond 2020 as 
hydrogen production and end-uses increases. The projected diesel refuse truck MSRP and O&M cost are 
modeled to remain lower than HDFC throughout the model timeframe, but the fuel savings observed 
with hydrogen fuel are significant enough to allow HDFCs the potential to achieve cost parity with 
diesel in the mid- to long-term future.  

CNG trucks project to have fuel costs approximately $100,000 less than diesel, but the higher projected 
MSRP and O&M cost of the CNG trucks cause the CNG trucks to only have a TCO roughly $20,000-
30,000 less than its diesel counterpart. Similarly, the CNG truck has lower MSRP, and fuel costs 
compared to HDFCs, but the higher O&M costs give the HDFC an opportunity to achieve a lower TCO 
in the long-term.  

As with yard tractors, diesel, HDFC, and CNG O&M cost projections remain static throughout this 
simplified TCO calculation as future O&M projections for these vehicle types are not readily available. 
Understanding improvements around HDFC reliability could help lower O&M costs, further reducing 
the estimated TCO.  

Figure 26 summarizes and highlights the projected TCO for each of the three powertrain options as well 
as indicates the potential tech year in which the HDFC could realize cost parity with the conventional 
diesel and CNG powertrains. Our models estimate that HDFC refuse trucks could achieve cost parity 
with the conventional diesel and CNG truck around the years 2035 and 2040, respectively. CNG trucks 
are projected to have a lower overall TCO compared to diesel throughout all analysis years. Both 
powertrains have a similar cost basis, but CNG takes advantage of the significantly lower fuel costs. 
Improvements around O&M data for each vehicle type can help aid this TCO analysis and provide 
further understanding about near-term projections for HDFCs in the refuse truck sector.  

 

Figure 26. Total cost of ownership comparison for the conventional diesel, CNG, and HDFC Class 8 refuse trucks.  
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4 Discussion 
This report presents scoping-level vehicle performance and TCO results for two Class 8 vocational 
vehicles: a Class 8 U.S. port-side yard tractor and a Class 8 U.S.-based refuse truck. This completed 
work can serve as a complementary extension to other TCO work performed by NREL within the 
medium- and heavy-duty vehicle segments (Hunter et al. 2021; Hunter and Laboratory 2019; Brooker et 
al. 2021). The goal of this analysis was to help direct future analytical approaches and to identify 
opportunities for advanced powertrains within the selected Class 8 vocational segments. In this section, 
we summarize and discuss the key findings within this report can be found in the subsequent sections. 

Vehicle Performance and Modeling 
Results for vehicle modeling include design (e.g., component sizing), weight, duty cycle characteristics, 
fuel economy, and upfront purchase price. The MSRP results presented in Section 3 and discussed here 
do not necessarily represent cost and pricing strategies that may be employed by OEMs, nor do they 
necessarily cover potential sales mandates or other technology-forcing policies which may be issued by 
governments for the vehicle segments discussed in this report (our results do however consider current 
federal emissions and fuel economy standards for these vehicles). These results offer beneficial insights 
into the relative costs associated with each powertrain type for both the Class 8 yard tractor and Class 8 
refuse truck.  

• Yard Tractor MSRP: In the 2020 timeframe, our results project the HDFC yard tractor to be 
approximately 64% more expensive than the conventional diesel tractor. This drops steadily to 
approximately 13% in the ultimate tech year of 2050. This is largely due to the expected cost 
decrease in fuel cells and hydrogen fuel storage systems caused by increased hydrogen market 
adoption and increased manufacturing of hydrogen fuel cell systems. For yard tractor 
applications, the fuel cell and fuel storage system are the largest contributors to the observed 
price premium. Therefore, the MSRP is highly dependent on the powertrain component sizing. 
Our MSRP results are based on a generalized set of yard tractor assumptions and duty cycle. 
Other niche use cases and vehicle performance metrics for yard tractors could vary the 
powertrain sizing significantly, resulting in a decrease or increase in MSRP. For example, duty 
cycles requiring fewer starts and stops, minimal idling, higher VMTs, or towing above average 
cargo loads may result in a larger fuel cell system needed to achieve the overall duty cycle, 
yielding a higher MSRP projection. Conversely, reducing the fuel cell system for yard tractors 
requiring a less demanding duty cycle could further decrease the MSRP compared to diesel 
MSRP. To fully understand the magnitude of the effects performance requirements has on 
powertrain sizing and MSRP, a future sensitivity analysis could be added as an extension of this 
analysis.   

