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Acronyms 

DER distributed energy resource 

DOE U.S. Department of Energy 

DR demand response 

DRA demand response asset 

EMS energy management system 

ERWH electric resistance water heater 

HPWH heat pump water heater 

ISO independent system operator 

ISO-NE ISO New England 

LMP locational marginal price 

MISO Midcontinent Independent System Operator 

PJM a regional transmission organization in the Eastern United States, formerly the Pennsylvania- 

New Jersey-Maryland Interconnection 

RE renewable energy 

VG variable generation 

WH water heater 
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Notation 

Table A. Units

 

Abbreviation Name, Physical Quantity

 

◦C degrees Celsius, temperature 

◦F degrees Fahrenheit, temperature 

GW gigawatt, power 

GWh gigawatt-hours, energy 

K kelvin, temperature 

kg kilograms, mass 

kW kilowatts, power 

kWh kilowatt-hours, energy 

m meters, length 

MW megawatts, power 

MWh megawatt-hours, energy 

MW-h megawatt-hours, reserves 

yr year, time

 

Table B. Set, Element, and Subscript Symbols

 

Symbol Description

 

K set of water heaters in ResStock sampled portfolio of single family homes 

k single water heater or other controllable device 

start subscript indicating the notification period of a contingency reserve event or audit 

response subscript indicating the response period of a contingency reserve event or audit 

rebound subscript indicating the period of time immediately following a contingency reserve 

event or audit

 

Table C. Variables

 

Symbol Description

 

L aggregate flexibility energy storage variable, analogous to ∆ S (MWh) 

P water heater electricity consumption (kW or MW) 

∆ P difference between actual (+) and baseline (-) water heater electricity consumption 

(kW or MW)
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Continued

 

Symbol Description

 

DP alias for ∆ P in time-discretized computational routines 

S thermal energy stored in one or more water heaters (kWh or MWh) 

∆ S difference between actual (+) and baseline (-) thermal energy stored in one or more 

water heaters (kWh or MWh) 

DS alias for ∆ S in time-discretized computational routines 

t time 

T temperature of a thermostatically controlled load (◦C or 

◦F) 

Ttank 

water heater tank temperature (◦C or 

◦F) 

∆ Ttank 

difference between actual (+) and baseline (-) water heater tank temperatures 

U aggregate flexibility electricity consumption variable, analogous to ∆ P (MW)

 

Table D. Parameters

 

Symbol Description

 

α thermal energy dissipation (h− 1) 

βk 

fraction of an aggregate dispatch signal to be allocated to resource k ∈ K 

η efficiency of electricity to thermal energy conversion (kW-thermal/kW-electricity) 

ρ density (kg/m3) 

a ambient temperature (◦C or 

◦F) 

c thermal capacitance (kWh/◦C) 

cv 

specific heat of water (kWh/kg · K) 

L

 

minimum allowable state of charge for an aggregate flexibility resource (MWh) 

N number of time-steps 

P̃ baseline (without demand response interventions) electricity consumption (kW or 

MW)

 

P maximum power consumption 

∆ P

 

minimum allowable difference between actual and baseline power consumption 

(kWh or MWh)

 

∆ P maximum allowable difference between actual and baseline power consumption 

(kWh or MWh) 

Q exogenous heat gains within water heater tanks and other thermostatically controlled 

loads (kW) 

r thermal resistance (◦C/kW) 

δ t discretization time-step (minutes)
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Continued

 

Symbol Description

 

S̃ baseline (without demand response interventions) thermal energy stored in one or 

more water heaters (kWh or MWh) 

∆ S

 

minimum allowable difference between actual and baseline thermal energy stored 

(kWh or MWh)

 

∆ S maximum allowable difference between actual and baseline thermal energy stored 

(kWh or MWh) 

T̃ baseline (without demand response interventions) temperature of a thermostatically 

controlled load

 

T maximum allowable temperature for a thermostatically controlled load (◦C or 

◦F) 

T

 

minimum allowable temperature for a thermostatically controlled load (◦C or 

◦F) 

Tsp 

temperature set point 

T̃tank 

baseline (without demand response interventions) water heater tank temperature 

(◦C or 

◦F) 

V water heater tank volume (m3 or gal) 

w weight to place on energy storage, as opposed to power, capacity 

wk 

sample weight corresponding to simulated water heater k
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Executive Summary 

Demand response is commonly called on to reduce load during system peak times or to respond 

to contingency events. In future power systems with higher shares of wind and solar generation 

(which we describe together as variable generation [VG]), demand response could have more 

opportunities to provide energy shifting or operating reserve services. Demand response and 

other forms of demand flexibility are often evaluated using historical or projected information 

about how grid systems operate, usually in the form of grid service price time series or marginal 

emissions time series. This price-taking assumption is convenient for demand-side modeling 

but only holds if the demand-side intervention does not change bulk power system build-out 

and dispatch enough to change grid service prices or marginal emissions. On the other hand, 

price-making approaches that directly represent demand response as a resource alongside supply- 

side options and are thus able to impact bulk power system build-out or dispatch usually make 

simplifying assumptions about round-trip efficiency, equipment headroom, and the aggregation 

of many kilowatt (kW) scale devices into megawatt (MW) scale flexibility resources that can 

misrepresent the size of the demand flexibility resource. This report develops and explores new 

computational methods for bridging these gaps by directly representing device-level flexibility 

and analyzing aggregation processes using a model form that can be incorporated directly into 

grid modeling workflows as price-making resources. 

The methods are evaluated and refined by applying them to estimate the ability of residential 

electric water heaters, both electric resistance water heaters (ERWHs) and heat pump water 

heaters (HPWHs), to provide energy shifting and operating reserve services in envisioned future 

New England power systems. We start from detailed whole-building energy models that realis- 

tically represent New England single family home stock and use a battery-like surrogate model 

to represent operational flexibility in a form suitable for linear and mixed integer programming. 

This enables fast computation of optimal energy shifting for individual water heaters based on 

a fixed price profile, construction of aggregate, MW-scale models for quickly estimating con- 

tingency reserve resource, and in some cases the construction of aggregate, MW-scale models 

for energy shifting that can be directly included in bulk power system planning models. This 

report also explores the cost of aggregation—a battery-like model of a MW-scale resource can- 

not convey the exact capabilities of the individual resources it comprises. We therefore compute 

and compare inner and outer approximations, which are aggregate models that bound the ac- 

tual flexibility of the comprising devices. Several limitations (described below) advise caution 

when interpreting the quantitative results of this study. However, that should not detract from the 

promise of new computational methods for more realistically representing the MW scale impacts 

of aggregated kW scale demand flexibility. 

Findings 

We estimate contingency reserve resource by fitting surrogate models to the ERWHs and HP- 

WHs represented in two scenarios of the New England housing stock, aggregating the surrogate 

models, and using the aggregates to simulate event responses for each hour of the year. We select 

surrogate model parameters by comparing a much smaller, but still representative, number of 

surrogate model-simulated contingency event responses to EnergyPlus-simulated contingency 

event responses. The validation and resource estimation processes demonstrate that our results 

are sensitive to how available water heater measurements, especially temperatures, are mapped to 
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surrogate model parameters, and to the specific characteristics of the water heaters. For example, 

our per water heater-year estimates of contingency reserve resource are 0.8 to 1.2 MW-h for ER- 

WHs and 1.0 MW-h for HPWHs, but those results are influenced by the details of the surrogate 

modeling and by large HPWH tanks (80 gallons compared to ERWH volumes that range between 

20 and 60 gallons). 

We explore energy shifting from ERWHs and HPWHs by dispatching surrogate models for 

individual water heaters against day-ahead prices from two operational models of future ISO-NE 

power systems: Near-Term VG and Mid-Term VG. The individual surrogate models are able to 

access and potentially shift all 1,547 GWh of ERWH load and 640 GWh of HPWH load modeled 

in two different scenarios of New England single family homes. Subject to the same ERWH and 

HPWH modeling caveats as above, we find ERWH energy cost savings of $38/WH-yr based 

on the Near-Term VG day-ahead prices and $39/WH-yr based on the Mid-Term VG day-ahead 

prices. The Near-Term VG and Mid-Term VG energy cost savings for HPWHs are $19/WH-yr 

and $22/WH-yr, respectively. 

Aggregating surrogate models to the MW-scale for energy shifting service is more challenging 

than for contingency service and we only present such results for ERWHs, because we were 

unable to determine satisfactory ways to deal with HPWHs’ time-varying and path dependent 

operational characteristics. For ERWHs, we compute inner approximation aggregate models that 

produce provably feasible dispatch instructions, and outer approximations that are upper-bound 

overestimates of actual flexibility. The best inner approximation aggregates present about 30% of 

the total ERWH load for energy shifting, but when those aggregate models are dispatched against 

Near-Term VG and Mid-Term VG day-ahead prices they only shift about 15% of the energy 

shifted by individual ERWH surrogate models under the same conditions due to very restrictive 

energy bounds. On the other hand, dispatching the outer approximation against day-ahead prices 

results in 7% to 17% more energy shifting compared to the individual ERWH surrogate models 

because the outer approximation is able to unrealistically pair power capacity and energy capacity 

from different water heaters. The inner and outer approximation models can also be directly 

dispatched in large-scale grid models. The inner approximation models produce unsatisfactory 

results because their restrictive energy bounds are computationally challenging and yield very 

conservative results. In comparison, the outer approximation models are more suitable, even 

though they overestimate flexibility on the order of 10% to 20%. By dispatching the ERWH outer 

approximations directly in the two ISO-NE power system day-ahead models we demonstrate 

that ERWH energy shifting can be directly coordinated with supply-side resources, e.g., it can 

impact large generator unit commitment decisions, displace less efficient forms of storage, and 

set day-ahead energy prices. 

Limitations 

The battery-like surrogate models used to predict the ability of individual water heaters to operate 

flexibly in response to grid signals are simplifications with key parameters that can be difficult 

to populate in a way that best represents flexibility around baseline operations. Specifically, we 

found that tank temperature is a key parameter that should be set to the controlled temperature 

reading minus the controller dead band, but it can be difficult to ascertain exactly what those 

values are, especially in tanks with multiple heating elements and especially in the real-world 

where measurements and other information on individual water heaters could be limited. This 
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study uses average tank temperature as a proxy for the controlled tank temperature minus the 

dead band. We found this to be a reasonable but not ideal proxy for our ERWH models, and an 

overly conservative one for the HPWH models. 

Methodologically, we found that our provably dispatchable aggregation methods (inner approxi- 

mations) are overly conservative, especially when used for energy shifting. In some cases, simply 

adding up the flexibility bounds of individual devices to compute outer approximations might 

produce acceptable representations of aggregate flexibility. However, in others such an approach 

will overestimate available flexibility by pairing, e.g., the ability of one water heater that is off but 

able to reduce tank temperature with the ability of another water heater that is below temperature 

set point to turn off. This study also does not suggest how to aggregate the flexibility of devices 

with time-varying and state-dependent parameters like heat pump water heaters and air condi- 

tioners. Certainly utilities and aggregators today use data-driven and heuristic methods to control 

such devices to provide demand response services. Nonetheless we remain curious about whether 

it is possible to estimate the aggregate flexibility of such resources using physics-based surrogate 

models. 

