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SUMMARY

Prediction of battery health from electrochemical impedance spec-
troscopy (EIS) data can enable rapid measurement of battery state
in real-world applications without using additional sensors or
time-consuming performance measurements. However, deconvo-
luting the effect of capacity, state of charge, and temperature on
EIS response is complicated analytically. Here, various machine-
learning models, such as linear, Gaussian process, random forest,
and artificial neural network regression, are utilized to predict ca-
pacity from EIS using hundreds of capacity, direct current (DC) resis-
tance, and EIS measurements recorded under varying conditions of
health, temperature, and state of charge (SOC). Several feature
extraction and selection methods from traditional electrochemical
analysis and statistical modeling are explored using machine-
learning pipelines. EIS data from just two frequencies can accurately
predict capacity, and interrogation shows that the optimal set of fre-
quencies is not usually intuitive. Best results are achieved with an
ensemble model, which predicts battery capacity with a mean abso-
lute error of 1.9% on data from unobserved cells.
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INTRODUCTION

Accurate monitoring of battery states like temperature, state of charge (SOC), resis-

tance, and capacity is crucial for ensuring the safety and reliability of lithium (Li)-ion

battery energy storage systems used in electric vehicles or for stationary energy

storage systems. Although certain states, like temperature, can be monitored using

relatively cheap sensors, other states, like battery capacity, aremeasured using time-

consuming diagnostic tests that may take anywhere from several hours to days,2

making these methods infeasible for use in real-world applications. Battery capacity

may be predicted online via forecasting life models, which may use reduced-order

algebraic expressions,3–5 machine learning methods,6,7 or neural network ap-

proaches.8 Other methods, such as state observer algorithms, like Kalman filters,

may track battery health by updating an internal model based on real-time observa-

tions.9,10 But directly monitoring battery health via diagnostic measurements may

be more tolerant to model error or detect imminent battery failure because of

external or internal events. Rapid diagnostic tests, such as direct-current (DC) inter-

nal resistance (DCIR) measurements,11,12 pseudo-random binary pulse tests,13–15

and electrochemical impedance spectroscopy (EIS)1,16 can be performed in only a

few minutes or less and require a fraction of the energy and power compared with

a full charge and discharge. The main obstacle preventing use of rapid diagnostic

tests to diagnose battery health is the complex relationship between health metrics

like discharge capacity and resistance; the resistance of a battery is highly sensitive
Cell Reports Physical Science 3, 101184, December 21, 2022 ª 2022 The Authors.
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to temperature and SOC, and the capacity and resistance of the battery may evolve

non-monotonically as a battery is used. Thus, using resistance to monitor battery ca-

pacity requires accounting for the effect of temperature and SOC on resistance, ef-

fects that may change as the battery degrades.

The effect of temperature, SOC, and capacity on the EIS response of Li-ion batteries

has been researched extensively. Waag et al.11 described not only the effect of tem-

perature, SOC, and capacity on EIS but also the effect of resting time as well as the

effect of all of these on DCIR measurements. Analysis of the effect of battery state on

the EIS measurement is often assisted using equivalent circuit models (ECMs). Heins

et al.17 fit EIS data with an ECM derived by analysis of the distribution of relaxation

times, qualitatively mapping ECM parameters versus capacity and SOC after

exploring temperature dependence on a cell at beginning of life (BOL). Mc Carthy

et al.18 reported similar relationships between ECM parameters and battery states

as Heins et al.17 and analyzed correlations between battery state (health, tempera-

ture, SOC) to ECM parameters and EIS components at single frequencies: the real

component (ZReal), the imaginary component (ZImaginary), and phase angle (:Z) of

the impedance. Gantenbein et al.19 developed quantitative relationships to

describe the variation of ohmic, charge-transfer, and diffusion resistances versus

temperature and SOC, essentially using EIS and voltage relaxation data to develop

a complete battery model.

Time-resolved DC pulse data (voltage data collected frequently enough to

capture dynamic changes) can be equivalent to impedance. Barai et al.12 showed

equivalence between DC and alternating current (AC) measurements as long as

the timescales are the same, whereas other researchers have demonstrated that

time-resolved current and voltage data from a series of binary DC pulses can be

mathematically transformed to calculate an impedance spectrum.15,20 This implies

that time-resolved DC measurements can be used in conjunction with or in replace-

ment of EIS when the measurement contains current switching at varying fre-

quencies. Practically speaking, AC-DC conversion hardware often introduces ripple

currents,21,22 which could be leveraged to monitor impedance at specific fre-

quencies in real-world battery modules. Impedance may also be directly recorded

by battery management systems at the cell or string level23 and used as input

data for models predicting battery state. Other types of DC modulation can be

used to monitor the entire impedance spectrum throughout the charge or discharge

of a battery.24 Other methods for recording impedance at the pack or module level

have also been reported in the academic literature.25–27

Although these studies help to explain the qualitative relationships between battery

state and EIS response, they do not clearly identify useful strategies for making

quantitative predictions. Luckily, there is substantial prior work, prompting several

recent review articles on battery health detection,28 relationships between battery

health diagnostics like EIS and capacity,16,29 internal temperature measure-

ment,28,30 and SOC monitoring.28 One of the major topics in these reviews as well

as in individual studies is the challenge of extracting useful features from the EIS

data to predict a single battery state while trying to minimize or correct the influence

of other states; e.g., predicting capacity while minimizing error induced by varying

cell temperature. There are two obvious approaches for dealing with this challenge:

select features that only correspond to a single state (sensitive to capacity but not to

temperature; e.g., avoid the problem), or deconvolute the effects of each battery

state on the feature (e.g., correct the problem). For example, Galeotti et al.31

used the ohmic resistance (>104 Hz) with a linear regression model to predict battery
2 Cell Reports Physical Science 3, 101184, December 21, 2022
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capacity, based on the insight that the ohmic resistance was not very sensitive to

SOC but still responsive to changes in capacity. Zhang et al.32 also fit EIS measure-

ments with an ECM but attempted to correct for SOC, temperature, and capacity in-

teractions by using the charge-transfer resistance, RCT (characteristic frequency near

101 Hz), as an input to a non-linear function dependent on SOC, temperature,

and RCT:

q = a,exp
�
b1 + b2 ,SOC + b3 ,SOC2 + g ,T

�
,RCT (Equation 1)

where q is the relative discharge capacity; a, b1, b2, b3, and g are fitting parameters;

and SOC and T are the SOC and temperature. Other studies utilize domain expertise

to pull out features in the Nyquist or Bode representations of the EIS data. Schuster

et al.33 used the values of ZReal at the y axis intercept (�103 Hz) and at theminimum of

the low-frequency valley (often near 10�1 Hz), predicting the capacity of cells oper-

ating under calendar aging, mild cycle aging, and harsh cycle aging conditions using

linear models, but they were not able to develop amodel that extrapolated well from

one test condition to another. La Rue et al.34 used the minimum ZImaginary value at

frequencies of less than 1 rad/s (greater than 0.16 Hz) to extract the peak of the semi-

circular feature present in most battery EIS measurements to estimate SOC at 0�C or

23�C, but they did not account for battery health. Du et al.15 used a high-dimen-

sional lookup table consisting of the ZReal and ZImaginary values recorded from

1–31 Hz at 1-Hz intervals versus temperature, minimizing the city-block distance be-

tween measured impedance and the pre-recorded lookup values to predict temper-

ature, which, they suggest, can account for SOC interactions. Zhu et al. use the

maximum value of |Z| from across the impedance spectra, finding that it is a useful

predictor of SOC while being relatively insensitive to aging or temperature.24

The most common feature extraction approach is to only use data from one or two

frequencies of interest rather than extracting information from the entire EIS curve.