• Refuse Truck MSRP: In the 2020 timeframe, our results project the HDFC refuse truck to be 
approximately 53% more expensive than the conventional diesel truck and 35% more expensive 
than the CNG truck. The CNG truck is approximately 14% more expensive than the 
conventional diesel truck in 2020 as well. By 2050, the projected upfront price premium drops 
for the HDFC truck and is approximately only 10% more expensive than the conventional diesel 
truck and 2% more expensive than the CNG truck. As with yard tractors, the cause for this 
decrease in MSRP for the HDFC is related to the projected reductions in component costs, driven 
by increased market adoption, technological learning, and production economies of scale for 
hydrogen fuel cells and hydrogen-related systems. The CNG truck projects to always be slightly 
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more expensive than the diesel truck. This is likely due to the fact that CNG engines tend to have 
cost parity with diesel engines, but CNG storage systems will likely always be more intricate 
systems requiring higher-end materials and designs. Again, similar to the yard tractors, the 
modeled results are based on generalized, representative duty cycles that can’t fully capture all 
operational use cases for refuse trucks. Other duty cycles and performance characteristics could 
change the resulting MSRP for each powertrain type. More demanding duty cycles and 
performance for refuse trucks (e.g., more rural applications or higher average cargo loads) could 
be a disadvantage for fuel cells, resulting in larger powertrain requirements and increasing 
MSRP. Less demanding applications (e.g., urban settings with more starts and stops or higher 
idling times) could help reduce fuel cell system requirements and sizing, which could aid in 
decreasing the HDFC refuse truck MSRP compared to the diesel truck. An in depth duty 
sensitivity analysis could be added to this analysis to further understand the full effects both duty 
cycle and vehicle performance requirements have on powertrain sizing and the resulting MSRP.   

• Yard Tractor Duty Cycle: The representative yard tractor duty cycle used in this study 
demonstrates that average yard tractors have high idle times, numerous starts/stops, operate at 
relatively low power outputs, don’t experience significant gradients, and aren’t required to 
achieve high acceleration. These operational characteristics are favorable for HDFCs as fuel cells 
typically achieve peak efficiency at lower percentages of total power output. Like battery electric 
vehicles, when the HDFC tractor idles or comes to a complete stop, the fuel cell consumes little 
to no energy; therefore, preserving fuel reserves (assuming insignificant amounts are used for 
power take-off or auxiliary power such as air conditioning). Conversely, diesel powertrains 
achieve higher efficiencies at higher percentages of total power output. Since yard tractors don’t 
operate for long durations at maximum power output potential, diesel powertrains may not be the 
best option for operators and fleet owners. Yard tractors have relatively low VMTs compared to 
other segments in the heavy-duty space, further yielding an overall low fuel consumption and 
fuel cost potential for HDFCs. Additionally, yard tractors are centralized, off-road fleets that can 
take advantage of centralized, on-site refueling with minimal interruptions. This can allow 
HDFC yard tractors to reduce and optimize powertrain sizing while still meeting operation 
requirements. Centralized refueling can also capture refueling for other on-site vehicles, which 
ultimately helps drive infrastructure, fuel, and vehicle costs down. Further investigation into 
infrastructure planning and development can be added to this analysis to go beyond a simplified 
TCO for yard tractors.  

• Refuse Truck Duty Cycle: Similar to yard tractors, the representative refuse truck duty cycle 
observed in this study demonstrates that refuse trucks can also have higher than average idle 
times, numerous starts/stops (during trash collection), and spend a relatively large amount of 
time at lower power outputs. However, since refuse trucks are on-road vehicles, these trucks can 
experience variable road gradients and need to meet the acceleration needs of on-road driving. 
The operational characteristics during trash collection are favorable for fuel cells for the same 
reasons mentioned in the previous bullet point for yard tractors. Highway driving and times 
when trucks need to operate at higher power outputs could favor the diesel and CNG powertrains 
more than the HDFCs. CNG trucks are starting to gain significant market share within the refuse 
truck segment because CNG engines offer similar advantages to diesel engines with lower fuel 
prices and slightly better fuel economy. Refuse trucks may not be as flexible as yard tractor with 
regards to powertrain size optimization as individual refuse trucks may experience a wide variety 
of duty cycles day-to-day. However, like yard tractors, refuse trucks are typically centralized 
fleets that can take advantage of centralized refueling depots, a beneficial trait for hydrogen 
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refueling infrastructure. These fleets could allow other vehicles (vocational or retail) have access 
to hydrogen refueling, which could further decrease the overall fuel prices within refuse truck 
TCO. Again, further investigation is needed to understand how infrastructure affects refuse truck 
TCO to a full extent.  

