

Electrochemical and Material Characterization of Laser Micro-Structured Thick Battery Electrodes

Nathan Dunlap, Dana Sulas-Kern, François Usseglio-Viretta, Peter Weddle, Donal Finegan, **Bertrand J. Tremolet de Villers** National Renewable Energy Laboratory (NREL)

International Battery Seminar & Exhibit Orlando, FL (virtual) March 29, 2022

NREL/PR-5900-82342

Need Thicker Electrodes

Low-cost/Fast-charge EV cell-level goals (2023):

- Energy densities >275 Wh/kg,
- Cost less than \$100/Wh
- 80% charge within 15 minutes.

Double thickness of electrodes in full cells from 50 μ m to 100 μ m increase the energy density of the cell by about 16%

reduce the cost of the cell by 30% (from \$249/kWh to \$172/kWh)

Prospects for reducing the processing cost of lithium ion batteries David L. Wood III[•], Jianlin Li, Claus Daniel Oak Ridge National Laboratory, Energy & Transportation Science Division, One Bethel Valley Road, P.O. Box 2008, Oak Ridge, TN 37831, USA

Separator

Electrode

Current Collector

CrossMark

Thick Planar Electrodes are Inadequate

Low-cost/Fast-charge EV cell-level goals (2023):

- Energy densities >275 Wh/kg,
- Cost less than \$100/Wh
- 80% charge within 15 minutes.

Electrochimica Atta 342 (2020) 136034 Contents lists available at ScienceDirect Electrochimica Acta journal homepage: www.elsevier.com/locate/electacta

Enabling fast charging of lithium-ion batteries through secondary-/dual- pore network: Part I - Analytical diffusion model

F.L.E. Usseglio-Viretta ^a, W. Mai ^a, A.M. Colclasure ^{a, *}, M. Doeff ^b, Eongyu Yi ^b, K. Smith ^a

^a Center for Integrated Mobility Sciences, National Renewable Energy Laboratory, Golden, CO, 80401, USA
^b Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

Micro-structures Reduce Li⁺-ion **Transport Tortuosity**

POWER (W/kg)

Low-cost/Fast-charge EV cell-level goals (2023):

- Energy densities >275 Wh/kg,
- Cost less than \$100/Wh
- 80% charge within 15 minutes.

Enabling fast charging of lithium-ion batteries through secondary-/dual- pore network: Part I - Analytical diffusion model

F.L.E. Usseglio-Viretta ^a, W. Mai ^a, A.M. Colclasure ^{a, *}, M. Doeff ^b, Eongyu Yi ^b, K. Smith ^a

Center for Integrated Mobility Sciences, National Renewable Energy Laboratory, Golden, CO, 80401, USA b Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

EXAMPLE 1 High-Throughput Laser Processing for Advanced Battery Electrode Performance and Manufacturing:

Project Motivation

- ➤ Thicker electrodes ↑ energy densities and ↓ costs
 ➤ Practical kinetic limitations
- Laser micro-patterned 3-D electrodes overcome trade-off between improving energy vs power densities
- Reduce costly time-consuming electrolyte wetting and cell formation processes during battery production

Project Goals

- Identify and manufacture laser-ablated 3-D electrode architectures for enhanced battery performance
 - Enable extreme fast charging rates >6C (<10min) at > 250 Wh/kg
 - Critical for widespread adoption of EV technology
 - > Allow fast and uniform electrolyte wetting
- Scale laser patterns for high-throughput roll-to-roll processing
 - Reduce production costs

EXAMPLE 1 High-Throughput Laser Processing for Advanced Battery Electrode Performance and Manufacturing:

Project Motivation

- Thicker electrodes
 Practical kinetic limitations
- Laser micro-patterned 3-D electrodes overcome trade-off between improving energy vs power densities
- Reduce costly time-consuming electrolyte wetting and cell formation processes during battery production