The comparisons between ERWHs and HPWHs are impacted by two modeling artifacts. The 

version of ResStock used for this study had an ERWH modeling bug that set the element capacity 

too low, leading to longer heating cycles and less load to shed. This version of ResStock also 

only had an 80 gallon HPWH available; although 80 gallon HPWHs are available in the market, 

50 gallon tanks tend to be more common. In combination, these two limitations will tend to 

overstate the flexibility of HPWHs as compared to ERWHs. Both of these issues have since been 

corrected in newer versions of ResStock. 
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1 Introduction 

Demand response, that is, electrical load contracted to provide a grid service by modifying 

demand-side operations, has a long history. Most commonly, demand response is called on to 

reduce load during system peak times or to respond to contingency events. Looking to future 

power systems with much higher shares of wind and solar generation, demand response could 

have the opportunity to provide more types of grid services more often, for example, energy 

shifting or various forms of operating reserve (Alstone et al. 2017; Hale, Stoll, and Novacheck 

2018; Zhou and Mai 2021; Hale et al. 2021). 

How can we evaluate the role of demand response in future power systems? Ideally demand 

response and supply-side resources (i.e., new and existing generators, transmission lines, and 

storages) would be evaluated simultaneously and in a technology-agnostic manner. This means 

capturing all key demand response characteristics and capabilities in grid planning tools and 

processes, which to first order has been done. Several studies have represented demand response 

as a zero-cost resource in grid capacity expansion and production cost models (Hummon et 

al. 2013; O’Connell et al. 2015; Stoll, Buechler, and Hale 2017; McPherson and Stoll 2020; 

Murphy et al. 2021), and other studies have developed demand response supply curves and 

other cost data (Alstone et al. 2017; Potter and Cappers 2017; Nubbe et al. 2021). Incorporating 

demand response dispatch capabilities, enablement costs, and participation supply curves into 

grid planning models allows demand response to be a price-maker ; that is, demand response 

can change investment and operational decisions and thus directly inform grid service marginal 

prices. 

However, the price-maker methodologies developed thus far, while capturing different time- 

varying ability per grid service, storage-like behavior for energy shifting, and sometimes ad- 

ditional constraints (e.g., number and duration of calls per day) still rely on assumptions such 

as 100% round-trip efficiency and non-physical estimates of equipment headroom (Hummon 

et al. 2013; Hale, Stoll, and Novacheck 2018; McPherson and Stoll 2020; Sun et al. 2020; Zhou 

and Mai 2021) that have not been calibrated to ensure sufficient realism or dispatchability. These 

drawbacks are largely the result of the need for grid models of demand response to fit into the 

large, megawatt (MW) to gigawatt (GW) scale linear and mixed-integer programs used for grid 

investment and operations planning (Bloom et al. 2016; Cohen et al. 2019) and the difficulties 

presented by trying to reflect demand flexibility characteristics that are well-known at the indi- 

vidual device level (kW-scale) (Cutler et al. 2013; Cole et al. 2014; O’Connell et al. 2015; Mac- 

Donald, Vrettos, and Callaway 2020; Luo, Langevin, and Chandra Putra 2021) at the aggregate 

MW-scale. 

A parallel line of research has thus evaluated demand response from the demand-side perspective. 

Given historical or projected information about how grid systems operate, usually in the form of 

grid service price time series (e.g., locational marginal prices [LMPs], reserve prices, capacity 

prices, or time-of-use tariffs) or emissions time series (e.g., average, short-run marginal, or long- 

run marginal carbon, greenhouse gas, or other emissions), very detailed models of, for example, 

air conditioning, water heating, or industrial processes can be used to determine the value of 

responding to such signals (Mitra et al. 2012; Cole et al. 2014; Jin et al. 2017; Shah et al. 2020; 

Wang 2021; Langevin et al. 2021; Garfield et al. 2021). These methods are sometimes described 

as price-taking approaches, and they generally reverse the pro-con list of price-making models. 
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That is, price-taking methods provide ample opportunity for demand-side realism because they 

are not computationally constrained by the mathematical form or size of grid planning models, 

but they are separate from grid planning models and may therefore have less influence on grid 

planning processes. Furthermore, implementing results from a price-taking analysis might not 

have the intended effect of reducing system costs because of the resulting interactions with the 

supply side. 

In this report, we describe methods for bridging the gap between price-taking and price-making 

demand response analysis for residential electric water heaters. Electric water heaters have pro- 

vided demand response, including daily load shifting, for decades, but only in a few places (e.g., 

Minnesota and France) (Lescoeur and Galland 1987; Opalka 2013; Hopkins and Whited 2017). 

Because higher wind and solar generation shares combined with, for example, space and water 

heating electrification, might increase the need for regular energy shifting and diversify times 

of high grid stress to include winter peaks, times of low net-load1 or high ramping, and times of 

low renewable availability (EPRI 2018; Murphy et al. 2021; Cochran et al. 2021), electric water 

heaters could become a more important source of power system capacity, contingency reserve, 

and energy shifting in many regions. Electric water heaters also provide an interesting case study 

in energy efficiency and demand response interactions, as heat pump water heaters (HPWHs) are 

much more efficient than ERWHs and might therefore have less grid services potential because 

each water heater has a smaller maximum capacity and represents less potentially shiftable load. 

Recent related work examining the demand response potential of electric water heaters includes 

a DR pilot program that documented the ability of water heaters to contribute to peak load reduc- 

tion during infrequent demand response events (Oschsner et al. 2011; BPA 2018), and to provide 

more regular energy-shifting (BPA 2018). Electric resistance and heat pump water heater flexi- 

bility has been tested and compared in a laboratory setting (Mayhorn et al. 2015). The grid value 

of electric resistance and heat pump water heaters has been evaluated analytically in terms of 

peak shaving, thermal storage, energy efficiency, and fast frequency response (i.e., regulation or 

balancing services) based on PJM and MISO market prices (Hledik, Chang, and Lueken 2016). 

HPWH energy shifting has been studied using simulation models calibrated to laboratory data 

for water heaters from multiple vendors and with both R134a and CO2 

refrigerants. Energy shift- 

ing value was estimated for multiple control strategies against both marginal energy costs and a 

time-of-use tariff (Carew et al. 2018). 

In this study, we bridge price-taking and price-making approaches for analyzing demand re- 

sponse from water heaters using detailed building energy simulations (Figure 1, bottom left 

corner), dynamic surrogate models of individual device-level flexibility (upper left), and aggre- 

gation methods (center top), coupled with price-making (in a large-scale production cost model, 

lower right corner) and price-taking (simulation of response to contingency events or dispatch 

against modeled day-ahead prices, center bottom) methods. Because our goal is to improve the 

physical realism of demand response in grid models, we focus on the potential resource that 

could be offered by the residential water heating end use and do not evaluate enablement costs

 

1Net-load is commonly defined as electricity load minus wind, solar and other variable generation (VG). In 

high VG systems, net-load can be better correlated than load with times that are key for ensuring resource adequacy 

(Stephen, Hale, and Cowiestoll 2020). Periods of low net-load are often associated with times of VG curtailment. 
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nor likely participation rates. We also focus on contingency reserve and energy shifting grid ser- 

vices to the exclusion of other grid services. We examine contingency reserves because this is an 

important reliability service in its own right, and because the methods for estimating the amount 

of contingency reserve resource can be adjusted to estimate firm capacity contributions. Firm 

capacity and energy (which can be impacted by energy shifting) are the largest two value streams 

in bulk power systems (Neukomm, Nubbe, and Fares 2019; Denholm, Sun, and Mai 2019).

 

Figure 1. Overview of bottom-up engineering approach for estimating demand response resource. 

Following this introduction (Chapter 1), the report introduces electric water heater flexibility by 

presenting basic simulation results for electric resistance water heaters (ERWHs) and heat pump 

water heaters (HPWHs) operating in New England, describing our dynamic surrogate model 

formulation and how we use building energy model data to define the surrogate model parameters 

for sample single family homes (Chapter 2). The building stock model used in this study is 

further described in Chapter 3, as are the grid models we use to analyze the potential value of 

electric water heater demand response resource in New England. Chapter 4 describes how we 

model contingency response from individual and aggregated ERWH and HPWH water heaters, 

validation results comparing surrogate model and EnergyPlus simulated responses, contingency 

resource estimates, and the impacts of making contingency reserves from ERWHs or HPWHs 

available to large-scale models of grid operations with different shares of variable generation 

(VG). Chapter 5 describes methods for estimating and evaluating the impact of electric water 

heaters shifting demand from higher to lower price times, as well as their potential bulk power 

grid impacts. Finally, the report concludes with Chapter 6. 
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2 Electric Water Heater Flexibility 

Residential water heaters in the United States, which typically have tanks, are fueled by either 

natural gas or electricity and are thermostatically controlled to a fixed temperature set point. 

Because hot water is blended with cold water to produce the desired temperature for most appli- 

cations, electric water heaters with tanks are a ubiquitous source of thermal energy storage that 

can be operated flexibly to provide grid services by modulating their power consumption while 

maintaining tank temperature within an acceptable range, rather than aiming for a specific set 

point. 

In this report, we analyze the potential of the electric water heater fleet in New England to pro- 

vide grid services. We rely on the ResStock model of U.S. single family homes as our "ground- 

truthed" description of the stock (Wilson et al. 2016). Using default settings, ResStock estimates 

that of 2,256,000 single-family homes in New England, about 27% of them have ERWHs (Fig- 

ure 2) and less than 0.5% have HPWHs.