Love et al.35 chose a frequency qualitatively based on a statistical analysis of the EIS

sensitivity to SOC and health, selecting a frequency of 316 Hz to detect cells that

were overcharged while avoiding SOC interactions. Liebhart et al.36 used a mathe-

matical approach, estimating the partial derivatives of the impedance with respect

to capacity and temperature to determine the frequency most sensitive to capacity

but least sensitive to temperature, finally selecting the phase angle, : Z, at 30 Hz;

they also attempted to correct for any bias induced by temperature at this frequency

by assuming that the measured phase angle is a superposition of the capacity and

the temperature effects, modeling the temperature component using a fourth-order

polynomial,

gq = : Zð30 HzÞ � gT

2 4
gT = a+bT + cT +dT

where : Z is the measured phase angle at 30 Hz; gq and gT are the capacity and

temperature components of : Z, respectively; T is the temperature in Kelvin; and

a; b; c; and d are fitted parameters. The remaining capacity effect, gq, could then

be used to predict capacity using a linear model or a lookup table. Mc Carthy

et al.37 addressed the opposite problem, predicting internal temperature from

impedance while accounting for battery capacity and SOC effects by qualitatively

analyzing the correlation between temperature, SOC, and battery capacity versus

measurement frequency for the real, imaginary, and phase components of the

impedance, choosing 200 Hz as the frequency most sensitive to temperature but

least sensitive to capacity and SOC. Wang et al.38 selected two frequencies by qual-

itative analysis, using : Z at 79.4 Hz to measure temperature using a lookup table
Cell Reports Physical Science 3, 101184, December 21, 2022 3
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and assuming that SOC is known via coulomb counting or some other method and

then predicting capacity using the magnitude of the impedance, |Z|, at 10 Hz using a

lookup table versus |Z|, temperature, and SOC. Caposciutti et al.39 used qualitative

analysis to propose that any frequency between 10�1 and 101 Hz could be used to

predict battery capacity but without accounting for any temperature or SOC effects.

Measurement frequency can also be selected to minimize estimation error when

some underlying model for the sensitivity of the impedance versus temperature,

SOC, or other experimental variables exists, as demonstrated by Beelen et al.40 to

estimate temperature with less than 1�C error across a wide range of temperatures

and SOCs.

Because of the complexity of handling the convoluted effects of capacity, tempera-

ture, and SOC on EIS or resistance measurements, machine learning methods have

been proposed in recent years to tackle the issue. Zhang et al.1 recorded EIS data 9

times during each cycle on cells cycling with constant ambient temperatures of 25�C,
35�C, or 45�C, varying the EIS measurement current, temperature, SOC, and rest

time, and then used the raw values ZReal and ZImaginary at each frequency as input fea-

tures to a Gaussian process regression (GPR) model with an automatic relevance

determination (ARD) kernel to adaptively weight each feature. They concluded

that the critical frequencies for predicting capacity from EIS are 17.8 and 2.16 Hz;

however, this only accounts for influence of temperature and capacity because

they split the EIS measurements recorded throughout each cycle into separate data-

sets, avoiding the need to account for varying current, SOC, and rest time. La Rue

et al.41 used the least absolute shrinkage and selection operator (LASSO) regulariza-

tion method42 to determine features for predicting SOC for lithium iron-phosphate

and graphite cells from the ZImaginary data, finding that 4 frequencies spaced be-

tween 10�1–100 Hz accurately predicted SOC. Ran et al.14 utilized a K-means clus-

tering algorithm to classify cells as healthy, aged, or end-of-life (EOL) using a variety

of features extracted from a series of 3 charge/discharge pulses. The first component

from principal-component analysis (PCA) of the current-voltage time-series data,

DCIR calculated using the voltage difference after 10-s DC pulse duration at varying

current, and the open-circuit potential of the battery as estimated by fitting of the

final voltage relaxation curve with an exponential relaxation model. Various deep-

learning approaches have also been suggested. Kim et al.43 used a generative ad-

versarial network (GAN) architecture to predict capacity using the data published

by Zhang et al.,1 utilizing a 2-dimensional latent state representation learned by

the GAN to predict capacity via a GPR model instead of the using the raw EIS

data. Rastegarpanah et al.44 utilized a convolutional neural network to predict the

capacity of aged Nissan LEAF batteries from impedance measurements conducted

at varying SOCs, comparing the results with an artificial neural network (ANN) that

uses ECM parameters as inputs and finding that the ANN model using raw imped-

ance data as input performs better than the ANN using ECM parameters as input.

Messing et al.45 independently conducted a nearly identical experimental and

modeling effort to predict SOC rather than capacity, also finding that an ANN per-

formed better when using raw EIS data rather than ECM parameters as input.

One unstated drawback to essentially all studies conducted on battery state estima-

tion via EIS or resistance measurements is a relative lack of data. Because of limited

data, most of the summaries above ignored SOC, temperature, or health effects on

the EIS during the experimental and modeling components of their work. Not only

this, but most research in this area is based on data from fewer than 10 cells, with

some developing detailed models based on data from only a single battery. No

studies explore a wide variety of aging conditions. The reason for this lack of data
4 Cell Reports Physical Science 3, 101184, December 21, 2022
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is probably simple: battery aging and performance characterization studies are

expensive and time consuming, so conducting aging with a variety of aging condi-

tions while simultaneously measuring battery capacity, DCIR, and EIS at varying

SOCs and temperature is cost, time, or channel prohibitive. Even for the highly cited

work by Zhang et al.,1 which shares data from over 20,000 distinct EIS measure-

ments, the data are recorded from only 12 cells, each undergoing an identical aging

procedure at only 3 distinct temperatures. This lack of variance in the aging trajec-

tories and EIS measurement conditions hinders the development of modeling

methods that could be useful in real-world applications and makes it impossible

to develop a realistic understanding of the possibilities and limitations of using

EIS or DCIR measurements to predict battery state.

This work shares data from a comprehensive aging study conducted by DENSO Cor-

poration on large-format Li-ion prismatic cells intended for use in electric vehicles.

The aging study comprises 32 cells aged for up to 500 days and 2,500-equivalent

full cycles (final capacity between 98 and 65%) under varying conditions: calendar

aging at varied temperature and SOC; cycle aging at varied temperature, average

SOC, depth of discharge, duty cycle, and C rate; and drive cycle aging. A summary

of the study and a capacity fade model developed using data from the first 300 days

of aging has been published previously by Smith et al.4 Cell performance was moni-

tored not only by capacity checks but also by DCIR and EIS measurements recorded

at varying SOC and temperature with a total of 489 EIS measurements and 2,584

DCIR measurements. An exploration of this dataset reveals the challenge of using

resistive health metrics like DCIR or EIS to monitor battery capacity. The dataset is

then used to train machine-learning pipelines with linear, GPR, or random forest

(RF) model architectures, each using a variety of feature extraction and/or selection

algorithms, with the goal of predicting battery capacity using impedance data.