Project Goals

- Identify and manufacture laser-ablated 3-D electrode architectures for enhanced battery performance
 - Enable extreme fast charging rates >6C (<10min) at > 250 Wh/kg
 - Critical for widespread adoption of EV technology
 - > Allow fast and uniform electrolyte wetting
- Scale laser patterns for high-throughput roll-to-roll processing
 - Reduce production costs

Ultrafast laser patterning of Electrodes

Article: Dunlap, N., et al., "Laser ablation of Li-ion electrodes for fast charging: Material properties, rate capability, Li plating, and wetting", 2022, Journal of Power Sources

Laser Specs						
Product Model	AOFEMTO-IR-1030					
Wavelength	1030 nm					
Pulse Width	600 fs					
Repetition Rate	100 kHz – 1 MHz					
Max Average Power	10 W					
Energy at 100 kHz	100 uJ					
Spot Size from Laser	2.0 mm					
Focused Spot Size	20 um					

Laser-patterned Thick NMC622 and Thick Graphite

Pitch spacing and channel depth are based on our models and the constraint that ablated material wt% < 10%.

Material-dependent Laser Ablation Transforming ENERGY

NMC 622

Graphite

- Laser trench sidewall is relatively smooth and ~75° angle maintained
- Some NMC particles are cleaved and cracked

• No partial graphite particles b/c anisotropic heat conduction

FIB-SEM with EDS: NMC622 Composition Unaffected by Laser Ablation

		Spot 1	Spot 2	Spot 3	Spot 4	Spot 5	Spot 6	Map Sum	
		rel. atomic %							
8	с	8.23	111.71	49.71	63.61	56.17	76.72	71.33	Conductive Carbon
(0	18.83	32.03	18.06	22.09	21.42	41.17	35.93	Polymer Binder
N	Ni	6.00	6.00	6.00	6.00	6.00	6.00	6.00	
N	1n	2.03	2.16	2.04	2.02	2.17	2.11	2.16	LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂
C	ò	2.05	2.05	2.04	2.01	2.03	1.99	2.02	
1	AI	0.03	1.20	0.41	0.52	0.47	0.15	9.53	Current Collector
A	Ag	0.00	2.29	0.05	0.38	0.80	0.04	0.60	Sample Encoronant
5	Si	0.05	5.14	0.23	1.40	2.40	0.02	0.90	Sample Encasement

Cathode Composition: 90% NMC 622, 5% PVDF Binder, 5% C45 Carbon Additive

NREL Transforming ENERGY X-ray diffraction Structural Analysis Reveals Crystal Growth after Laser Ablation

NMC622

				Avg. Atal Size	Avg. Atal bize
a thode	a (Å)	c (Å)	c/(3a)	FWHM (nm)	IB (nm)
ristine	2.86965	14.2193	1.6517	122	132
terned	2.86971	14.2184	1.6515	163	228
	thode ristine terned	thode a (Å) Sistine 2.86965 Sterned 2.86971	thode a (Å) c (Å) ristine 2.86965 14.2193 tterned 2.86971 14.2184	thode a (Å) c (Å) $c/(3a)$ ristine2.8696514.21931.6517tterned2.8697114.21841.6515	a (Å) c (Å) $c/(3a)$ FWHM (nm) ristine 2.86965 14.2193 1.6517 122 eterned 2.86971 14.2184 1.6515 163

Lattice parameters unchanged

Graphite

Anode	a (Å)	c (Å)	Avg. Xtal Size FWHM (nm)	Avg. Xtal Size IB (nm)	Preferred Orientation
Pristine	2.462	6.712	48	68	(0 0 1)
Patterned	2.462	6.710	204	285	(0 0 1)