• Yard Tractor Fuel Economy: Our results project that HDFC yard tractors would achieve a fuel 
economy approximately 3.5x that of their diesel equivalent in the year 2020, under the conditions 
we assumed, and approximately 2.6x greater in the ultimate year 2050. This slight decline in fuel 
economy edge is likely due to the expected increases in diesel fuel economy projected in the near 
future with new rule making and advancements in diesel engines. Varying the yard tractor duty 
cycle and assumed cargo load could greatly affect the overall fuel economy. For example, 
increasing average cargo weight would require the yard tractor to experience a higher average 
power output, which could cause the HDFC to be less efficient and the diesel powertrain more 
efficient. As a result, this would reduce the gap between the HDFC and diesel powertrain 
projected fuel economies. Conversely, decreasing average cargo weight could push the HDFC to 
higher overall efficiency; giving the HDFC an even greater fuel economy advantage over the 
diesel powertrain. As HDFC yard tractors make their way into port fleets, operators could focus 
on optimizing cargo loads and duty cycles to capture a best-case fuel economy, which helps 
lower the overall TCO for these fleets.     

• Refuse Truck Fuel Economy: In 2020, HDFC refuse trucks have a fuel economy that is 
approximately 3x greater than diesel and 2.6x greater than CNG. By 2050, the fuel economy for 
HDFC trucks could be approximately 2.4x greater and 2.5x greater than diesel and CNG trucks, 
respectively. The lower magnitude of the fuel economy increase for HDFCs over diesel and 
CNG with respect to yard tractors is because of the operational characteristics mentioned above 
in the previous bullet about the refuse truck duty cycle. The highway driving and higher power 
output instances refuse trucks experience allow for diesel powertrains to realize moments of 
higher efficiencies relative to fuel cell performance. Refuse trucks experience a wide variety of 
cargo weights, which can give way to highly variable fuel economies. Similar to yard tractors, 
increasing cargo weight would require higher power outputs (advantage diesel powertrains) and 
decreasing cargo weight would require lower power outputs (advantage HDFC). Better capturing 
these characteristics on a fleet-by-fleet basis could help determine fuel economies and TCO 
results for individual fleets and fleet operators. Urban and rural duty cycles can affect fuel 
economy. Urban fleets may never experience highway driving and have lower average speeds, 
power output, and starts and stops. These attributes would further lean in favor of HDFC refuse 
trucks. Conversely, rural fleets may experience even greater amounts of highway driving times 
with higher average speeds, power output, and less starts and stops, which could increase diesel 
and CNG powertrain fuel economy and incentive fleet owners to opt for these powertrains for 
their fleets.  

Total Cost of Ownership Modeling 
A summary of the T3CO and total cost of ownership modeling results include the following: 

• HDFC yard tractors could be cost competitive and economically viable with diesel tractors 
potentially as early as 2025 and beyond if hydrogen fuel price, fuel cell, and fuel storage cost 
targets are achieved. 
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• HDFC refuse trucks could be cost competitive and economically viable with diesel trucks in the 
year 2035 and with CNG trucks in the year 2040 if hydrogen fuel price, fuel cell, and fuel 
storage cost targets are achieved. 

• Cost reductions for dispensed hydrogen and fuel cell systems play an important role in HDFC 
market adoption within the heavy-duty sector as well as decreasing TCO. These cost reductions 
should be a major focus area for research and development. 

• For both HDFC yard tractors and refuse trucks, the fuel cell and fuel storage dominate the MSRP 
component of the TCO.  

• Until HDFCs are widely available on various vehicle types, maintenance for HDFCs will be 
higher than the diesel counterparts due to the fuel cell’s complexity and lower technology 
readiness.  

• Glider and chassis modifications for HDFCs could add more cost implications for each vehicle 
type studied. 

 
Overall, these results successfully indicate that HDFC applications within the yard tractor and refuse 
truck segments are viable in terms of both performance and TCO. Fuel cell efficiency maps continue to 
demonstrate that vehicles with lower average power outputs can reach peak fuel cell efficiency and 
achieve higher fuel economy projections over more conventional powertrains. We find that yard tractor 
and refuse truck average duty cycles favor fuel cell performance in large part because their duty cycles 
share these characteristics. We expect investigations into other vehicle segments with similar duty cycle 
characteristics should yield similar results and advantages. These types of vocational markets may be 
optimal early points of entry for HDFCs and fuel cells in general. Coupling these vehicle-specific 
advantages with potential for centralized refueling for each segment is another promising feature as this 
promotes lower fuel cost potential and other on- or near-site hydrogen applications; further growing the 
hydrogen market.  