Models of each architecture using the most promising features are then retrained us-

ing Bayesian hyperparameter optimization via cross-validation on the training set.

An ANN is also trained using the raw impedance data as input for comparison

with the other machine learning methods. The lowest error models achieve about

2% mean absolute error (MAE) on test data, learning to account for the influence

of temperature and SOC on the impedance while still making relatively accurate pre-

dictions of capacity. The lowest-error models of each architecture are then com-

bined into an ensemble model, which results in 1.9% MAE on the test set. Analysis

of all results suggests that the most reliable approach for training a model to predict

capacity from EIS is to perform an exhaustive search for the best combination of two

frequencies; the frequencies that are most critical for monitoring capacity for these

cells lie near 100 and 103 Hz, but the optimal frequencies vary by model and are not

necessarily intuitive; two features with low correlation often perform better than two

features with high correlation on unseen data. Finally, guidelines for data acquisition

andmodel identification are presented, with an eye toward remaining challenges for

monitoring battery state using EIS in real-world applications.

RESULTS AND DISCUSSION

Predicting capacity using resistance is difficult because both evolve non-

monotonically as a battery degrades

In real-world scenarios, battery aging occurs under a wide variety of environmental

conditions and use cases. Monitoring battery capacity via resistance or impedance

would be simple if battery capacity and resistance were insensitive to the use, but

this is not borne out by accelerated aging studies. The relationship between capacity

and resistance is further complicated because capacity and resistance health metrics

may vary non-monotonically during cell lifetime, dependent on the aging stress.4
Cell Reports Physical Science 3, 101184, December 21, 2022 5
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Figure 1. Comparison of discharge capacity and DC pulse resistance throughout battery lifetime

(A and B) Evolution of (A) relative C/3 discharge capacity at 25�C and (B) relative DCIR at �10�C and 50% SOC. Black markers denote capacity checks

where EIS data were recorded at 50% SOC and �10�C and 25�C. Once during the lifetime of each cell, between 300 and 400 days, impedance was also

recorded at 0�C and 10�C. For about 1/3 of the cells, further impedance measurements were recorded at varied temperatures and SOCs after

completion of the aging tests.

(C–E) Relationships between relative capacity and resistance. (C) Relative capacity versus relative DCIR. (D) Data in (C) fit with a cubic polynomial. (E) The

slope from the cubic fits in (D) versus relative capacity.

(F–H) Relative capacity versus DCIR, where DCIR is calculated using various time windows after the start of the DC current pulse. (F) 0–0.01 s time

window. (G) 0.01–0.1 s time window. (H) 0.1–10 s time window.

The DCIR data in (B)–(E) are calculated using the entire 0–10 s time window.
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The relative C/3 discharge capacity and relative DCIR at �10 �C at 50% SOC from

this aging study are plotted versus time in Figure 1; the top plots (Figures 1A and

1B) show relative discharge capacity and DCIR evolution from cells aging under
6 Cell Reports Physical Science 3, 101184, December 21, 2022
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static storage or cycling conditions as well as cells aging under a worldwide harmo-

nized light vehicle test protocol (WLTP) drive cycle. Capacity for all cells is, for the

most part, monotonically decreasing, but some cells show a 1%–2% capacity in-

crease near BOL (Figure 1A). This capacity increase likely occurs for all cells,5 but ca-

pacity was not measured with enough frequency early during cell life. DCIR varies

positively and negatively throughout aging, decreasing by up to 30% before stabi-

lizing for a long period (Figure 1B). Some cycling cells show a dramatic DCIR increase

leading up to EOL. Details about the experimental procedures for cell aging and

performance measurements are described in the supplemental experimental pro-

cedures and shown in Figures S1 and S2.

The decrease in resistance during early life may be surprising because other works

constantly increasing resistance with decreasing capacity,46,47 but this behavior

has been noted before5 and reported previously for this dataset.4 This initial

decrease in resistance may be due to cracking of LiNiMnCoO2 (NMC) positive elec-

trode particles during the first 10–100 cycles, which exposes fresh surface area,

decreasing cell resistance. Some studies may ‘‘equilibrate’’ cells prior to aging by

cycling all cells in a test for a few tens of cycles, defining BOL as after cell equilibra-

tion, which would obfuscate this effect. However, subjecting cells to equilibration cy-

cles is not achievable in real-world applications.

Cell capacities and resistances are directly compared in Figure 1C. Considering the

goal of predicting capacity using resistive health metrics, there are several key

aspects:

� Early capacity loss is nearly always associated with decreasing resistance.

� In middle of life, capacity continues to decrease, and the resistance is stable

and eventually increases.

� Although cell resistance is nearly always increasing as cells approach EOL, the

onset of resistance increase has widely varying capacity values.

� A single value of DCIR may correspond to more than one capacity value

throughout cell lifetime.

Although the value of capacity does not directly correspond to the value of resis-

tance, it may be that changes to capacity map directly to changes in resistance.

To study this, the relative resistance as a function of relative capacity was fit using

a cubic function (Figure 1D). The slope was then calculated analytically (Figure 1E).

For most cells, the inflection from decreasing to increasing resistance occurs around

90% relative capacity, but this varies from 95% to 80% relative capacity. Although

the resistance increases with decreasing capacity for nearly all cells at EOL, the

magnitude of that slope is not strongly associated with a specific capacity value.

Thus, as shown in Figures 1C–1E, not only is the value of resistance not a good pre-

dictor of capacity, but the change of resistance is also not a good measure of the

change of capacity.

The time domain used for calculating DCIR also substantially affects the relationship

between capacity and resistance. Very short time windows correspond to ohmic re-

sistances and facile charge-transfer behaviors, middling duration time windows

correspond to slower charge-transfer behaviors and porous electrode effects, and

long time windows correspond to solid-state diffusion of Li and changing stoichiom-

etry of the electrodes. DCIR is calculated by fitting Ohm’s law to a specific time

window of the voltage response after beginning a discharge current pulse. In

Figures 1B–1E, the plotted values correspond to DCIR, which was calculated after
Cell Reports Physical Science 3, 101184, December 21, 2022 7
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10 s (0–10 s) versus the discharge pulse current. In Figures 1F–1H, results are plotted

using varying time windows: 0–0.01 s (Figure 1F), 0.01–0.1 s (Figure 1G), and 0.1–

10 s (Figure 1H). At the shortest time window, 0–0.01s, the resistance for all cells

is relatively stable within measurement accuracy, decreasing by perhaps 5% in early

life and then only obviously increasing for a few cells as they approach very low ca-

pacity values. In the next time window, 0.01–0.1 s, the resistance decreases by up to

50% in early life before saturating or increasing. Finally, in the longest time window

(0.1–10 s), resistance is nearly constant for most cells, with a few cycling cells showing

dramatic increases. This variance in the relationship of DCIR and capacity

throughout cell lifetime as a function of the time window clearly contains a substan-

tial amount of information, but recording and visualizing these data is a complex

challenge.11,12 For measuring and visualizing the evolution of time-dependent resis-

tance, EIS is a more useful method, with many analysis techniques to draw from in the

literature.