 

Figure 2. Fraction of New England single family homes with ERWHs, as estimated by ResStock 

We examine the difference in potential flexibility between the current electric water heater fleet 

(as represented in ResStock with default settings) and a hypothetical scenario in which all electric 

water heaters are converted to 80 gallon HPWHs. Figure 3 shows the substantial difference in 

electricity use for 620,000 electric water heaters (approximately the current number of electric 

water heaters in New England) depending on type. Overall, ResStock estimates that 620,000 

ERWHs in New England would use 1,589 GWh/yr of electricity whereas the same number of 

80-gallon HPWHs would only use 641 GWh/yr. On a per-water-heater basis, that corresponds to 

2,573 kWh/ERWH-yr and 1,034 kWh/HPWH-yr, on average. 
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(a) Full year hourly time series

 

(b) Example winter week

 

(c) Example summer week 

Figure 3. Power demand of 620,000 electric water heaters, either electric resistance (ERWH) or heat pumps 

(HPWH), as simulated by ResStock. Total annual energy is 2,573 kWh/ERWH-yr and 1,034 kWh/HPWH-yr. In 

(a) the profiles obscure each other and the time compression obscures daily and seasonal energy use trends 

especially for HPWHs. However, the relative magnitude of ERWH versus HPWH energy use is visible, and the 

ERWH profile shows the typical pattern of higher water heater energy use in the winter as compared to the summer. 
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Using ResStock, we can get a quick initial look at how the operations of these two types of water 

heaters can be perturbed to produce a change in power draw in response to a grid signal. Figure 4 

shows data examples created by comparing otherwise identical ResStock runs with and without 

20◦F temperature set point reductions included during 30-minute event periods. Each of the 

three columns in the two subplots shows a different set of results, and together these results 

demonstrate that the actual response varies tremendously by water heater. The left column shows 

examples of no-responses that occur because the water heaters did not need to run during the 

event period under normal conditions (as evidenced by P Baseline values of zero). The right 

column shows "full" responses in which the water heater would have normally run during the 

entire event and can instead be shut off without violating the new, lower than normal, set point of 

105◦F (which is subject to an additional 10◦F dead band). In the middle column, we see "partial" 

responses, which can occur because the water heater normally would not have run through the 

entire event period (as in the HPWH example, Figure 4b) or because the tank temperature reaches 

the lower set point during the event and thus turns on despite the ongoing event (as in the ERWH 

example,2 Figure 4a). In general, Figure 4 shows that although the non-event temperature set 

point is 125◦F in all cases, average tank temperatures can deviate significantly from that ideal for 

long periods of time based on the details of how water heaters are controlled (e.g., measurement 

locations, heating element locations, control dead bands). Figure 4a also highlights that this 

study’s ERWHs were affected by a bug in an earlier version of ResStock that led to reduced 

capacity heating elements and was only triggered by certain water heater options not used in 

other ResStock projects at the time. Specifically, the ERWHs in this study have power capacities 

of 1.3 kW and 1.6 kW rather than the expected 4.5 kW and 5.5 kW (https://github.com/NREL/ 

resstock/pull/804). This bug has since been fixed and to our knowledge only affected this study. 

Because the energy demands remain unchanged, the ERWH on-cycles are about three times too 

long compared to real-world water heaters, potentially impacting average outlet temperatures as 

well as load flexibility at timescales shorter than one hour. 

Although collecting and analyzing data like these is a fairly straightforward and intuitive pro- 

cess, because water heaters can be flexibly operated in many ways (e.g., for grid stress events of 

different duration and at different times, or to shift electricity use from high-price to low-price 

times, which can vary day-to-day, season-to-season, and year-to-year), we develop systematic 

representations of flexibility through a surrogate modeling framework.

 

2The reported temperature is the average tank temperature, which best captures the overall amount of thermal 

energy stored in the tank, but is usually higher than the temperature measurement used for control in our ERWH 

stratified tank models (Maguire 2018). Thus, although the baseline (average) tank temperature does not reach the 

event set point of 105◦F, the EnergyPlus control logic is likely responding to a simulated measurement low in the 

tank and it is that temperature that is dropping below the lowered set point minus an additional 10◦F dead band. 

Generally, electric resistance water heaters with tanks contain two heating elements, an upper element and a lower 

element, both of which respond to nearby temperature measurements. Different hot water draw patterns result in 

different cycling patterns of the two heating elements, different stratification states, and varying differences between 

average and controlled tank temperatures. In this study, the ERWH control temperatures tended to be significantly 

lower than the average tank temperatures, which resulted in water heaters often turning on mid-event as shown in 

Figure 4a. 
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(a) Example ERWH responses

 

(b) Example HPWH responses 

Figure 4. Example responses for 30-minute demand response-type events, simulated in Ener- 

gyPlus by applying temperature set point reductions during the shaded event periods. Each 

row depicts a different metric: water heater power draw P (kW) or average water heater tank tem- 

perature Ttank(
◦F ) . The columns depict different types of possible responses: No Response, Par- 

tial Response, or Full Response. Each plot shows data for both the Baseline and simulated Event 

runs. Responses relative to baseline can be computed by subtracting Baseline data from Event data. 

2.1 Surrogate Model Formulation 

Water heaters are thermostatically controlled loads similar to air conditioning, space heating, 

and refrigeration. The simplest type of physically realistic model for such loads is the resistance- 

capacitance model, a first-order ordinary differential equation with the controlled temperature 

T ( t ) (◦C) as the state variable. Here we write the model generally for heating loads, in which the 

ambient temperature a ( t ) (◦C) is generally lower than the controlled temperature, and injecting 

power into the system ( P ( t ) > 0) increases the controlled temperature: 

dT ( t )

 

dt 

= 

a ( t ) − T ( t )

 

r ( t ) c ( t ) 

+ 

η ( t ) P ( t )

 

c ( t ) 

+ 

Q ( t )

 

c ( t ) 

(2.1) 

0 ≤ P ( t ) ≤

 

P ( t ) (2.2) 

The key parameters in the model are thermal resistance ( r ( t ) in 

◦C /kW); thermal capacitance 

( c ( t ) in kWh/◦C ); electricity to thermal energy conversion efficiency ( η ( t ) , which is dimension- 

less and for HPWHs is also referred to as the coefficient of performance); and the maximum 

power of the equipment (

 

P ( t ) in kW). Q (kW) represents the exogenous heat gains (or losses) for 
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the system, which for water heaters corresponds to heat loss associated with hot water use that is 

then backfilled by water at temperature of the main (i.e., tap). 

To make this model more closely resemble a storage device, we can change the state variable to 

the amount of stored thermal energy S (kWh) defined as: 

S ( t ) = c ( t )( T ( t ) − a ( t )) . (2.3) 

For water heaters, the thermal capacitance is that of the water in the tank, which we can compute 

using the data in Table 1 assuming we know the volume and temperature of the tank.3 We can 

then interpret S as the thermal energy stored in the water that is due to its temperature being 

higher than the surrounding environmental temperature a ( t ) , which could be that of a basement, 

garage, or storage closet where the water heater resides. Note that this is but one definition of 

stored thermal energy that we use to track how the tank interacts with its environment; however, 

from an end user perspective, the difference between tank temperature and mains temperature is 

likely more salient. 

Table 1. Water Properties for Calculating Thermal Capacitance

 

T (◦C) cv( kWh / kg · K ) ρ ( kg / m3)

 

0.0 0.001172 999.85 

10.0 0.001164 999.70 

20.0 0.001155 998.21 

25.0 0.001149 997.05 

30.0 0.001144 995.65 

40.0 0.001132 992.22 

50.0 0.001118 988.04 

60.0 0.001105 983.20 

70.0 0.001090 977.76 

80.0 0.001076 971.79 

90.0 0.001061 965.31 

100.0 0.001047 958.35

 

Making the change of variables in Equation 2.1 results in: 

dS ( t )

 

dt 

= η ( t ) P ( t ) − 

S ( t )

 

r ( t ) c ( t ) 

+ 

S ( t )

 

c ( t ) 

dc ( t )

 

dt 

+ Q ( t ) − c ( t )
da ( t )

 

dt 

. (2.4) 

If we also have upper (

 

T [◦C ]) and lower ( T

 

[◦C ]) bounds on acceptable temperatures, we can 

add bounds on the stored thermal energy: 

c ( t )( T

 

( t ) − a ( t )) ≤ S ( t ) ≤ c ( t ) 

(

 

T ( t ) − a ( t )
) 

. (2.5) 

Equation 2.4, Equation 2.5, and Equation 2.2 can then be used together to represent the capability 

of water heaters (and other thermostatically controlled devices) to store thermal energy. However,

 

3We use constant volume thermal capacitance because the tank has a fixed volume and is full of water at the 

mains pressure. 
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what we really want to represent is the potential to operate water heaters flexibly relative to how 

they would operate under baseline conditions . To this end, we define a baseline temperature set 

point T̃ (◦C), which yields a baseline thermal energy storage quantity 

S̃ ( t ) = c ( t ) 

( 

T̃ ( t ) − a ( t ) 

) 

(2.6) 

and if we assume that under baseline conditions the tank holds at a constant value T̃ we can 

compute baseline power as: 

P̃ ( t ) = 

S̃ ( t )

 

η ( t ) r ( t ) c ( t ) 

− 

Q ( t )

 

η ( t ) 

. (2.7) 

The ability to operate flexibly around these points can then be defined using the variables: 

∆ S ( t ) = S ( t ) − S̃ ( t ) (2.8) 

∆ P ( t ) = P ( t ) − P̃ ( t ) . (2.9) 

By substituting Equation 2.3 and Equation 2.6 into Equation 2.8 we see that: 

∆ S ( t ) = c ( t ) 

( 

T ( t ) − T̃ ( t ) 

) 

(2.10) 

and we can also derive: 

d ∆ S ( t )

 

dt 

= η ( t ) ∆ P ( t ) − 

∆ S ( t )

 

r ( t ) c ( t ) 

+ 

∆ S ( t )

 

c ( t ) 

dc ( t )

 

dt 

− c ( t )
d T̃ ( t )

 

dt 

(2.11) 

which we simplify to: 

d ∆ S ( t )

 

dt 

= η ( t ) ∆ P ( t ) − α ( t ) ∆ S ( t ) (2.12) 

by assuming dc ( t ) / dt and d T̃ ( t ) / dt are zero or small enough to ignore, and by defining the rate 

of thermal energy dissipation α (h− 1) to be equal to 1 / r ( t ) c ( t ) . 

2.2 Estimating Individual Flexibility with ResStock 

Given the surrogate flexibility model: 

d ∆ S ( t )

 

dt 

= η ( t ) ∆ P ( t ) − α ( t ) ∆ S ( t ) (2.13) 

∆ S

 

( t ) = c ( t ) 

( 

T

 

( t ) − T̃ ( t ) 

) 

≤ ∆ S ( t ) ≤ c ( t ) 

(

 

T ( t ) − T̃ ( t ) 

) 

=

 

∆ S ( t ) (2.14) 

∆ P

 

( t ) = − P̃ ( t ) ≤ ∆ P ( t ) ≤

 

P ( t ) − P̃ ( t ) =

 

∆ P ( t ) . (2.15) 

and a ResStock simulation of residential housing stock, the parameters η , α , S̃ , ∆ S

 

,

 

∆ S , P̃ , ∆ P

 

and

 

∆ P can be specified several ways. In this report, we directly use the parameters specified in 

the ResStock EnergyPlus models when available. 

For individual ERWHs, η , r , the volume of the water tank V and

 

P are directly available and 

constant for each water heater. For η , we simply read the field Heater Thermal Efficiency. For 
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r , we read the fields Off-Cycle Loss Coefficient to Ambient Temperature and On-Cycle Loss 

Coefficient to Ambient Temperature. These two parameters describe the loss coefficients when 

the water heater is off and on and are equal in value for the case of electric (as opposed to natural 

gas) water heaters. We thus calculate r as: 

r = 

1

 

UA 

, (2.16) 

where UA is the loss coefficient from the .idf file. V is the "Tank Volume" field, and this lets us 

calculate c using the data in Table 1 once we specify a temperature T and interpolate the table 

values: 

c ( T ) = V ρ ( T ) cv( T ) , (2.17) 

where V is the volume of the tank, ρ is the density of water, and cv 

is the specific heat of water. 

