Recent Improvements in the National Solar Radiation Database (NSRDB)

Manajit Sengupta, Aron Habte, Yu Xie, Grant Buster, Mike Bannister, Michael Rosso, Paul Edwards, Galen Macaurin, Evan Rosenlieb, Jaemo Yang, Haiku Sky, and Billy Roberts

Abstract

- The National Solar Radiation Database (NSRDB) has significantly evolved since the first release of the point source database in 1992.
- The NSRDB has been widely used by the solar energy industry to provide long-term time-series solar resource data for various project phases.
- The NSRDB represents the state of the art in the satellite-based estimation of solar resource information and uses a unique physics-based modeling approach that allows improvements in accuracy with the deployment of the next-generation geostationary satellites.
- The historical NSRDB data are available from 1998 to the present with a 1-year lag and are processed on a nominal 4x4-km grid spacing at a 30-min frequency. Beginning in 2018, the NSRDB has additional data sets available at a 2x2-km, 5-min resolution available for the continental United States, Hawaii, Mexico, and the Caribbean Islands and at a 2x2-km, 10-min resolution for North and South America from +60 to –60 degrees latitude.
- This poster demonstrates (1) the improved spatiotemporal resolution; (2) on-demand services and their applications; (3) future improvements, such as a new direct normal irradiance (DNI) model and new methods to gap-fill missing data using physics-guided machine learning; (4) data quality; and (5) data dissemination.

Physical Solar Model (PSM)

Data sources
- Satellite Data
- Final NSRDB

Model inputs
- Radiative transfer model
- Solar irradiance time-series variables

Spatiotemporal Coverage

Recent Additions

Updated products to contain 2022 data

New products released in 2021

Validation

Data Dissemination

The data sets can be accessed:
- By point location or small area downloaded through the NSRDB Data Viewer (https://maps.nrel.gov/nsrdb-viewer/)
- By application programming interface to access larger quantities of data through automated approaches (https://nsrdb.nrel.gov/data-sets/api-instructions.html)
- Through the Highly Scalable Data Service (HSDS) hosted on Amazon Web Services (https://github.com/NREL/hsds-examples/blob/master/notebooks/03_NSRDB_introduction.ipynb).

Updates in Fiscal Year (FY) 2022

Parallax-Correction, Shading, and Remapping

Albedo Adjustment

Previous surface albedo on March 1, 2020

Updated surface albedo on March 1, 2020

\[\alpha = \begin{cases} 0.8, & \text{if } \frac{\text{WW}}{\text{T}} < 268 \text{K} \\ 0.65 + \frac{0.03(273 - \text{T})}{\frac{268}{\text{T}}} & \text{if } 268 \text{K} < \text{T} < 273 \text{K} \\ 0.65, & \text{if } \text{T} = 273 \text{K} \end{cases} \]

Ross and Walsh (1987) suggested a parameterization that decreases the albedo linearly with temperature when it approaches the freezing point. The snow/ice albedo is updated according to Ross and Walsh (1987).

Updates in FY 2023–FY 2024

- Implement machine learning/artificial intelligence-based derivation of cloud identification.
- Investigate the availability of aerosol data sets from GOES-16 and GOES-17 satellites.
- Custom typical meteorological year in the plane of array.
- High-resolution cloud properties (500 m) to get cloud fraction and improved cloud optical depth.
- A 50-year projected solar radiation data set going out to 2070 from regional climate models.

References