Electrochemical impedance is sensitive to battery health but also to

temperature and SOC

Similar trends as those observed in the DCIR are reflected by the EIS data. EIS trends

across various time domains are often described using the terms ohmic resistance,

polarization resistance, and diffusion resistance, associated with the minimum value

of ZReal at high frequencies, the width of the semicircular feature at moderate fre-

quencies, and the slope of the impedance of the diffusion tail (near 45� straight

line observed at low frequencies) versus frequency, respectively. EIS measurements

recorded at �10�C and 25�C for a storage cell and a cycling cell, respectively, are

shown in Figure 2, colored by capacity. The predominant trends of these two cells,

which are qualitatively representative of trends observed in the other 30 cells,

include the following:

� Decreasing polarization resistance during early aging, obvious for EIS data re-

corded at �10�C (Figures 2A and 2C)

� Increasing polarization resistance with decreasing capacity, mild for cells with

only slight degradation, such as calendar-aged cells (Figures 2A and 2B), and

severe for others (Figures 2C and 2D)

� Increasing ohmic resistance over cell life, obvious for EIS data recorded at 25�C
(Figures 2B and 2D)

Qualitatively, the EIS changes relatively little during the middle portion of cell life

(�95%–85% relative capacity), suggesting that capacity prediction in this regimen

will be challenging because the impedancemay bemore affected by cell-to-cell vari-

ation or small changes in the measurement conditions than by any degradation

mechanism. However, nearer to EOL, several cells have dramatic changes in the

magnitude and shape of the EIS response, reflected by substantial increases to

DCIR in Figure 1B, so detecting EOL should be comparatively straightforward.

The physiochemical roots of changes to the shape and magnitude of the EIS of

NMC-Gr Li-ion batteries are well described in other studies11,17,19 and are not

repeated here.

The prediction of battery capacity using EIS in real-world applications is confounded

by the strong dependence of the EIS response of any given cell on the cell temper-

ature and SOC. EIS behavior versus temperature and SOC is shown in Figures 2E–2H

at BOL and after aging. EIS trends versus temperature (Figures 2E and 2F) remain

relatively unchanged throughout lifetime; the effect of temperature on the magni-

tude of the impedance is exponential, whereas the effect of capacity on impedance
8 Cell Reports Physical Science 3, 101184, December 21, 2022
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Figure 2. EIS sensitivity to discharge capacity, temperature, and SOC throughout battery lifetime

(A–D) EIS sensitivity to discharge capacity for a calendar aging cell at (A)�10�C and (B) 25�C and a cycling aging cell at (C) �10�C and (D) 25�C. Diamond

markers correspond to frequency decades from 103 Hz (bottom left) to 10�2 Hz (top right).

(E and F) EIS sensitivity to temperature at 50% SOC at (E) BOL and (F) after 25% capacity loss.

(G and H) EIS sensitivity to SOC at 25�C at (G) BOL and (H) after 30% capacity loss.

(I–K) Two-component UMAP dimensionality reduction of the entire EIS dataset, colored by (I) relative capacity, (J) temperature, and (K) SOC.
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is proportional, so impedance is always more sensitive to temperature than degra-

dation state throughout cell life. In contrast, the effect of SOC on the magnitude

of the impedance at BOL (Figure 2G) is similar to that of aging (Figures 2A and

2C), making qualitative distinction between SOC and aging effects difficult. Also,

aging seems to affect the sensitivity of EIS to SOC because aged cells (Figure 2G)

appear to be less sensitive to SOC than at BOL. This suggests that EIS may not be

as effective for SOC estimation after substantial degradation, but there is not

enough variation in the SOC of EIS measurements in this dataset to arrive at a clear

conclusion on this.

The results in Figures 2A–2H seem to paint a clear picture of the relationships be-

tween EIS, capacity, temperature, and SOC, but it is very difficult to visualize data

from multiple cells at a time without making them uninterpretable. To visualize

high-dimensional data, unsupervised dimensionality reduction algorithms can be

used. Dimensionality reduction attempts to map high-dimensional data to a lower
Cell Reports Physical Science 3, 101184, December 21, 2022 9



Table 1. Modeling pipelines explored in this work

Pipeline Features (raw impedance values or extracted) Feature selection

0 N/A (dummy model) N/A (dummy model)

1A ZReal, ZImaginary, |Z|, : Z N/A

1B single frequency

1C two frequencies

1D correlation search53

1E SISSO54

1F embedded feature selectiona

2A statistical features N/A

2B correlation search

2C SISSO

3A PCA N/A

3B UMAP N/A

4 graphical features N/A

5 ECM parameters N/A

All approaches were tested using linear, GPR, and RFmodel architectures. Pipeline 0 is a ‘‘dummymodel’’

used as a baseline for evaluating model performance. SISSO refers to the "sure independence screening

and sparsifying operator" algorithm.54

aEmbedded feature selection uses the LASSO42 algorithm for linearmodels and the automated relevance

determination (ARD) form of the squared-exponential kernel for GPRmodels. RFmodels were not trained

for pipeline 1F because no common embedded feature selection method exists.
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dimensional space while preserving the relative variance between individual mea-

surements. One such method is the universal mani-fold approximation and projec-

tion (UMAP) method;48 other well-known methods include PCA49 and t-distributed

stochastic neighbor embedding (t-SNE).50 UMAP is used to project all of the EIS

data in this work from 138 dimensions (ZReal and ZImaginary data at 69 frequencies)

to two. The result of this projection is shown in Figures 2I–2K, with points colored

by capacity (Figure 2I), temperature (Figure 2J), and SOC (Figure 2K). Temperature

seems to have the strongest effect because EIS measurements are distinctly clus-

tered by measurement temperature. The effect of relative discharge capacity is

not as distinct, but there are still notable trends; for instance, the values of the sec-

ond UMAP component seem to be highly correlated with relative discharge capacity

for EIS measured at �10�C. There is not enough variation of the EIS measurement

SOC throughout aging to resolve the effect of SOC on the entire dataset.

Extracting features from EIS data to predict battery capacity

Many various methods to extract features from EIS data to predict battery state have

been proposed in prior work. These strategies are usually designed to maximize the

sensitivity of any predictivemodel to the desired target state (capacity, temperature,

or SOC). For instance, Galeotti et al.31 fit EIS data with an ECM, using the fitted value

of the ohmic resistance as a predictive feature. Other approaches, such as extracting

statistical features, have shown success for battery lifetime prediction from charge

and/or discharge data.51 Features can also be selected directly from the raw data,

as in the many studies that use impedance values from just one or two frequencies

rather than the entire measured spectrum.35–39 These various feature extraction

and selection methods could also be applied concurrently, constructing what is

often referred to as a modeling pipeline. Here, a wide variety of feature extraction

and selection methods are explored to determine an effective approach for predict-

ing capacity from impedance (Table 1). Because model architecture can also have a

significant effect, this work trains linear, GPR, and RF regression algorithms for all

pipelines. An ANN architecture was also tested, using the FastAI library to automat-

ically handle defining of the network architecture and optimization of training
10 Cell Reports Physical Science 3, 101184, December 21, 2022
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hyperparameters.52 As a baseline, all modeling results are compared with a ‘‘dummy

model,’’ which simply uses the mean of the capacity from the training set to make

predictions. In total, there are 2,615 pipelines trained for each model architecture,

most of which are from the exhaustive search for the best two frequencies (2,346

pipelines). The rationale for each method reported in Table 1 is described

throughout the rest of this section.