For calculating α we assume T = Tsp, which is simply 125◦F for all modeled homes in the 

version of ResStock used for this work.

 

P corresponds to the EnergyPlus field Heater Maximum 

Capacity, equal in this study to 1.3 kW or 1.6 kW.4 Baseline power draw P̃ is a single time series 

result readily available from the ResStock simulation. 

For individual HPWHs, r , V and α are defined the same as they are for ERWHs; however, η and

 

P are no longer constants. EnergyPlus uses performance curves to capture how η and

 

P vary 

with tank and ambient temperatures. The value of P̃ is also more complex than in the electric 

resistance case as it is the sum of a compressor and a fan component. To report the timeseries 

values of these quantities, EnergyPlus Energy Management System (EMS) code is inserted into 

the models via OpenStudio measure. We also assume the back-up electric resistance element can 

be ignored (i.e., we do not attempt to model the additional flexibility available from accessing 

both the heat pump and electric resistance elements generally available in HPWHs). In our 

ResStock simulations, this is a reasonable assumption because the HPWHs only use resistance 

back-up heat if tank temperature falls to 76◦F, and their large volumes (80 gallons in all cases) 

make this a rare occurrence. 

For ERWHs and HPWHs we always pull the baseline power draw P̃ directly from the baseline 

(constant temperature set point of Tsp 

= 125◦F) EnergyPlus simulations, which were conducted at 

5-minute resolution. Thus ∆ P

 

and

 

∆ P are directly calculated as − P̃ and

 

P − P̃ respectively. 

From this point, we explored two different ways to specify the remaining parameters. For the 

Simple model, we assume S̃ corresponds to a constant tank temperature of Tsp, whereas for the 

TankT model, we calculate S̃ using the actual time-varying baseline tank temperature T̃ ( t ) as 

reported by EnergyPlus. In both cases, we use the actual ambient temperature, which is also 

time-varying and corresponds to the Living, Garage, Finished Basement, or Unfinished Basement 

thermal zones in our ResStock portfolios. 

Thus, for the Simple model: 

S̃ ( t ) = c ( Tsp) 

(
Tsp 

− a ( t )
) 

(2.18) 

∆ S

 

= c ( T

 

) 

(
T

 

− Tsp 

) 

(2.19)

 

∆ S = c (

 

T ) 

(

 

T − Tsp 

) 

(2.20)

 

4This study was completed prior to the ResStock bug fix https://github.com/NREL/resstock/pull/804. 
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and for the TankT model: 

S̃ ( t ) = c ( T̃ ( t )) 

( 

T̃ ( t ) − a ( t ) 

) 

(2.21) 

S

 

( t ) = c ( T

 

)( T

 

− a ( t )) (2.22)

 

S ( t ) = c (

 

T ) 

(

 

T − a ( t )
) 

(2.23) 

∆ S

 

( t ) = min 

( 

S

 

( t ) − S̃ ( t ) , 0 

) 

(2.24) 

∆ S

 

( t ) = max 

(

 

S ( t ) − S̃ ( t ) , 0 

) 

. (2.25) 

In this report, we analyze the flexibility of three types of electric water heater represented in 

ResStock. Two are ERWHs with different amounts of insulation (Electric Standard and Electric 

Premium) and each comes in five different sizes—ResStock assigns tank size based on home 

size, number of occupants, and amount of hot water use. The third is an 80-gallon heat pump 

water heater: Electric Heat Pump. The choice of an 80-gallon tank for the HPWH is an artifact of 

what was available in the ResStock model library at the time as opposed to an assumption about 

what is likely to be installed in real buildings. As discussed throughout the report, these differ- 

ences in modeled ERWH and HPWH storage volumes impact our demand flexibility estimates, 

generally biasing them to show increased HPWH flexibility as compared to what we would ex- 

pect for a real-world mix of tank volumes. From Figure 5 we see that the thermal dissipation for 

all of these models is less than 1% per hour, such that we should not expect the α term in Equa- 

tion 2.13 to have a large impact on our results, although dissipation is about four times larger in 

the HPWH models than in the ERWHs.

 

Figure 5. Water heater thermal energy dissipation versus tank 

volume for the ResStock water heater models used in this study 

Water heater class, ERWH or HPWH, also significantly impacts η , baseline power draw, and 

bounds on how much the power draw can deviate from baseline. All these differences signifi- 

cantly impact the results we see later in the report (Chapter 4 and Chapter 5) and were previewed 

in Figure 3. The ERWH models take η directly from the EnergyPlus input files, which set the 

Heater Thermal Efficiency to 1.0. The observed distribution of η values for the HPWHs, whose 

interquartile range falls between 2.35 and 2.82, is shown in Figure 6. 
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Figure 6. Distribution of HPWH electricity to thermal energy conversion efficiency, η

 

Figure 7. Distributions of time-varying baseline power draw and bounds on al- 

lowable change in power draw for ERWH and HPWH surrogate flexibility models 

Figure 7 shows the distribution of baseline power draw by water heater type in the two left- 

most violin plots. Both ERWHs and HPWHs spend most of their time in the off-state, with P̃ 

at or near zero. When on, ERWHs simply turn their resistance elements on, which leads to a 

concentration of points at 1.3 kW, the maximum power draw of the 83% of ERWHs that are 

of type "Electric Standard." The remaining 17% are "Electric Premium" ERWHs and pull a 

maximum of 1.6 kW. HPWH maximum power draw, on the other hand, varies with tank and 

ambient temperature, leading to a wide dispersion of on-states that tends to be less than 1 kW 

(the interquartile range of on-state data points is 0.81 to 0.89 kW). The distributions for − ∆ P

 

are 

a simple repeat of the P̃ distributions because the surrogate flexibility models can only reduce 

power draw when the water heaters are on under baseline conditions.

 

∆ P is how much the water 

heater power draw can be increased, which is the maximum possible power draw minus baseline 

power draw. For the ERWHs, the resulting distribution has its mode at 1.3 kW (corresponding to 

the power capacity of the majority of ERWHs) and significant density at 1.6 kW (power capacity 

of "Electric Premium" ERWHs) and 0 kW (value for all ERWHs when they are on). The HPWH

 

∆ P values factor in time-varying maximum power capacities, which yields less concentration in 

the distribution at the high end compared to the ERWH distribution. 

12 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



 

Figure 8. Distributions of the time-varying baseline thermal 

energy storage for ERWH and HPWH surrogate flexibility models

 

Figure 9. Distributions of the time-varying bounds on allowable change in 

thermal energy storage for ERWH and HPWH surrogate flexibility models 

Because the two surrogate model types differ in how S̃ , ∆ S

 

, and

 

∆ S are calculated, we see differ- 

ences in those parameters’ distributions both when we compare the Simple and TankT models 

and when when we compare ERWHs and HPWHs (Figure 8 and Figure 9). Figure 8 shows dis- 

tributions of the amount of thermal energy stored in the modeled ResStock water heaters under 

baseline conditions ( S̃ ). The three determinants of how much thermal energy is stored are (1) 

water heater volume, (2) ambient temperature, and (3) tank temperature. Because the HPWHs 

come in only one size and the tank temperature is assumed to be constant in the Simple model, 

the distribution shown for the Simple HPWH models only reflects the impact of different am- 

bient temperatures. Ambient temperature varies over time for each water heater, each of which 

is modeled as being in a (conditioned) living zone, an (unconditioned) garage, or a basement 

(conditioned or unconditioned). Water heaters in conditioned spaces see less variation in ambient 

temperature than those in unconditioned spaces; across the portfolio, placement of water heaters 

in different types of thermal zones, outside weather, and indoor air temperature all contribute to 

the width of the HPWH-Simple S̃ distribution. 
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The ERWH-Simple S̃ distribution is essentially multiple single-volume distributions superim- 

posed on each other. This and the smaller volume of the ERWHs relative to the HPWHs gener- 

ally explains the differences between the ERWH-Simple and HPWH-Simple S̃ distributions. The 

difference between the Simple models and the TankT models is that the former assumes the tank 

temperature is always at set point (here, 125◦F) while the latter uses the actual tank temperature 

as reported by EnergyPlus. Because the EnergyPlus models use a constant set point with a dead 

band that only turns the heater on if the temperature falls 10◦F below the set point (i.e., to 115◦F) 

and turns the heater off when the set point is reached, the Simple model assumption is effectively 

an upper bound, and the distinct reduction in stored thermal energy in the TankT as compared to 

the Simple models reflects how often and how much the tank temperature is below set point in 

these simulations. This holds for both the ERWH and HPWH models. For all the distributions 

shown in Figure 8, the largest stored thermal energy values correspond to large-volume tanks at 

times and places in which the ambient temperatures are lowest (e.g., water heaters in uncondi- 

tioned spaces experiencing very cold winter weather) while the tank temperatures are high (e.g., 

at set point). The smallest values correspond to times when the tank temperatures are very low 

relative to ambient temperature—for limited periods of time, the tank temperature can even be 

lower than the ambient temperature, which results in stored thermal energy values below zero, 

as the tank is recharged from the water mains, which can be colder than the air surrounding the 

water tank. 

Because the surrogate models depicted here were developed for estimating response to load- 

shedding contingency events, the maximum temperature used to create thermal energy bounds 

was the same as the nominal set point (125◦F). The lower tank temperature bound was 105◦F. 

Thus, the distributions for − ∆ S

 

shown in Figure 9 reflect the difference in thermal energy storage 

between 125◦F and 105◦F in the Simple surrogate models, and between the actual tank tempera- 

ture (or 105◦F, whichever is higher) and 105◦F in the TankT surrogate models. The distributions 

of upper bound values,

 

∆ S (also shown in Figure 9), instead reflect the difference in thermal 

energy storage between 125◦F and the tank temperature set point (that is, zero) and between 

125◦F and the actual tank temperature in the Simple and TankT models respectively. Thus, for 

the Simple models, the bounds on ∆ S are constant per water heater and only vary between water 

heaters if water heaters have different tank volumes. On the other hand, the ∆ S bounds in the 

TankT models are time-varying; the magnitude of the ∆ S

 

bounds are always smaller in the TankT 

than in the Simple surrogate models, and the magnitude of the

 

∆ S bounds are correspondingly 

larger. 
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3 Case Study Setting 

To explore aggregated water heater flexibility, we focus on technical potential resource size 

and the associated grid service value in New England, whose power system is operated by the 

independent system operator (ISO) ISO-New England (ISO-NE) (Figure 10).

 

Figure 10. ISO-NE dispatch zones and load regions. The eight 

load regions are the indicated aggregations of 1 to 4 dispatch zones. 