However, this analysis lays out only a simplified TCO analysis and needs to be modified and enhanced 
to deliver a more in depth analysis for each vehicle. The overarching trend pointing towards cost 
competitiveness for yard tractors and refuse trucks is promising, but more precise cost data (e.g., O&M, 
glider) and regionally specific information (e.g., fleet specific duty cycles, climate, VMTs) could help 
this analysis narrow in on cost figures that fleet operators can realistically expect for their fleets. Other 
data inputs such as rolling resistance and wheel inertia are defaults for Class 8 long-haul trucks as this 
type of specific data is not available for either yard tractors or refuse trucks. Obtaining vehicle specific 
data in these areas could help this analysis produce a more accurate vehicle model for both yard tractors 
and refuse trucks. Also, for real-world applications of HDFCs for these vehicles, chassis modifications 
and light-weighting is almost certainly going to be needed for full build outs, which will likely require 
higher glider and overall MSRP costs for these advanced powertrains. This is not captured in this study 
at this time as it goes beyond the scope of the funded work.  

Real-World Considerations 
The work performed in this analysis is a scoping-level approach to estimate the TCO of each of the 
studied segments. It is based on a bottom-up approach and does not necessarily reflect the strategies 
potentially implemented by OEMs. Select representative duty cycles for each vehicle do not encompass 
all duty cycle types or edge-cases that these vehicles may experience in different locations or under 
extreme duty cycle circumstances (e.g., extreme climate conditions or rural examples for refuse trucks). 
The duty cycles for each vehicle are also subject to operator preferences based on specific fleet 
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characteristics or economical decisions that best suit the fleet operation. The transportation energy sector 
is constantly changing; therefore, logistics and strategies around fleet operation are likely to continue to 
evolve and adapt quickly. This analysis lays a foundation for TCO assessments based on real-world data 
and future iterations of this work will depends on future duty cycle considerations and technological 
advancements within each segment.  

5 Conclusion 
A scoping-level TCO assessment was performed for a U.S.-based Class 8 yard tractor and a U.S.-based 
Class 8 refuse truck. The assessment includes direct costs (e.g., operation & maintenance, MSRP, and 
fuel costs) for each vehicle application. The analysis does not include indirect costs such as dwell time 
cost implications and payload opportunity.  

The drive/duty cycles for each of these vehicles aims to represent typical operational characteristics 
experienced. Favorable operational characteristics for each vehicle could allow for HDFCs to gain 
significant market share in the near future. Results from the TCO indicate that heavy-duty fuel cells 
within these segments have the opportunity to achieve cost parity with conventional diesel and CNG 
(refuse only) powertrains if interim and ultimate targets are achieved.  

Both Class 8 yard tractors and refuse trucks have opportunities for centralized refueling, which could 
present an advantage for electrifying these segments sooner than other segments. U.S. ports specifically 
could see significant future on-site hydrogen demand, further making HDFC yard tractors a viable 
vehicle choice at ports.  

To continue to complement this analysis, more extensive literature reviews and on-board vehicle data 
could help fill in data gaps seen in this report.  

6 Future Work 
Since this report presents a scoping-level TCO assessment, many details and facets were either 
condensed and summarized and/or beyond the scope of this analysis. Future iterations of this work may 
include: 

• Assessment of additional heavy-duty vocational vehicles with similar operation characteristics 
• Inclusion of the effects of a centralized refueling infrastructure and fuel demand analysis 
• Extreme climate impacts and powertrain power control strategy and optimization 
• Further development of representative duty cycles for yard tractors and refuse trucks to 

encompass greater detail around operation characteristics 
• Investigation into fleet regionality and how fleet location and specific operation characteristics 

can affect performance and TCO for individual fleets 
• Varying cargo load characteristics to account for extreme cases 
• Capture regenerative breaking and how this affects overall fuel economy for HDFC yard tractors 

and refuse trucks 
• Implication of power take-off and onboard auxiliary power requirements for each vehicle type 
• Sensitivity analysis to identify key major contributors to yard tractor and refuse truck TCO 
• Real-world, higher fidelity operating and maintenance data specifically for HDFCs within each 

of these segments 
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• Obtaining vehicle specific attributes such as wheel inertia, rolling resistance, and frontal area 
estimations 

• Inclusion of dwell time cost implications and payload opportunity 
• Inclusion of other financial incentive and policies centered around advance powertrain 

technologies, Low Carbon Fuel Standards, and zero emission vehicle mandates 
• Evaluation beyond expected vehicle lifetime (e.g., resale and salvage value) and other durability 

assessments 
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