Pipelines 1B–1F explore various approaches for selecting impedance values from a

small subset of frequencies as features. Using impedance from just 1 or 2 frequencies

has been proposed for predicting cell safety,35 capacity,36,38 and temperature.37

This method is practical because recording impedance at a small number of fre-

quencies can be done using simpler hardware than required for a fully detailed

EIS measurement, can be conducted in a short amount of time, and has low energy

and power requirements. The challenge lies in how to select one, two, or any number

of frequencies from a larger set of available data. Figure S3 shows the correlation be-

tween the ZReal and ZImaginary impedance and the relative discharge capacity as a

function of frequency for the training and test sets, considering the whole dataset

as well as only EIS recorded at �10�C or 25�C. Considering all data, the correlation

between impedance and capacity never exceeds about G0.4. There are frequency

ranges where the correlation between impedance and capacity is nearly G0.75

when the EIS measurement temperature is constant at �10�C or 25�C, but the

magnitude or sign of these correlations is not constant with respect to temperature,

so most of the correlation is lost when EIS temperature is allowed to vary.

Even high correlation does not guarantee goodmodel performance, and this simple

qualitative analysis does not give a straightforward way to select the best combina-

tion of two, three, or more frequencies. The best one, two, or more frequencies can

be determined via an exhaustive search, as conducted by pipelines 1B and 1C for

one and two frequencies, respectively. However, it is combinatorically complex to

exhaustively search for larger sets. To select more possible features, feature selec-

tion algorithms can be used. One intuitive approach is to select features that have

high correlation with the target (i.e., peaks in Figures S3A and S3B), and, when se-

lecting more than one, to avoid redundancy with any prior features. A feature selec-

tion algorithm leveraging this intuition, referred to here as the ‘‘correlation search,’’

was proposed by Greenbank and Howey53 and is used in this work (pipeline 1D).

Another approach is to select a high correlation feature, train a model, and then

select a new feature that is highly correlated with the residual error of the prior

model; the feature selection algorithm SISSO54 conducts this approach, considering

sets of potential features rather than single features at each iteration (pipeline 1E).

Finally, the best set of features can be directly optimized using embedded feature

selection algorithms, such as LASSO,42 penalized regression for linear models, or

ARD kernels for GPR models (pipeline 1F). LASSO is not guaranteed to find the

optimal subset of features, and ARD kernels for GPR models may require substan-

tially more computational resources than standard kernels.

Pipelines 2A–2C calculate common statistical measures from the raw EIS data. This

approach worked well for predicting battery lifetime from voltage data in the work

by Severson et al.51 (after a key feature engineering step) and has been repeated

for other datasets since.55,56 This work considers statistics such as the interquartile

range (IQR), mean absolute deviation (MAD), median absolute deviation (MdAD),

mean, median, range, and variance. The correlation between these statistics and

the relative capacity, calculated separately on ZReal, ZImaginary, |Z|, and : Z data,

are shown in Figures S3C–S3F. Of all the statistics, only theMdAD of the phase angle
Cell Reports Physical Science 3, 101184, December 21, 2022 11
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of Z (: Z) has an absolute correlation greater than 0.4 for the training and test data.

Pipelines 2B and 2C use the correlation search and SISSO feature selection algo-

rithms, respectively, to choose a subset of the 28 statistical features.

Pipelines 3A and 3B use component scores from the dimensionality reduction tech-

niques PCA49 and UMAP48 as features for capacity prediction. PCA is deterministic;

i.e., exactly repeatable, computationally fast, and very well understood. UMAP often

results in qualitatively better clustering for data with non-linear relationships be-

tween variables in high-dimensional data but is not deterministic, so model perfor-

mance may vary slightly even with the exact same dataset and hyperparameter

values. For PCA models (pipeline 3A), the first 10 components were used, whereas

for UMAP (pipeline 3B), a grid search was used to tune three hyperparameters.

Pipeline 4 uses graphical features from the Nyquist plots to predict capacity. Expert

analysis of EIS data often uses notable shapes or points from Nyquist and/or Bode

plots of the EIS data, tracking these features versus experimental variables like tem-

perature or SOC11 or using them as inputs for a predictive model.33 Graphical fea-

tures could include the x axis intercept or peak of a semicircular region on a Nyquist

plot. These and other features of interest are shown in Figure S4 and used in pipeline

4. Although this approach is straightforward to implement on small datasets, there

are challenges when using EIS recorded under a widely varying set of conditions. For

instance, in this dataset, the magnitude of inductance and ohmic resistance are quite

large compared with polarization and diffusion effects when EIS is recorded at 25�C
(Figures 2B and 2D) and vice versa when EIS is recorded at �10�C (Figures 2A and

2C), and it is not possible to define logical rules that pick out changes in shape or

slope that remain consistent across all 32 cells throughout aging and at varying mea-

surements of temperature and SOC. Thus, data are selected by picking out a small

number of obvious features and then simply grabbing other points spaced evenly

throughout the frequency space.

Pipeline 5 uses fitted ECM parameter values to predict capacity. Prior studies have

used the parameters of ECMs fit to EIS data as features for predicting battery

state.31,32 However, as with the graphical approach, utilizing a single ECM across

a dataset with substantial variance presents many difficulties. A not-so-secret but

rarely mentioned aspect of fitting ECMs to EIS data is that the optimization often

has many local minima, requiring researchers to tailor their fits by changing initial

guesses or setting bounds to result in a ‘‘good’’ fit; e.g., a model that fits the data

accurately with parameter values that vary according to physical intuition. This sort

of procedure does not lend itself well to automation. In this work, a relatively simple

ECM (Figure S4) was used, trading some accuracy for reliability, because all spectra

in the dataset could be fit using the same set of initial guesses. ECMparameters were

then used as features for model training by pipeline 5.

Predicting capacity using EIS recorded at varied temperature and SOC

The MAEs from training, cross-validation, and test sets from all 2,615 pipelines for

the linear, GPR, and RF model architectures are reported as bivariate histograms

in Figure 3; a well-performing model should have low training error and low error

on unseen data (MAETest and MAECV), corresponding to the lower left corner of

each plot. The baseline dummymodel MAE is plotted as black lines. Model architec-

ture seems to play a significant role in the relative effect of feature engineering.

Linear models are quite sensitive to extraction and selection of features, with a

wide range of MAEs, whereas the GPR and RF models seem to be intrinsically better

regularized; i.e., they perform better when making predictions on unseen data than
12 Cell Reports Physical Science 3, 101184, December 21, 2022



Figure 3. Performance of all machine-learning pipelines on training, cross-validation, and test sets

(A–C) Bivariate histograms of the MAE on the training set versus MAE on the test set for (A) linear,

(B) GPR, and (C) RF model architectures. Black lines across each plot denote the performance of the

baseline dummy model. A gray background color is used to clearly denote regions with zero

counts.