On the demand-side, our starting point is ResStock run with an overall sampling rate of one 

single-family home simulated per 228.6 actual single family homes. The run is filtered down to 

just the counties in New England and homes with electric water heaters. This results in about 

2,700 samples each with sample weight 228.6 and assigned to a specific New England county. 

On the supply-side, our representation of ISO-NE is a PLEXOS production cost model extracted 

from the SEAMS Study (Bloom et al. 2021; Energy Exemplar). Production cost models simulate 

grid operations by computing the minimum cost dispatch of grid resources that satisfies demand 

and provides sufficient reserve capacity to operate reliably at all times. Emulating real-world grid 

operations, production cost models are often run at multiple time scales and resolutions. For ex- 

ample, hourly day-ahead runs compute optimal dispatch for the following day and account for the 

unit commitment constraints of large generators, e.g., minimum generation levels, minimum up 

times, and minimum down times; while sub-hourly real-time runs compute optimal dispatch for 

the next 5 to 15 minutes and fix most unit commitment variables because most generators cannot 

start up or shut down that quickly. Production cost models typically run through a complex series 
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Figure 11. Annual generation in the Near-Term VG and Mid-Term VG PLEXOS mod- 

els of ISO-NE before adding demand response resource from electric water heaters. 

Net imports serve the gap between generation and load. Storage is used to shift some 

of the generation shown here to other times, subject to round-trip efficiency losses. 

of these types of optimization problems to simulate an entire year of grid operations, thereby 

quantifying a power system’s annual production costs and its behavior across all seasons. 

In this study, there are two production cost model scenarios, one representing a projected "2024" 

system and the other representing a projected "2038" system. In the remainder of this paper we 

refer to these scenarios as the "Near-Term VG" and "Mid-Term VG" scenarios to emphasize that 

they include different amounts of wind and solar generation, the two major forms of variable 

generation (VG) (Figure 11), but utilize the same load profiles. Some basic statistics on the 

scenarios are provided in Table 2. ISO-NE is well-connected with its neighbors. We balance 

computational tractability and realism by only modeling ISO-NE while representing connections 

to neighboring regions with fixed import and export schedules that were determined by running a 

version of the entire SEAMS model for each scenario. We additionally incorporate a high-priced 

generator at each of the interconnection points, to help the model deal with changes that occur in 

the power flow from the various resources we add throughout this report. 

The water heaters modeled in ResStock are mapped into the ISO-NE power system by: 

1. Computing the fraction of each county’s residential utility customers that are in each 

census tract (U.S. DOE EERE 2019). There are 67 counties and 3,353 census tracts in New 

England.

 

5Zero and low carbon, comprising PV, wind, hydro, and nuclear generation 

6PV, wind, and hydro generation 

7PV and wind generation 

16 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



 

Table 2. ISO-NE Production Cost Model Summary

 

Near-Term VG Mid-Term VG

 

Clean5 Generation Share (%) 52 82 

RE6 Generation Share (%) 24 56 

VG7 Generation Share (%) 16 49 

Curtailment (%) 0.02 3.9 

Production Costs (Million $) 2400 1100 

Unserved Reserve (GWh) 3.2 0.04

 

2. Determining the closest PLEXOS model transmission load node to each census tract. There 

are 783 load nodes in the 67 New England counties. 

3. Combining those two maps to determine what fraction of a ResStock building’s sample 

weight (all of which has already been allocated to a single county) should be assigned to 

each transmission node. 

The water heater resources can then be represented at the nodal level, or at the more-aggregated 

dispatch zone or load region levels. The 19 ISO-NE dispatch zones are directly shown in the 

Figure 10 map. The 8 load regions are direct aggregations of dispatch zones as shown by the light 

blue text and brackets in that same figure. 

We evaluate water heater flexibility in the context of two grid services, one that sheds load in 

times of grid stress and another that shifts load from higher-price to lower-price times. 

Although demand response is most typically used to shed load during system peak times, that is, 

during the hottest afternoons (for summer peaking systems) or the coldest mornings (for winter 

peaking system) of the year, shed-demand response (DR) can also serve year-round as contin- 

gency reserves. In this case, a certain amount of demand response along with other resource 

capacity (i.e., generation or storage) is reserved by the system operator at all times but is only 

called upon to reduce load (or increase generation) in the case that there is an unexpected genera- 

tion or transmission outage. Typical contingency events only require response for 10’s of minutes 

to an hour (Denholm, Sun, and Mai 2019). ISO-NE has codified this for demand response assets 

(DRAs) by enabling them to sign up and then be audited for performance-based participation in 

their Claim10 and Claim30 programs (ISO New England Inc. 2022; Nichols and Haag 2018). 

In this study, we model contingency response based on descriptions of ISO-NE’s Claim10 and 

Claim30 auditing process (Nichols and Haag 2018). Claim10 is shorthand for a 10-minute no- 

tification service, that is, DRAs performing this service have 10 minutes from the time of event 

notification to ramp their response up to their target output. They are then expected to maintain 

their target output for 50-minutes, so that the whole auditing process (from notification to the 

end of response) is one hour. Claim30 is audited similarly, but with 30-minute notification. The 

total audit time is still one hour, that is, Claim30 resources are expected to ramp up to their target 

output by the 30-minute mark and then to maintain that level of output over a 30-minute response 

time. 

17 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



 

We model demand response shifting service on an economic basis. That is, we either endoge- 

nously dispatch electric water heater surrogate flexibility models in the PLEXOS production cost 

model as a no-variable cost storage-like resource, or we dispatch surrogate flexibility models in a 

price-taking sense against the day-ahead locational marginal prices output by PLEXOS. In both 

cases we can directly observe the dispatch profiles. We can also observe and compare changes 

in generator dispatch and production costs by applying the endogenous and price-taking dis- 

patch day-ahead profiles to the PLEXOS real-time model.8 The individual water heater surrogate 

models are the same as what is used for the contingency analysis and described in Section 2.2 

except that the upper tank temperature bound is set to 145◦F such that the overall allowable tank 

temperature range is 125 ± 20◦F.

 

8Compared to the day-ahead problems, the real-time problems fix the commitment status of longer start time 

thermal generators, and fix the dispatch of pumped hydro and water heater loads. 
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4 Contingency Service 

To determine the technical potential of electric water heaters providing contingency reserve in 

New England, we simulate contingency events using the individual flexibility surrogate models 

described in Section 2.2 and aggregate flexibility models that are in the same mathematical 

form but whose parameter values are determined using the aggregation mathematics described 

below and in Appendix A. We apply the validation step of comparing surrogate model-simulated 

Claim10 and Claim30 responses to EnergyPlus-simulated Claim10 and Claim30 responses to (1) 

choose either the Simple or the TankT individual surrogate model form and (2) inform parameter 

values used in the aggregation steps. Having completed these steps, we compute final surrogate 

models, estimate hourly contingency reserve resource at different levels of aggregation, and add 

these resources to our ISO-NE production cost models. 

4.1 Methods 

4.1.1 Aggregated Flexibility 

We can make two naïve assumptions to estimate the aggregate contingency reserve resource 

available from electric water heaters. First, we can assume contingency responses are short 

enough that all water heater load is sheddable for up to 1 hour. In this case, the average hourly 

water heater load (e.g., as depicted in Figure 3) becomes our estimate of contingency resource. 

Second, we can create individual flexibility models of the form Equation 2.13 - Equation 2.15 or 

discretized with time-step δ t and represented per water heater k ∈ K as: 

∆ Sk( t + δ t ) = ( 1 − αk( t ) · δ t ) ∆ Sk( t )+ ηk( t ) ∆ Pk( t ) · δ t (4.1) 

∆ Sk

 

( t ) = ck( t ) 

( 

Tk

 

( t ) − T̃k( t ) 

) 

≤ ∆ Sk( t ) ≤ ck( t ) 

(

 

Tk( t ) − T̃k( t ) 

) 

=

 

∆ Sk( t ) (4.2) 

∆ Pk

 

( t ) = − P̃k( t ) ≤ ∆ Pk( t ) ≤

 

Pk( t ) − P̃k( t ) =

 

∆ Pk( t ) . (4.3) 

and then simply sum the individual bounds while also applying sample weights wk 

to compute an 

aggregate model where L ( t ) performs the role of ∆ S and U ( t ) performs the role of ∆ P : 

L ( t + δ t ) = 

( 

1 − 

∑k wk 

αk( t )

 

∑k wk 

· δ t 

) 

L ( t )+ 

∑k wk 

ηk( t )

 

∑k wk 

U ( t ) · δ t (4.4) 

L

 

( t ) = ∑ 

k 

wk∆ Sk

 

( t ) ≤ L ( t ) ≤ ∑ 

k 

wk

 

∆ Sk( t ) =

 

L ( t ) (4.5) 

U

 

( t ) = ∑ 

k 

wk∆ Pk

 

( t ) ≤ U ( t ) ≤ ∑ 

k 

wk

 

∆ Pk( t ) =

 

U ( t ) . (4.6) 

As shown below, it turns out that these estimates are often true overestimates of the actual aggre- 

gate resource. That is, the individual load reductions implied by shedding all water heater load 

are not all sustainable when lower bounds on tank temperature are accounted for, and the model 

created by simply summing all the individual bounds (shown above and referred to as the outer 

approximation in Appendix A and what follows) can incorrectly pair the ability of some water 

heaters to shed load with the ability of other water heaters to tolerate reductions in their tank 

temperatures to essentially ignore individual water heater constraints. 
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As described in Appendix A, if the model parameters ηk 

and αk 

are constant, it is possible to 

construct an inner approximation of the aggregate resource that is provably dispatchable. The 

construction relies on assigning a fraction βk 

to each resource in the aggregation and then dis- 

tributing any aggregate dispatch request to those resources according to that fraction. To ensure 

dispatchability, the aggregate flexibility model parameters are assigned in a worst case sense, that 

is, the aggregate bounds L

 

,

 

L , U

 

and

 

U are set so that: 

∆ Sk

 

( t ) ≤ βkL

 

( t ) ≤ ∆ Sk( t ) ≤ βk

 

L ( t ) ≤

 

∆ Sk( t ) ∀ k ∈ K (4.7) 

and 

∆ Pk

 

( t ) ≤ βkU

 

( t ) ≤ ∆ Pk( t ) ≤ βk

 

U ( t ) ≤

 

∆ Pk( t ) ∀ k ∈ K . (4.8) 

As described in Appendix A, ηk 

and αk 

are also tracked properly and used to define η and α 

parameters for the aggregate model to ensure overall dispatchability. The inner approximations 

are tunable in the sense that the βk 

can be chosen to maximize: 

w |L

 

|+( 1 − w ) η |U

 

| , (4.9) 

where here we focus on the ability to reduce stored thermal energy and power draw because those 

are the capabilities of interest when examining contingency response. 

