Instability of Rock-salt Cubic NbN in Density Functional Calculations

Anuj Goyal, Sage Bauers, and Stephan Lany

National Renewable Energy Laboratory, Golden, CO, 80401
Email: anuj.goyal@nrel.gov

Resource: NREL HPC

Funded by: NREL LDRD program
Cubic NbN for Superconducting Quantum Circuits

All nitride semi-/super-conductor heterojunctions\(^1\) for Josephson Junction (superconducting quantum circuit)

- Structurally commensurate (cubic)
- Chemically compatible (TMNs)

In thin-films, superconducting NbN stabilizes in the cubic (rock-salt) phase

Experimental results courtesy Sage Bauers (NREL)

\(^1\)S. R. Bauers et al., PNAS 45, 116, 14829 (2019)
NbN Cubic Phase is Unstable in DFT Calculations

Bulk experiments\(^1\):
- Stoichiometric hexagonal \(\varepsilon\)-NbN stable below \(T < 1330^\circ\text{C}\)
- \(\delta\)-NbN\(_x\), \(0.72 < x < 0.86\), stable at \(T > 1070 – 1225^\circ\text{C}\)

Similar energy ordering reported in DFT literature\(^2,^3\)

Energy ordering remains the same across different DFT functionals (PBE+\(U\), SCAN) and Hybrid-DFT

\(^1\)G. Oya et al., J. Appl. Phys. 45, 3 (1974)
Why is cubic phase stable in thin-film experiments?

Hypothesis:

• Does there exist other unknown low-energy polymorph(s) of NbN with an average cubic symmetry?
• Can off-stoichiometry or oxygen impurity doping energetically stabilize rock-salt over WC lattice?
• Does in-plane strain due to lattice mis-match with the substrate stabilize the cubic phase?
Cubic phase relaxes to lower energy monoclinic phase in DFT Calculations.

Cubic rock-salt is **dynamically unstable** and relaxes to monoclinic phase.

DFT relaxations

Cubic rock-salt (Fm-3m, 225)

Monoclinic phase (distorted rock-salt) approximate average cubic symmetry

Calculated Energy of NbN polymorphs

Ground state

Monoclinic (C2/m, 12)

WC lattice (P-6m2, 187)

Intensity

Energy (eV/atom)

Cubic is still substantially higher in energy, ~0.195 eV/atom, above the ground state WC lattice.
Search for NbN polymorphs using unconstrained structure prediction

Performed using *Kinetically limited minimization (KLM)*\(^1\)

- Hybrid approach combines random sampling and basin hopping
- Well suited for metastable materials
- Application: nitrides\(^2\), oxynitrides\(^3\)
- Considered variable and constrained (c/a) cell shapes and sizes

\(^1\)E. Arca et al., J. Am. Chem. Soc. 140, 4293 (2018)
\(^2\)W. Sun et al., Nat. Mater. 18, 732 (2019)
\(^3\)A. Sharan and S. Lany, J. Chem. Phys. 154, 23406 (2021)

Do we find new (low-energy) polymorphs of NbN from structure prediction?
Low energy (< 100 meV/atom) polymorphs from structure prediction

- Hexagonal P6_3mc (194): $E - E_{GS} = 10.49$ meV/atom
 - Primitive cell (8 atoms)

- Hexagonal P-62m (189): 16.62 meV/atom
 - Primitive cell (6 atoms)

- Tetragonal I4_1md (109): 34.01 meV/atom
 - Primitive cell (4 atoms)

- Trigonal R-3m (166): 95.38 meV/atom
 - Primitive cell (12 atoms)
Low energy (< 100 meV/atom) polymorphs from structure prediction

None of the discovered low energy polymorphs has a cubic symmetry. **Monoclinic still the best approximation**
Can off-stoichiometry or oxygen doping stabilize rock-salt over CW lattice?

Energy ordering does NOT change for low off-stoichiometric or O impurity doping levels
In-plane strain stabilizes the cubic NbN on sapphire (Al$_2$O$_3$) (001)

Monoclinic (C2/m, 12)

- **a** = 3.22 Å (in-plane)
- **b** = 3.11 Å
- **c** = 2.53 Å
- Volume = 11.02 Å3/atom

WC lattice (P-6m2, 187)

- **a** = 2.96 Å (in-plane)
- **b** = 2.96 Å
- **c** = 2.89 Å
- Volume = 11.05 Å3/atom

DFT Energy of strained phases

WC to monoclinic phase transition is predicted to occur ~3.17 Å

1F. Mercier et al., Surface & Coatings Tech. 260, 126 (2014)
Concluding Remarks

• **Rock-salt NbN** is energetically **unstable** and relaxes to a lower energy **monoclinic** phase.

• Low **off-stoichiometry** or **oxygen doping** do NOT change the energy ordering.

• **On sapphire** Al_2O_3 (001), **in-plane strain stabilizes** the cubic NbN phase.

• **On MgO** (001), **other factors** (energy barrier) could possibly trap the metastable monoclinic phase.

Questions and feedback: anuj.goyal@nrel.gov
Thank you!

www.nrel.gov

This work was funded by the Laboratory Directed Research and Development (LDRD) Program at NREL. The Alliance for Sustainable Energy, LLC, operates and manages NREL under contract DE-AC36-08GO28308. This work used High-Performance Computing resources at NREL, sponsored by DOE-EERE. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. government.