(D–F) MAE on the training set versus cross-validation MAE for the (D) linear, (E) GPR, (F) and RF

model architectures.
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the linear models for almost all pipelines. However, there are also several GPR and

RF pipelines that are clearly overfit to the data; that is, models where the training

MAE is extremely small compared with the test MAE, and the test MAE is greater

than that of the best-performing pipelines. Overall, most trained pipelines perform

better than the dummy baseline on the training and test sets, but only a few perform

better than baseline on the cross-validation set. There seems to be a clear boundary

for model performance on unseen data, with models from each architecture ap-

proaching a minimum test MAE of about 2% and a minimum cross-validation MAE

of about 5%. The ANN resulted in a test MAE of 2.73%, performing well but not

exceptionally; neural networks, empirically, do not seem to perform better than

traditional machine-learning models on tabular data57 and also seem to perform

worse on ‘‘small’’ datasets than traditional machine-learning models.58

All model architectures benefit from extraction and/or selection of high-quality fea-

tures. Figures 4, S5, and S6 compare the results of GPR, linear, and RF models from

all pipelines described in Table 1. Using the raw data without any modification (pipe-

line 1A) performs surprisingly well on the test set for the RF model, but the GPR and

linear models are overfit. Searching for the single best frequency (pipeline 1B) works

decently but always performs worse thanmodels using two frequencies. The exhaus-

tive search for the best combination of two frequencies (pipeline 1C) is the most

stable approach, always resulting in a model with high performance on the test

and cross-validation sets. Selecting frommore than two frequencies using the corre-

lation search (pipeline 1D) or SISSO (pipeline 1E) occasionally results in high-per-

forming models; a more detailed comparison of pipelines 1A–1E is reported later.

Of the remaining model pipelines (1F–5), most struggle to reliably produce models

with low test MAE and low cross-validation MAE. Only PCA or UMAP dimensionality

reduction techniques (pipelines 3A and 3B) routinely result in models that perform

better than baseline on the test and cross-validation splits. Use of statistical features

(pipelines 2A–2C) usually results in average performance but is consistently outper-

formed by other pipelines. Pipelines 4 and 5, which use the graphical or ECM fea-

tures that are routinely used in EIS analysis by domain experts, perform poorly.
Cell Reports Physical Science 3, 101184, December 21, 2022 13



Pipeline 0

Pipeline 1A

Pipeline 1B

Pipeline 1C

Pipeline 1D

Pipeline 1E

Pipeline 1F

Pipeline 2A

Pipeline 2B

Pipeline 2C

Pipeline 3A

Pipeline 3B

Pipeline 4

Pipeline 5

MAETrain 0.064 0.022 0.018 0.014 0.022 0.017 0.018 0.017 0.02 0.017 0.0540.012 0.00093 0.0094

Pipeline 0

Pipeline 1A

Pipeline 1B

Pipeline 1C

Pipeline 1D

Pipeline 1E

Pipeline 1F

Pipeline 2A

Pipeline 2B

Pipeline 2C

Pipeline 3A

Pipeline 3B

Pipeline 4

Pipeline 5

MAECV 0.066 0.069 0.075 0.083 0.071 0.076 0.085 0.069 0.069 0.063 0.063 0.0680.058 0.059

Pipeline 0

Pipeline 1A

Pipeline 1B

Pipeline 1C

Pipeline 1D

Pipeline 1E

Pipeline 1F

Pipeline 2A

Pipeline 2B

Pipeline 2C

Pipeline 3A

Pipeline 3B

Pipeline 4

Pipeline 5

MAETest 0.061 0.048 0.028 0.027 0.05 0.032 0.032 0.041 0.033 0.035 0.0580.02 0.023 0.021

Figure 4. MAE of GPR models for the training, cross-validation, and test splits

For pipelines with more than one trained model, the results for the model with the lowest test error are shown in each column. Low MAE for each row is

denoted by a dark background, and high MAE is denoted by a light background.
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For pipelines selecting a small subset of frequencies (pipelines 1B–1E), the selected

frequencies matter. Figure 5 shows MAETest and MAECross-validation for single- and

double-frequency models. For single-frequency models (Figure 5A), prediction er-

rors for test and cross-validation splits are highest at frequencies less than 1 Hz, sug-

gesting that there is too much noise in the low-frequency data to make accurate pre-

dictions or that the low-frequency EIS response has been affected by changing of the

open-circuit voltage curve because of aging, introducing variance that cannot be ac-

counted for by these models. Low-frequency impedance is usually dominated by

solid-state diffusion resistance from the positive electrode material and cell capac-

itance effects, both of which may be sensitive to the exact stoichiometry of the elec-

trodes, which drift over time during aging, leading to noise unrelated to the health of

the cell.2,11,19 The minimum test MAE for all model architectures seems to occur

near 2 Hz, with another minimum observed for some architectures between

102 and 103 Hz. These frequencies (100 Hz and 102–103 Hz) tend to be dominated

by charge-transfer related processes, which may be substantially affected by cycling

(Figure 2). Prediction errors again increase as the frequency approaches the

maximum frequency of 3.5 3 104 Hz.

Figures 5B–5D show contour maps of MAETest for the double-frequency

models (pipeline 1C). Like the single-frequency case, models using only very low

(<10�1 Hz) or very high (>103) Hz perform poorly. Low-error regions for all architec-

tures appear near the middle of the frequency range, between 100 and 103 Hz, and

often extend away from the diagonal; that is, use frequencies that are not very close

toone another. Using two frequencies spacedoneormoredecades apartmay enable

the model to detect and account for multiple degradation modes because the rela-

tionship between cell resistance and capacity changes depending on the time

domain of the measurement (Figures 1G and 1H). Two frequencies spaced apart

from one another may also help to correct for the effect of temperature or SOC.

Correlation search (pipeline 1D) and SISSO (pipeline 1E) feature selection algorithms

are used to search for subsets of frequencies larger than 2. A comparison of fre-

quencies selected by pipelines 1B–1E is made in Figures S7–S9 for each model

architecture. Selected frequencies are also compared with the correlation of those

features with the relative discharge capacity. The optimal single frequency or two

frequencies are non-intuitive; i.e., they do not necessarily have high correlation to
14 Cell Reports Physical Science 3, 101184, December 21, 2022
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Figure 5. Importance of selected frequencies for single- and double-frequency models for all

model architectures

(A) MAE of single-frequency models versus frequency. Test MAE is reported using a solid line, and

cross-validation MAE is reported using a dashed line. Linear model results are shown in pink, GPR

model results in blue, and RF model results in green.

(B–D) Contour plots of MAETest versus frequencies for double-frequency models using (B) linear, (C)

GPR, and (D) RF model architectures. Note the change of the color bar scale for each axis. A red

marker and lines denote the location of the minimum error point on each contour.
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the relative discharge capacity. The correlation search and SISSO feature selection

algorithms utilize frequencies in the range of 10�–103 Hz, qualitatively agreeing

with the analysis shown in Figure 5. SISSO and the correlation search select at least

one magnitude-related feature (ZReal or |Z|) as well as at least one phase-related

feature (ZImaginary or: Z). SISSO also prefers fitting fewer features from the explored

range (2–10 features), selecting features from just 3 frequencies, suggesting that

data from only a small subset of key frequencies are enough for predicting cell

health.