In what follows, aggregations can be either an outer approximation or an inner approximation 

with energy weight w . An inner approximation with w = 1 is called an "inner_maxS" approxima- 

tion whereas an inner approximation with w = 0 is called an "inner_maxP" approximation. For w 

values between 0 and 1 we use notation like "inner_w0p5" where the p stands in for the decimal 

point. Aggregation can also be done at different geographic scales. For contingency resource we 

aggregate all water heaters that map either to the same node, the same dispatch zone, or the same 

load region, which results in 783, 19, or 8 aggregate flexibility models respectively. 

4.1.2 Dispatch of Surrogate Flexibility Models 

Whether we are working with individual water heater or aggregate surrogate flexibility models, 

we evaluate contingency reserve resource by simulating Claim10 and Claim30 audit events using 

a simple dispatch algorithm. We run the dispatch algorithm in two modes: "Greedy", which 

always tries to reduce load as much as possible now without anticipating how much energy 

capacity will be left to sustain the response and "Flat", which tries to produce a sustained, flat 

response while respecting both power and energy bounds. 

The dispatch algorithm expects to simulate an event consisting of three periods: starting notifi- 

cation, response, and rebound. In all cases, we take the duration of the notification plus the re- 

sponse period to be one hour, and the rebound period to be one hour. Then, Claim10 and Claim30 

only differ in that Claim10 has a 10-minute notification period and a 50-minute response pe- 

riod whereas Claim30 has a 30-minute notification period and a 30-minute response period. The 

dispatch algorithm does nothing during the notification period, maximizes reductions in load 

(greedily or with a flat profile) during the response period, and gets back to ∆ S = 0 as quickly as 

possible (and if possible) during the rebound period. 

The dispatch algorithm is shown in Algorithm 1. The dispatch simulation uses 5-minute time- 

steps. If the algorithm is supplied with 1-hour data, the data are interpolated to 5 minutes before 
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running the event simulation. After the dispatch algorithm is run, we have the resulting ∆ P and 

∆ S profiles. 

4.1.3 Computation of Contingency Reserve Resource 

Given a surrogate flexibility model at hourly resolution and for a whole year, we estimate 

Claim10 or Claim30 resource by simulating a response in each hour of the year (per Algorithm 

1 with Nstart 

and Nresponse 

set properly for the Claim type) and estimate each hour’s contingency 

resource to be the average response during the response period for that hour. We then multiply 

the total resource by 1.053 to account for a 5.3% distribution loss factor (Cohen et al. 2019). That 

is, we estimate that a 1 kWh reduction in load behind-the-meter reduces bulk power system load 

by 1.053 kWh. If we estimate contingency resource for a collection of aggregate resources that 

together cover all of ISO-NE, the total amount of resource is just the sum over all the aggregate 

models. 
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Algorithm 1 Contingency Event Simulation

 

1: function COMPUTE _ STEP ( DS , DP , η , α , δ t ) 

2: return DS + η · DP · δ t − α · DS · δ t 

3: end function 

4: 

5: function COMPUTE _ POWER ( DS , DS _ target , η , α , δ t ) 

6: return ( DS _ target − DS + α · DS · δ t ) / ( η · δ t ) 

7: end function 

8: 

9: procedure DISPATCH (dtype , δ t , Nstart 

, Nresponse 

, Nrebound 

, ∆ P

 

( t ) ,

 

∆ P ( t ) , ∆ S

 

( t ) ,

 

∆ S ( t ) , η ( t ) , α ( t ) ) 

10: . dtype can be "Flat" or "Greedy". Greedy sets DP ( t ) to ∆ P

 

( t ) if feasible. 

11: 

12: . Compute response target if Flat dispatch 

13: if dtype == Flat then 

14: DP _ target ← max 

( 

∆ P

 

( i · δ t ) | Nstart 

≤ i < Nstart + Nresponse 

) 

. Vector indices start at 0 

15: for i ∈ 

[
Nstart + 1 , Nstart + 2 , . . . , Nstart + Nresponse 

] 

do 

16: DP _ target _ trial ← ∆ S

 

( i · δ t ) / ( δ t · ( i − Nstart)) 

17: if DP _ target _ trial > DP _ target then 

18: DP _ target ← DP _ target _ trial 

19: end if 

20: end for 

21: end if 

22: 

23: . Initialize outputs 

24: DS ( t ) ← 0 

25: DP ( t ) ← 0 

26: 

27: . Simulate response 

28: for i ∈ 

[
Nstart 

, Nstart + 1 , . . . , Nstart + Nresponse 

− 1
] 

do 

29: if dtype == Flat then 

30: DP ( i · δ t ) ← DP _ target 

31: else 

32: DP ( i · δ t ) ← ∆ P

 

( i · δ t ) 

33: end if 

34: DS (( i + 1 ) · δ t ) ← COMPUTE _ STEP ( DS ( i · δ t ) , DP ( i · δ t ) , η ( i · δ t ) , α ( i · δ t ) , δ t ) 

35: if DS (( i + 1 ) · δ t ) < ∆ S

 

(( i + 1 ) · δ t ) then 

36: DP ( i · δ t ) ← COMPUTE _ POWER ( DS ( i · δ t ) , ∆ S

 

(( i + 1 ) · δ t ) , η ( i · δ t ) , α ( i · δ t ) , δ t ) 

37: if DP ( i · δ t ) >

 

∆ P ( i · δ t ) then 

38: . Issue infeasibility warning– ∆ S

 

bound will be violated 

39: DP ( i · δ t ) ←

 

∆ P ( i · δ t ) 

40: DS (( i + 1 ) · δ t ) ← COMPUTE _ STEP ( DS ( i · δ t ) , DP ( i · δ t ) , η ( i · δ t ) , α ( i · δ t ) , δ t ) 

41: else 

42: DS (( i + 1 ) · δ t ) ← ∆ S

 

(( i + 1 ) · δ t ) 

43: end if 

44: end if 

45: end for
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46: . Simulate rebound 

47: for i ∈ 

[
Nstart + Nresponse 

, Nstart + Nresponse + 1 , . . . , Nstart + Nresponse + Nrebound 

− 1
] 

do 

48: if DS ( i · δ t ) == 0 then 

49: . Achieved goal of getting to no deviation from baseline energy storage 

50: BREAK 

51: end if 

52: DS (( i + 1 ) · δ t ) ← COMPUTE _ STEP ( DS ( i · δ t ) ,

 

∆ P ( i · δ t ) , η ( i · δ t ) , α ( i · δ t ) , δ t ) 

53: if DS (( i + 1 ) · δ t ) > 0 then 

54: DP ( i · δ t ) ← COMPUTE _ POWER ( DS ( i · δ t ) , 0 , η ( i · δ t ) , α ( i · δ t ) , δ t ) 

55: if DP ( i · δ t ) < ∆ P

 

( i · δ t ) then 

56: . Issue warning about overshooting desired level of energy storage 

57: DP ( i · δ t ) ← ∆ P

 

( i · δ t ) 

58: DS (( i + 1 ) · δ t ) ← COMPUTE _ STEP ( DS ( i · δ t ) , DP ( i · δ t ) , η ( i · δ t ) , α ( i · δ t ) , δ t ) 

59: else 

60: DS (( i + 1 ) · δ t ) ← 0 

61: end if 

62: else 

63: DP ( i · δ t ) ←

 

∆ P ( i · δ t ) 

64: end if 

65: end for 

66: end procedure
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4.2 Validation 

We test the individual surrogate flexibility models and their aggregates by simulating their 

Claim10 and Claim30 responses and comparing them to EnergyPlus responses created by lower- 

ing water heater tank temperature set points during the response periods. 

4.2.1 EnergyPlus "Ground Truth" 

Claim10 and Claim30 responses are simulated with ResStock by injecting a DR Event Schedule 

and using it to trigger water heater tank temperature set point reductions. The DR Event Schedule 

specifies a DR Event to happen every day of the year at the same, top-of-the-hour local time each 

day. Because each event is separated by 24 hours, the water heaters settle back to baseline condi- 

tions between events. Each event is evaluated by taking time series data from ResStock portfolio 

buildings that include the events and subtracting the corresponding time series data from the 

baseline portfolio buildings. The main time series of interest are power and tank temperature pro- 

files. Successful execution of this procedure requires having baseline and with-event portfolios 

that are otherwise identical. 

We simulated a total of six "claim" runs, in addition to a baseline run, for two different ResStock 

portfolios. The first ResStock portfolio was the default ResStock portfolio filtered down to New 

England homes with electric water heaters. At that point a post-processing step further selected 

just the ERWHs with tanks (the default portfolio contains a few tankless models as well as a few 

heat pump water heaters). The second ResStock portfolio was also filtered to just include New 

England homes with electric water heaters, but then all of the existing electric water heaters were 

replaced by an "Electric Heat Pump, 80 gal," using ResStock upgrade logic. 

Three different claim "times" were simulated: random, 2 p.m., and 6 p.m. The random claim runs 

choose a random hour for the events to occur for each ResStock sample building; that is, each 

sample building’s "random" events start at the top of the same local-time-hour each day, but the 

hour chosen is different from building to building. In this way, we can check the degree to which 

our surrogate models can or cannot match EnergyPlus dispatch of a contingency-like event at all 

times of day. The 2 p.m. and 6 p.m. claim simulations are synchronized across all the buildings. 

This enables validation of aggregate responses. 

The resulting ResStock runs and brief descriptions of how they factor into our analysis are sum- 

marized in Table 3. 

4.2.2 Individual Surrogate Model Validation 

Some examples of Claim10 responses for individual ERWHs are shown in Figure 12. The middle 

and rightmost columns demonstrate that the Simple and TankT surrogate models are both able 

to replicate EnergyPlus responses in many cases, especially when dropping all baseline load ( P̃ ) 

during the response period (shaded in light grey) does not result in tank temperature set point 

violations. However, on the left we see a more challenging event during which the water heater 

would normally be running during the whole response period in part to make up for water draws 

during that time. In this case, the baseline average tank temperature hovers around 110◦F for 

the whole period despite the temperature set point of 125◦F and constant water heater operation. 

Because the Simple model does not see the low tank temperature, it estimates that all the load 

can be shed; but the TankT model anticipates the water heater will need to run some during the 
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Table 3. ResStock Portfolios Used to Create Baseline and Simulated Contingency Event Data 

in EnergyPlus. All portfolios were filtered to New England homes with electric water heaters. A total 

of 14 portfolios are used in this analysis–all portfolio types were produced for both water heater types.

 

Water Heater Type Portfolio Types Portfolio Description

 

ERWH Baseline Data for estimating flexibility models and compari- 

son point for Claim cases

 

HPWH Claim10–Random ISO-NE Claim10 audit-like events simulated at all 

times of day; validation of individual models

 

Claim30–Random ISO-NE Claim30 audit-like events simulated at all 

times of day; validation of individual models

 

Claim10–2 p.m. ISO-NE Claim10 audit-like events simulated at 

2 p.m. for all buildings; validation of aggregate 

response

 

Claim30–2 p.m. ISO-NE Claim30 audit-like events simulated at 

2 p.m. for all buildings; validation of aggregate 

response

 

Claim10–6 p.m. ISO-NE Claim10 audit-like events simulated at 

6 p.m. for all buildings; validation of aggregate 

response

 

Claim30–6 p.m. ISO-NE Claim30 audit-like events simulated at 

6 p.m. for all buildings; validation of aggregate 

response

 

response period to respect the lowered tank temperature set point. The resulting TankT response 

mimics the actual EnergyPlus response fairly well, although not exactly. 