Crystal size growth from thermal annealing by laser energy

Cycling Temperature: 24°C

Cells Details and 6C Fast-Charge Protocol

spot welds		Step	End Conditions	Cycles	Repetitions
CR2032 Coin Cell		Charge – CC @ 0.1C Charge – CV @ 1.5 V Rest – OCP	V ≥ 1.5 V t = 15 min t = 6 hr	1	1
	14mm Ø cathode 0.5 mm thick ss spacer	Charge – CC @ 0.1C Charge – CV @ 4.2 V Rest – OCP Discharge – CC @ 0.1C Discharge – CV @ 3.0 V Rest – OCP	$V \ge 4.2 V \\ I \le 0.05C \\ t = 15 min \\ V \le 3.0 V \\ I \le 0.05C \\ t = 15 min$	3	1
		Charge – CC @ 0.5C Charge – CV @ 4.2 V Rest – OCP Discharge – CC @ 0.5C Discharge – CV @ 3.0 V Rest – OCP	$V \ge 4.2 V \\ I \le 0.05C \\ t = 15 min \\ V \le 3.0 V \\ I \le 0.05C \\ t = 15 min$	3	
	Celgard Separator 25 um thick 14mm Øanode 0.5 mm thick ss spacer	Charge – CC @ 6.0C Charge – CV @ 4.2 V Rest – OCP Discharge – CC @ 0.5C Discharge – CV @ 3.0 V Rest – OCP	$V \ge 4.2 V$ t + 6C CC = 10 min t = 15 min $V \le 3.0 V$ I $\le 0.05C$ t = 15 min	25	4
Electrolyte : EC:EMC (3:7 by wt.) + 1.2 Voltage Window : 3– 4.2 V	M LiPF ₆	Charge – CC @ 0.5C Charge – CV @ 4.2 V Rest – OCP Discharge – CC @ 0.5C Discharge – CV @ 3.0 V Rest – OCP	V ≥ 4.2 V I ≤ 0.05C t = 15 min V ≤ 3.0 V I ≤ 0.05C t = 15 min	3	1

Electrochemical Responses to 6C Fast Charge Testing

Transforming ENERGY

Cell Voltage Responses to 6C Fast Charge Testing

Even at the slow rate of C/10, the CPAP cell shows a significant overpotential on both charge and discharge \rightarrow severe wetting problems

	1 st Charge capacity	100 th Charge capacity	Capacity Retention		
Cell (C/10)		(6C)	(C/2)		
	6.44 mAh				
	$4.22 \text{ mAh} / \text{ cm}^2$	1.09 mAh			
GDAD	166.8 mAh/g, NMC	$0.71 \text{ mAh} / \text{ cm}^2$	00.0 %		
CPAP	74.5 % C.E.	28.2 mAh/g, NMC	30.0 %		
	6.45 mAh				
	$4.23 \text{ mAh} / \text{ cm}^2$	2.24 mAh			
OT I D	187.4 mAh/g, NMC	$1.47 \text{ mAh} / \text{cm}^2$			
CLAP	86.0 % C.E.	65.2 mAh/g, NMC	65.5 %		
	6.98 mAh				
	$4.58 \text{ mAh} / \text{ cm}^2$	1.64 mAh			
	180.8 mAh/g, NMC	$1.08 \text{ mAh} / \text{cm}^2$	10.0 %		
CPAL	85.2 % C.E.	42.5 mAh/g, NMC	46.2 %		
	6.25 mAh				
	$4.10 \text{ mAh} / \text{ cm}^2$	1.94 mAh			
	181.7 mAh/g, NMC	$1.28 \text{ mAh} / \text{ cm}^2$			
CLAL	85.5 % C.E.	56.5 mAh/g, NMC	52.9 %		