Retraining best performing pipelines with model hyperparameter

optimization and weights

Pipelines 1A, 1C, and 1E were further tuned by retraining using Bayesian hyperpara-

meter optimization. For pipeline 1A, various model hyperparameters may help regu-

larize model performance; for instance, use of ridge regression for linear models. For

pipeline 1C, the two best-performing double-frequency sets were hyperparameter

tuned. Pipeline 1E was tuned using the optimal SISSO feature selection hyperpara-

meters identified in the initial search. Hyperparameter optimization was conducted

via the MATLAB function ‘‘bayesopt’’ for all tunable model hyperparameters over 30

iterations; see supplemental experimental procedures for details. Hyperparameter

optimization for linear and RF model architectures was conducted with and without

weighting the training data. Weighted regression is used to help address the rela-

tively high prevalence of EIS data that were measured at�10�C and 25�C compared

with data measured at 0�C and 10�C by giving each row of the training data a weight

so that all temperatures contribute equally to the calculated loss. This imbalance of
Cell Reports Physical Science 3, 101184, December 21, 2022 15



Table 2. Performance of various modeling pipelines on test data

Model Pipeline Defaults
Hyperparameter
optimized

Hyperparameter
optimized (weighted)

Baseline 0 6.05% – –

Linear 1A 28.95% *2.26% 3.04%

1C (best) 2.73% 2.72% 2.64%

1C (second best) 2.74% 2.63% 2.63%

1E 3.04% 3.04% –

GPR 1A 4.79% 4.14% –

1C (best) *2.01% 2.11% –

1C (second best) 2.02% 2.36% –

1E 2.14% 2.15% –

RF 1A 3.07% 2.66% 2.97%

1C (best) 2.19% 2.07% *2.00%

1C (second best) 2.25% 2.21% 2.09%

1E 2.61% 2.36% 2.29%

ANN 1A – 2.73%

Test MAE of linear, GPR, and RF models using pipelines 1A, 1C, and 1E with default model parameters,

after 30 iterations of hyperparameter optimization, and after hyperparameter with weights to address da-

taset imbalance. ANN model performance is also reported. The best-performing model for each model

architecture is denoted with a preceding asterisk.
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the data is an issue because real-world battery systems would not predominantly be

used at temperatures of�10�C and 25�C; rather, there would be a more uniform dis-

tribution of temperatures. Other methods for handling dataset imbalance include

undersampling overrepresented classes or oversampling under-represented

classes.59

Table 2 reports the MAE on the test set of linear, GPR, and RF with and without hy-

perparameter optimization and weighting as well as the ANN performance; various

ANN hyperparameters were tuned during model training. Overall, hyperparameter

optimization tends to improvemodel performance for all architectures.Weighting of

the linear and RF models again tends to slightly improve performance. The best

linear model uses all raw impedance data and ridge regression to regularize model

performance, and the best RF model is weighted and uses a minimum leaf size of 2

and a maximum number of 355 splits and randomly samples all 8 input features

(2 frequencies, 4 features per frequency) when constructing each split. Although

these approaches improve results generally, the best overall models from each

architecture are not necessarily discovered after hyperparameter optimization or

weighting; the best GPR model uses MATLAB defaults. These pipelines are referred

to in the next section simply as the best linear, best GPR, and best RF models.
Interrogation of best performing models

The best performing linear, GPR, and RF models are interrogated to analyze their

underlying behavior and point out important differences between each model archi-

tecture. The simplest model to interrogate is the best linear model because the co-

efficient for each feature, b, can be directly plotted as a function of frequency (Fig-

ure 6). On average, the ZReal and : Z features are weighted more heavily than

the ZImaginary or |Z| features. The weights of features sometimes seem intuitive; for

instance, values of ZReal near 10
3 Hz have a large negative correlation to relative

discharge capacity and also have a relatively large negative coefficient value, but

the largest feature weights actually occur in regions with low correlation to relative

discharge capacity.
16 Cell Reports Physical Science 3, 101184, December 21, 2022
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Figure 6. Interrogation of best-performing linear, GPR, and RF models

(A–D) Coefficients (b) for each feature for the hyperparameter-optimized linear model using all impedance features. All y axes are matched to aid visual

comparison. The secondary y axis on each plot, in blue, reports the correlation between each feature and the relative C/3 discharge capacity. The pink

vertical lines in (A) and (D) denote features used for bivariate partial dependence analysis in (E).

(E–G) Bivariate partial dependence plots of the (A) best linear, (B) best GPR, and (C) best RF models. Because only two features can be shown, highly

sensitive features from each were selected: (E) the ZReal and: Z features with the largest coefficient values and (F and G) the two most sensitive features

of 8, as determined by univariate partial dependence analysis. Black dots correspond to the values of features in the training set.
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Interrogating non-parametric model architectures such as GPR and RF requires a

different approach. One method to investigate the sensitivity of a model prediction

to the values of the input features is partial dependence analysis. Partial dependence

is a model-agnostic analysis method that interrogates the relationship between a

selected set of input features and the model response by varying those features

across the observed range while holding other features constant. For the best

GPR and RF models, there are 8 input features (ZReal, ZImaginary, |Z|, and : Z at two

frequencies), so univariate partial dependence was conducted on all features to

determine the two features that have the highest average sensitivity, and then bivar-

iate partial dependence was conducted on these. Plots from the univariate partial

dependence analysis are reported in Figures S10 and S11 for the best GPR and

best RFmodels. For the best linear model, the ZReal and: Z features with the largest

coefficient values were used as an example.

For the best linear model (Figure 6E), the partial dependence analysis reveals that

the underlying model structure is simply a plane, and the diagonal contour lines

denote that the model is response sensitive to both features. This is only a 2D ‘‘slice’’

of the model; the actual model is a 276-dimensional surface, with the exact values for

each coefficient plotted in Figure 6. For the best GPR model (Figure 6F), the analysis

reveals that the GPR has learned non-monotonic, non-linear relationships between

the impedance and the relative discharge capacity. However, the GPR still results

in a smooth function because GPR models utilize Bayesian methods to balance ac-

curacy with simplicity and penalize functions that do not vary smoothly. The best
Cell Reports Physical Science 3, 101184, December 21, 2022 17



Table 3. Average and maximum errors compared for the best models and the ensemble model

Model MAETrain MAECV MAETest MaxAETrain MaxAECV MaxAETest

Baseline 6.4% 6.6% 6.1% 24.5% 24.5% 12.0%

Linear 2.6% 6.0% 2.3% 21.8% 27.6% 8.2%

GPR 1.8% 5.8% 2.0% *8.4% 29.5% 11.4%

RF *1.2% 6.4% 2.0% 15.6% *22.8% 11.3%

Ensemble 1.6% *5.6% *1.9% 11.3% 26.6% *7.2%

MAE andMaxAE for the training, cross-validation (CV), and test splits for the dummy baseline, best linear,

best GPR, and best RF models as well as an ensemble model that predicts the average value of the three

best models. The lowest value in each column is denoted with a preceding asterisk.
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GPR model appears to have learned two local maxima for the predicted capacity,

related to data recorded at �10�C (bottom right) and 25�C (top left), and there is

less variation between these two regimens. For the best RF model (Figure 6G), the

contours vary in discrete steps. These discrete steps may help the RF model to

reduce error when the underlying relationship is not smooth, which would not be

possible to model using a linear or GPR model but could also lead to unexpected

predictions when the unseen data are outside of the distribution of the training

data. Further interrogation of these models is shown in Figure S12, which compares

the distributions of predicted relative discharge capacity values to the true values to

examine systematic errors related to the true capacity value or the EIS measurement

temperature.