The story for Claim30 responses (Figure 13) is similar, except that in the "Simple Overestimates 

Response" column we see that while the TankT model again performs better than the Simple 

model, in this case the EnergyPlus control logic reacts more strongly to low tank temperatures 

than the TankT model predicts. In responses like this and in what follows for HPWHs, we are 

reminded that to accurately predict individual responses the details matter. Because we are 

modeling the ERWHs using average tank temperatures, but the simulated tanks are stratified with 

one heating element and an associated temperature measurement near the bottom of the tank 

and another measurement-heating element pair near the top, the TankT model is still missing 

important details about the state of the tank and how it is controlled. In this case, the "real-world" 

EnergyPlus response is more muted than our models expect whereas in other cases our relatively 

simple models are sufficient to describe behavior under DR event conditions. 

Across all responses, we see that the TankT surrogate model better replicates the EnergyPlus av- 

erage reduction in load during the response period (reported as average kilowatts for each water 

heater and each response) than does the Simple surrogate model (Figure 14). However, while 

the number of full responses (around 1.3 kW and 1.6 kW) is less in the TankT models than the 

Simple models, they are still more than EnergyPlus shows. Overall, the EnergyPlus distribution 

is wider and more spread throughout the 0.1 kW to 0.8 kW region than the distributions for the 
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(a) Simulated event responses (differences from baseline)

 

(b) Simulated power draws and tank temperatures 

Figure 12. Examples of individual ERWH Claim10-Random re- 

sponses simulated with EnergyPlus and surrogate flexibility models. 
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(a) Simulated event responses (differences from baseline)

 

(b) Simulated power draws and tank temperatures 

Figure 13. Example of individual ERWH Claim30-Random re- 

sponses simulated with EnergyPlus and surrogate flexibility models. 
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Figure 14. Distributions of individual ERWH average responses during Claim10- 

Random and Claim30-Random events: EnergyPlus, Simple surrogate mod- 

els, and TankT surrogate models. Only data from non-null responses are included.

 

Figure 15. Distributions of differences between surrogate model and Ener- 

gyPlus individual ERWH average responses during Claim10-Random and 

Claim30-Random events. Only data from non-null responses are included. 

surrogate models, and this holds for both Claim10 and Claim30 responses (though it is more 

pronounced for the longer Claim10 events). 

Looking directly at surrogate model average responses minus those from EnergyPlus (Figure 15), 

we see confirmation of the surrogate models’ biases toward overestimating response. However, 

we also see that the modes of the difference distributions are around zero and that the TankT 

model has some instances of underpredicting response relative to EnergyPlus. Overall, these 

results further confirm that although the TankT model is not perfect, it does a significantly better 

job than the Simple model in estimating EnergyPlus ERWH contingency responses. 

The example HPWH individual responses shown in Figure 16 and Figure 17 demonstrate that 

EnergyPlus simulated HPWHs behave fairly differently than EnergyPlus ERWHs during the 

prescribed claim events. Focusing first on the Ttank 

row of the Claim10 plots in Figure 16b, we 

see the HPWH average tank temperatures do sometimes get to 125◦F (Baseline profile, "Well- 

matched Full Response" column) but they may also turn off before the average tank temperature 

reaches that point ("TankT Underestimates Response" column, Ttank 

and P Baseline profiles). 

Then, we see in the "TankT Underestimates Response", ∆ P facet (Figure 16a) that the HPWHs 

are more likely than the ERWHs to provide a full response even if their baseline average tank 
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(a) Simulated event responses (differences from baseline)

 

(b) Simulated power draws and tank temperatures 

Figure 16. Example of individual HPWH Claim10-Random re- 

sponses simulated with EnergyPlus and surrogate flexibility models. 

temperatures (Figure 16b) are fairly low. Indeed, we find that for this study’s HPWHs the Simple 

surrogate models often better represent what EnergyPlus does during a contingency event than 

the TankT models do. This fact is initially surprising, because on its face the Simple model seems 

guaranteed to be an overstatement of actual flexibility (since the tank temperature is not actually 

always at set point). However, average tank temperature is not the exact measurement the ther- 

mostat is responding to, and is thus an imprecise indicator of expected control behavior. In this 

particular case, it turns out that the TankT models are overly conservative in predicting ability 

to respond during the prescribed claim events–the HPWHs are typically able to delay turning on 

even if the average tank temperature is below the lowered set point of 105◦F. As for why, in addi- 

tion to the 10◦F controller dead band that is included in all of the EnergyPlus ERWH and HPWH 

models, it is likely that the HPWH control temperature is often considerably higher than the 

average tank temperature. This is because EnergyPlus weighs the HPWHs’ upper element tem- 

perature more heavily (at a ratio of 3:1) than the lower element temperature when determining if 

the heat pump needs to cycle. The large storage volumes (80 gallons) assumed in this study likely 

amplify this effect by buffering any hot water draws and inducing more temperature stratification. 
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(a) Simulated event responses (differences from baseline)

 

(b) Simulated power draws and tank temperatures 

Figure 17. Example of individual HPWH Claim30-Random re- 

sponses simulated with EnergyPlus and surrogate flexibility models. 

The Claim30 "TankT Underestimates Response" shown in Figure 17 is an even more dramatic 

example of the Simple model aligning well with the EnergyPlus response while the TankT model 

is overly conservative. Another key difference between the surrogate models and EnergyPlus is 

visible in the ∆ P rebounds (change in power draw after the response period). Generally in this 

plot and in Figure 16 the surrogate and EnergyPlus rebound sizes are similar, but EnergyPlus 

sometimes delays or foregoes recovery relative to the surrogate models ("Well-matched Partial 

Response" in Figure 16 and Figure 17). 

The fairly good alignment between the Simple HPWH surrogate models and the EnergyPlus 

HPWH responses visible in the individual response plots holds up across the entire set of re- 

sponses. In Figure 18, this shows up as EnergyPlus and the Simple surrogate models having 

similar distributions of average responses, in contrast to the TankT model predicting smaller 

and more-often-zero responses on average. Turning to the distributions of response differences 

(Figure 19), we see that the Simple model is generally aligned with the EnergyPlus contingency 

response estimates while the TankT model systematically underestimates response. 
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Figure 18. Distributions of individual HPWH average responses during Claim10– 

Random and Claim30–Random events: EnergyPlus, Simple surrogate mod- 

els, and TankT surrogate models. Only data from non-null responses are included.

 

Figure 19. Distributions of differences between surrogate model and Ener- 

gyPlus individual HPWH average responses during Claim10–Random and 

Claim30–Random events. Only data from non-null responses are included. 
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Thus, from these results we see that TankT models best represent individual contingency re- 

sponses for ERWHs and the Simple models are the better match for HPWH individual contin- 

gency responses. 

4.2.3 Aggregate Response Validation: EnergyPlus, Outer Approximation, and Inner Approxima- 

tions 

To validate aggregate contingency responses, we compare the sum of responses over all of ISO- 

NE for individual EnergyPlus buildings and for surrogate models aggregated to the node (783 

models), dispatch zone (19 models), or load region (8 models) level. The more aggregation there 

is (which corresponds to fewer models), the more conservative the inner approximations are 

since the worst case power and energy bounds are computed over a larger population of water 

heaters. In contrast, the outer approximation responses stay relatively constant when analyzed at 

the whole-system level, since the outer approximation surrogate models are computed by simply 

summing up the power and energy bounds of each water heater (with minor adjustments for 

variations in charging efficiencies and dissipation rates). 

Comparing the ERWH surrogate model responses to the ERWH EnergyPlus responses in Fig- 

ure 20, we see that the outer and inner approximations form an envelope containing the actual 

response, as expected based on the aggregation models’ constructive proofs. Also, the Inner - 

Node aggregations most closely approximate the EnergyPlus responses on the conservative side, 

while the dispatch zone and load region aggregations are nearly identical and more conservative. 

Thus, from an aggregator’s perspective and at this level of analysis the Inner - Node models are 

the best option shown here for bidding contingency resource into a wholesale market—they are 

provably dispatchable and significantly less conservative compared to dispatch zone and load 

region aggregations. Note that, as computed for this study, the inner approximations are not able 

to anticipate the expected post-response rebound, because worst-case bounds for ability to in- 

crease power draw are set on an hourly basis assuming that the tank temperature cannot exceed 

set point. This modeling deficiency can be corrected, but was not because ISOs currently do not 

anticipate rebound from demand response resources providing contingency reserve. It is also 

the case that if rebound became a system-level concern, aggregators would likely shape rebound 

responses to be less spiky than those shown for EnergyPlus and outer approximation. 

The specific inner approximations shown in Figure 20 are the TankT, w = 0 . 1 models for both 

the dispatch zone and load region aggregate responses, and the TankT, w = 0 . 05 and TankT, 

w = 0 (maxP) models for the nodal Claim10 and Claim30 models respectively. Figure 21 sum- 

marizes all of the aggregate validation results using a Bland-Altman plot of response differences 

(surrogate model minus EnergyPlus) versus average response. The top two plots show that both 

the outer and the inner approximation surrogate models tend to overestimate response when 

the Simple model is used, unless w is 0.5 or greater. Mathematically, the inner approximations 

should never overestimate response if the individual flexibility models are a good representation 

of actual flexibility–thus this provides further evidence that the TankT models better reflect actual 

resource as measured by EnergyPlus simulations. The bottom two plots show that inner TankT 

approximations can match the aggregate EnergyPlus response well (differences near zero) in 

the Claim 30 case, but more often tend to under-estimate response, that is, they are true inner 

(conservative) approximations of actual resource. 
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Figure 20. Example of aggregate ERWH responses for contingency events at 6 p.m. on 

July 20. Simulated responses from EnergyPlus and several surrogate models are compared. 

We summarize relative error of response in Figure 22, this time with results broken out by aggre- 

gation level (Node, Dispatch Zone or Load Region) and claim time (2pm or 6pm) as well as by 

surrogate model type, claim type, and aggregation type. The top sub-figure again shows how the 

Simple model overestimates response. In the bottom sub-figure of TankT results we see that for 

all claim types and times inner nodal aggregations give the most accurate results. Furthermore, 

for these contingency responses, w values < 0.5 are always more accurate than w = 0.5 or w = 1 

(maxS). For nodal Claim30 aggregations, w < 0.05 is preferred. For Claim 10 responses, which 

are longer and thus have more need for energy capacity, and for higher levels of aggregation 

(dispatch zone or load region), w = 0.05 or w = 0.1 can be as good or better than the smallest w 

values. 