Severe Li Plating in Unpatterned Anodes

Transforming ENERGY

Li Plating Affected by n/p Ratio

		CPAP		CLAP		CPAL			CLAL		
					Change			Change			Change
					from CPAP			from CPAP			from CPAP
	Model	Experiment	Model	Experiment	Model (Exp.)	Model	Experiment	Model (Exp.)	Model	Experiment	Model (Exp.)
N/P ratio (-)	1.11	1.11	1.24	1.24	+0.13 (+0.13)	0.93	0.92	-0.18 (-0.19)	1.05	1.03	-0.06 (-0.08)
Theoretical full-cell capacity loss (%)	-	-	10.73	10.88	10.73 (10.88)	15.46*	16.92*	15.46 (16.92)	10.73	10.88	10.73 (10.88)
6C CC-CV capacity											
in 10 min (mAh/cm ²)	1.50	1.44	1.59	1.95	+0.09 (+0.51)	1.60	1.82	+0.10 (+0.38)	1.70	1.92	+0.2 (+0.48)
Time to CV hold (s)	32.3	7.77	34.6	18.21	+2.3 (+10.44)	35.5	18.96	+3.2 (+11.19)	40.45	19.46	+8.15 (+11.69)
Normalized plating intensity $(\pi/\pi _{CPAP})$	1	_	1.03	_	3% (-)	0.165	-	-83.4% (-)	0.18	-	-82.0% (-)
Time to plating (s)	14.7	-	14.3	-	-0.4 (-)	17.0	-	+2.3 (-)	19.3	-	+4.6 (-)

* The full-cell theoretical capacity loss is governed by the anode because the N/P ratio is less than 1.

CLAP = Best performance

n/p < 1 explains Li plating During formation n/p = 1 could help explain
why the CLAL cell underperformed in comparison
to the CLAP cell

Electrode Patterning Significantly Improves Interfacial Chargetransfer Resistance

Cell	$R_{\Omega}~(\Omega)$	$R_{ m SEI}~(\Omega)$	$R_{ m CT} (\Omega)$
CPAP	3.74	9.81	11.4
CPAL	3.51	8.9	6.75
CLAP	3.7	7.04	6.87
CLAL	3.52	8.61	5.96

electrode patterning improves CT resistance: better ion-transport and reduced concentration gradients

Psuedo-2D Electrochemical Model Used to Simulate Cell Performance

At high charging rates (>4C), the model underpredicts cell resistances due to assumption of perfect electrode wetting

Discrepancy between experiment and Psuedo-2D Model Highlights Importance of Wetting Cut off time (s)

Transforming ENERGY

NREL Micro-structures Improve Electrode-Electrolyte Wetting

- Fast charging of high-energy density thick electrodes is hampered by transport limitations and lithium concentration gradients
- Severe polarization in electrodes at high charging rates leads to high-current densities near the separator and favorable conditions for Li-plating
- Strategically laser-ablating channels into electrodes can reduce tortuosity, improve electrolyte wetting and increase rate capability
- Ongoing work to demonstrate feasibility of scaling up laser-ablation pilot lines

Patent: NREL 21-48 LASER ABLATION FOR LITHIUM-ION BATTERIES (non-provisional application)

Patent: NREL 22-19 SENSOR-GUIDED ADAPTIVE LASER ABLATION OF BATTERY ELECTRODES (provisional application)

Dunlap, N. et al., Laser ablation of Li-ion electrodes for fast charging: Material properties, rate capability, Li plating, and wetting, 2022 Journal of Power Sources

We gratefully acknowledge:

eXtreme Fast Charge and Cell Evaluation of Lithium-Ion Batteries (XCEL) Program

Samuel Gillard, DOE-EERE-VTO Technology Manager Battery R&D

High-Throughput Laser Processing and Acoustic Diagnostics for Enhanced Battery Performance and Manufacturing

Changwon Suh, DOE-EERE-AMO Technology Manager R&D Projects

Peter Faguy, DOE-EERE-VTO Technology Manager Battery R&D

Thank you

www.nrel.gov

NREL/PR-5900-82342

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Vehicle Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Transforming ENERGY

Bertrand.Tremolet@nrel.gov

Electrochemical and Material Characterization of Laser Micro-Structured Thick Battery Electrodes

Nathan Dunlap, Dana Sulas-Kern, François Usseglio-Viretta, Peter Weddle, Donal Finegan, **Bertrand J. Tremolet de Villers** National Renewable Energy Laboratory (NREL)

International Battery Seminar & Exhibit Orlando, FL (virtual) March 29, 2022

NREL/PR-5900-82342