The performance of the best three models is shown in Table 3, which reports the

MAE andmaximum absolute error (MaxAE) of each model on the training, cross-vali-

dation, and test splits. One more model is reported: an ensemble model, which

predicts the average value of predictions by the best linear, GPR, and RF models.

By taking the average of many models, each with their own systematic bias, an

ensemble of models may be more accurate than any one individual model when

model errors counteract one another. The ensemble model has the lowest MAE

on the cross-validation and test splits of any model tested here, as well as the lowest

MaxAE on the test split.

Predictions made by the ensemble model on the training, cross-validation, and test

splits are shown in Figure 7. The performance on the training and test splits is excel-

lent, with all predictions following the trends of the observed capacity fade across

cells aged under varying load (resting for calendar cells, constant-current cycling,

or cycling using a drive cycle) at different temperatures, average SOCs, and cycling

protocols. Predictions are relatively uniformly distributed around the parity line, indi-

cating low systematic error, although there is a clear tendency of the training set to

underpredict capacity near BOL and overpredict capacity near EOL. Performance on

the cross-validation split is substantially worse, and most predictions are noisily

distributed between 85% and 95% relative discharge capacity, but some specific

cells appear to be well predicted because the density of points is higher near the par-

ity line. The cross-validation split may be inherently harder because all models

perform substantially worse on the cross-validation split (Figure 3). Real-world per-

formance of the ensemble model would likely lie somewhere between the perfor-

mance of the test and cross-validation splits.

Guidelines for real-world battery monitoring using impedance

Monitoring battery state in the real-world using impedance relies first and foremost

on acquisition of high-quality measurements, capacity and EIS, recorded under a

widely varying set of battery states. Although the dataset presented in this work is
18 Cell Reports Physical Science 3, 101184, December 21, 2022
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Figure 7. Predictive performance for the ensemble model using the best linear, GPR, and RF

models

(A) Parity plot for the training set. Markers are colored by battery cell, with pink tones denoting

calendar-aged cells, blue tones denoting cycle-aged cells, and green tones denoting cells tested

using a WLTP drive cycle, as in Figure 1. The black dashed line on each graph, referred to as the

parity line, denotes a perfect prediction.

(B) Parity plot for the cross-validation splits.

(C) Parity plot for the test split.
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substantial, there are several limitations that future efforts may address. This dataset

does not fully explore the effect of SOC on the EIS measurement throughout cell life-

time, and extreme values of SOC could result in poor predictions from models

trained on these data. EIS measurement of temperature and SOC are often conduct-

ed at a single value throughout the lifetime of cells during lab testing so that the

trends can be visualized clearly, but varying the EIS measurement of SOC and tem-

perature throughout aging is probably the most efficient way to acquire a balanced

dataset; visualizing data trends at constant states (temperature, SOC, or health)

could then be done using a generative model.43 This work also does not explore

the effect of relaxation time on the EIS, which can substantially affect the EIS

response;11 this lack of data may negatively affect model performance on data re-

corded during field use. Recording EIS multiple times as the battery relaxes after

cycling and/or after setting the battery SOC would mitigate this issue. Capacity

and impedance data recorded during electric vehicle maintenance could be used

to increase the amount of training data over time.

Just as the training data should be recorded under varying conditions to develop

more extensible data-driven models, so should the target variables. Here, EIS is

used only to predict battery performance for a single type of use; specifically,

the relative discharge capacity at a C/3 rate and 25�C ambient temperature be-

tween a constant set of voltage limits. However, if the training data are available,

then data-driven models may be trained to learn not just the state of the battery

but also predict battery response to varying future loads by incorporating informa-

tion on the operation of the battery into the predictive model. Initial work demon-

strating this type of data-driven approach has been published by Jones et al.60

This type of approach may especially help data-driven estimation of complex

problems, such as state of power, which depends not only on cell health but the

load on the battery.

After data acquisition, model identification needs to be performed, considering a

wide variety of possible models and the practical limitations the model may impose

on real-world implementation. From the variety of modeling pipelines explored

here, the most reliable way to accurately predict battery capacity from EIS is to re-

cord data at as many frequencies as possible, covering a critical range between

100 and 103 Hz at a minimum and then selecting 2–4 key frequencies using an

exhaustive search or a feature selection algorithm, investigating model performance
Cell Reports Physical Science 3, 101184, December 21, 2022 19
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via train/cross-validation/test splits andmodel interrogation techniques. Impedance

at these key frequencies may then be measured using cheaper electronics in real-

world devices. Component values from dimensionality reduction algorithms such

as PCA or UMAP also show good performance when used as features for predicting

capacity, but these methods require the entire EIS spectrum and, thus, cannot be

readily implemented using cheaper hardware. Methods for transforming the time-

resolved DC response into an impedance spectrum exist,15,20 but these introduce

additional complexity.

One key challenge identified in this work is accurate capacity prediction between

95%–85% relative discharge capacity; during this regimen, the resistance of most

batteries in this dataset is very stable, resulting in low prediction accuracy.

Combining this approach with other degradation modeling efforts, such as

reduced-order degradation models,4,5 and creating an ensemble of various model

types may help address systematic errors in any one individual approach for predict-

ing battery health.

Overall, the outlook for using rapid EIS or time-resolved DC measurements to

diagnose battery health seems promising, but more efforts are required to imple-

ment this approach in practice. The dataset provided here, which includes raw

EIS data recorded at varying battery health and measurement conditions, can

hopefully spur further efforts to use machine learning methods for analyzing

battery data. More than 10,000 models were trained in this work to explore the ef-

fect of model architecture, feature selection, feature extraction, and hyperpara-

meter optimization on model performance. Interesting work utilizing machine

learning methodologies can include not only performance prediction but also be

used to analyze trends in large datasets or for synthetic data generation, such as

use of GANs to augment experimental measurements with representative syn-

thetic data.

EXPERIMENTAL PROCEDURE

Resource availability

Lead contact

Inquiries regarding this work can be sent to P.G. (Paul.Gasper@nrel.gov,

pauljgasper@gmail.com).

Materials availability

No new materials were created for this study. Tested batteries are not available.

Data and code availability

All original code and required data were deposited at www.github.com/NREL/

battery_capacity_from_eis and are publicly available as of the date of publication.

Some of the methods shown in this work have been replicated in Python using

the dataset from Zhang et al.1 and are available at https://github.com/

battery-data-commons/mrs-sp22-tutorial/tree/main/predict_capacity_from_eis.

Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

Data acquisition and modeling

Details regarding data acquisition methods and modeling are provided in the sup-

plemental experimental procedures. Data acquisition methods include information

on battery aging test procedures and battery performance measurement
20 Cell Reports Physical Science 3, 101184, December 21, 2022
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procedures. Modeling methods include detailed descriptions of each pipeline and a

description of ‘‘sklearn’’-style machine learning modeling pipeline implementation

in MATLAB.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/jcrp.

2022.101184.
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