All the HPWH aggregate surrogate responses in Figure 23 show good agreement with the corre- 

sponding EnergyPlus responses (black lines) during the actual response period (grey shading). 

The outer approximation then overestimates the speed with which the water heaters can recover 

during the rebound period that immediately follows, while the inner approximations do not cap- 

ture the rebound period at all (because their parameters are defined in a worst-case sense and 

chosen to maximize contingency response). The inner approximations all started from Simple 

individual surrogate models and energy-weighting parameter w = 0 . 0 (maxP). As stated above, 

the rebound period does not factor into our contingency resource analysis. As such, it seems quite 

straightforward in this case to estimate HPWH contingency response—an inner maxP approx- 

imation at any level of aggregation could be used, as could the outer approximation, as they all 

give similar estimates in line with the EnergyPlus simulated responses. 
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Figure 21. ERWH difference in responses (modeled minus EnergyPlus) versus average response 

plotted for all levels of aggregation and broken out by claim type and surrogate model type. 
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(a) Simple surrogate models

 

(b) TankT surrogate models 

Figure 22. Distributions of ERWH aggregate response relative error 

35 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



 

Figure 23. Examples of aggregate HPWH responses for contingency events at 6 p.m. on 

July 20. Simulated responses from EnergyPlus and several surrogate models are compared. 

This conclusion is supported by analyzing all of the response data. Figure 24 shows the Bland- 

Altman plot for all simulated HPWH responses. Overall, the responses at 2 p.m. and 6 p.m. 

on each day of the year range between about 50 MW and 125 MW. The outer approximation 

does a good job of approximating response in this case, with differences generally less than 10 

MW. The Simple Inner - MaxP approximation performs similarly. All other approximations are 

overly conservative in comparison. Increasing values of w, which put higher weight on energy, as 

compared to power, capacity of the aggregates are associated with increasing conservatism. And 

the TankT surrogate models are fundamentally more (and overly) conservative compared to the 

Simple surrogate models. 

These data are summarized with more breakout of geographic aggregation and simulated claim 

time in Figure 25. These findings are particular to this version of ResStock’s HPWH models in 

the sense that real-world HPWHs often have smaller tank sizes than those simulated in this study 

(80 gallons) and smaller tank sizes generally lead to less ability to sustain response over long 

periods of time. However, it is the case that real-world HPWHs are more likely than ERWHs 

to be running at any given time, such that the magnitude of response per water heater that we 

observe is likely realistic, especially for Claim30 responses. 

Based on validating individual and aggregate responses from ERWHs and HPWHs, we conclude 

that contingency resource from ERWHs should be estimated using TankT model inner approx- 

imations with small values of w, and HPWH contingency resource should be estimated using 

Simple model inner approximations with w = 0 (Max P). In our context, ERWHs often are not 

able to provide a full response because their tank temperatures drop so low that the heater must 
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Figure 24. HPWH difference in responses (modeled minus EnergyPlus) versus average response 

plotted for all levels of aggregation and broken out by claim type and surrogate model type. 
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(a) Simple surrogate models

 

(b) TankT surrogate models 

Figure 25. Distributions of HPWH aggregate response relative error 
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be turned on mid-event, but HPWHs do not have this problem and are generally able to shed all 

load that otherwise would have occurred during the response period. Again, this difference in 

model fit is most likely due to a combination of higher modeled storage volume for HPWHs and 

various modeling details, including unrealistically low power capacities for ERWHs. 

4.3 Resource 

To characterize the contingency resource available from electric water heaters for the entire year, 

we use inner aggregate approximations to simulate Claim10 and Claim30 responses for each hour 

of the year. Then, the average response (in MW) during the response period becomes the reported 

contingency resource for that aggregate-hour. Summing the resource over all aggregates in a set 

gives us the entire estimated resource in New England for that hour. This mimics the process of 

each aggregate being bid into the market and dispatched separately, thereby presenting MW-scale 

resources at multiple places (8 regions, 19 dispatch zones, or 783 nodes) in the transmission sys- 

tem. Calculating responses with EnergyPlus would be computationally prohibitive as calculating 

Claim10 and Claim30 resource for a single instance of ResStock would require running ResStock 

49 times, once for the baseline case and once for each of the 24 hours in a day for both Claim10 

and Claim30 responses. In contrast, the methods described in this report requires only a single 

baseline ResStock run and relatively fast event simulations using the surrogate models. 

We summarize annual resource in Table 4. For each combination of claim type and water heater 

type, we highlight in blue the maximum amount of annual resource (in GWh) captured by the 

inner approximations and in the "Fraction Captured" row note the fraction of annual load that 

maximum estimate represents. Because ERWHs are energy-limited, we use the TankT model 

and find that less aggregation is able to capture more resource—the nodal resources are 30% 

to 50% larger than the regional resources. Also, the maximum resource for ERWHs usually 

corresponds to inner aggregations with w > 0, that is, aggregations that represent a balance of 

power and energy capacity. In contrast, because we find the EnergyPlus HPWHs can generally 

shed all load during contingency events with response periods of up to 50 minutes, for HPWHs 

we use the Simple model and find that the Max P inner aggregations always maximize resource 

quantity. The correlation between resource size and aggregation level also runs in the opposite 

direction—more aggregation enables more power capacity, and because these resources are not 

energy-limited, more resource is captured overall. 

Selecting the maximal realistic resource estimates for each technology: nodal aggregations for 

ERWH and regional aggregations for HPWH, Inner - Max P aggregations except in the ERWH, 

nodal, Claim 10 case where we use the Inner - w = 0.05 aggregations; we can summarize the 

overall resource in terms of load fraction, total GWh per year, and MWh per water heater year. 

The ERWH scenario with about 603,400 water heaters is able to present 47% of annual load as 

Claim30 resource and 32% of annual load as Claim10 resource, which corresponds to 722 GWh 

and 488 GWh, and 1.2 MWh/water heater and 0.81 MWh/water heater, respectively. The HPWH 

scenario, which represents about 619,000 water heaters, is able to present 97% of the annual 

load for Claim30 service and 93% for Claim10 service, which correspond to 612 GWh and 595 

GWh, and 0.99 MWh/water heater and 0.96 MWh/water heater respectively. We therefore find 

that contingency service resource from similar numbers of ERWHs and HPWHs can be similar if 

ERWH responses tend to be energy-limited and HPWH responses do not. 
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Table 4. Summary of Annual Contingency Reserve Resource. The inner approximation that 

captures the most resource for each combination of claim type and water heater type is high- 

lighted in blue. The fraction of total load this represents is listed in the Fraction Captured rows.

 

Claim 

Type 

Annual Resource 

(GWh) 

ERWH (TankT) HPWH (Simple)

 

Node Dispatch 

Zone 

Load 

Region 

Node Dispatch 

Zone 

Load 

Region

 

N/A Total Demand 1547 1547 1547 639 . 8 639 . 8 639 . 8

 

Claim10 Outer Approx. 1444 1466 1470 573 . 4 596 . 4 601 . 5 

Inner - Max P 479 . 1 316 . 4 285 . 5

 

566 . 6

 

589 . 8

 

595 . 0 

Inner - w = 0.005 480 . 3 318 . 9 287 . 8 520 . 5 525 . 8 526 . 2 

Inner - w = 0.01 481 . 4 321 . 3 290 . 2 483 . 6 476 . 6 474 . 1 

Inner - w = 0.05

 

487 . 6 340 . 8 309 . 4 335 . 3 297 . 3 289 . 0 

Inner - w = 0.1 487 . 4

 

364 . 1

 

333 . 9 268 . 2 225 . 1 216 . 6 

Inner - w = 0.5 321 . 3 283 . 0 277 . 4 176 . 1 135 . 1 128 . 3 

Inner - Max S 236 . 6 203 . 9 199 . 5 160 . 1 120 . 6 114 . 3

 

Fraction Captured 0 . 32 0 . 24 0 . 22 0 . 88 0 . 92 0 . 93

 

Claim30 Outer Approx. 1489 1502 1504 602 . 9 615 . 7 618 . 6 

Inner - Max P

 

722 . 3 523 . 3 475 . 0

 

596 . 3

 

609 . 2

 

612 . 0 

Inner - w = 0.005 719 . 9 526 . 7 478 . 7 548 . 2 543 . 0 541 . 3 

Inner - w = 0.01 717 . 3 530 . 0 482 . 5 509 . 9 492 . 4 487 . 8 

Inner - w = 0.05 688 . 1 552 . 2 511 . 4 356 . 6 307 . 9 297 . 8 

Inner - w = 0.1 633 . 6

 

560 . 0

 

536 . 8 286 . 9 233 . 5 223 . 4 

Inner - w = 0.5 337 . 1 291 . 1 284 . 6 190 . 4 140 . 4 132 . 4 

Inner - Max S 248 . 8 209 . 8 204 . 6 173 . 4 125 . 3 118 . 0

 

Fraction Captured 0 . 47 0 . 36 0 . 35 0 . 93 0 . 95 0 . 97
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Figure 26. Box plots of contingency resource estimates as compared to all ERWH or HPWH load 

Figure 26 tells the same story graphically and provides distributional detail. Estimated at the 

nodal level, the ERWH resource interquartile ranges are 45 MW–69 MW for Claim10 and 65 

MW–102 MW for Claim30. At the Load Region level, the HPWH interquartile ranges are 48 

MW–88 MW for Claim10 and 52 MW–90 MW for Claim30. Again, the ERWH resource is much 

more energy-limited, which limits how much of the total load is usable for contingency response 

and yields significant differences between Claim10 and Claim30 resource. Median HPWH 

Claim30 resource is larger than median HPWH Claim10 resource, but by only 2%, compared to 

48% for for ERWHs. 

The examples of weekly profiles in Figure 27 show that contingency resource tracks water heater 

load diurnal profiles, which are fairly high from about 6 a.m. to midnight, and only very low dur- 

ing the early morning hours, according to ResStock. The profiles also show a typical residential 

double-peak profile, with highest use in the mornings and evenings as people start and end their 

days. Also, water heating requires more energy in winter than summer, because both air and wa- 

ter temperatures are lower while water heater temperature set points remain unchanged. Finally, 

this gives yet another view of our persistent finding that for this version of ResStock, contingency 

resources for ERWHs and HPWHs are of similar magnitude even though ERWHs use 2–3 times 

more energy on average. Note that this conclusion would likely shift if we were to model more 

realistic ERWH heating capacities; while overall ERWH energy consumption would likely not 

change significantly, three times larger heating capacities leading to a reduced number and du- 

ration of heating cycles and a greater ability to increase and maintain tank temperatures would 

create more opportunity to shed during claim events. 
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(a) Summer week

 

(b) Winter week 

Figure 27. Contingency resource example profiles–best inner ap- 

proximations compared to hourly profile of all ERWH or HPWH load 
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Figure 28. Provision of annual reserve in the Near-Term VG and Mid-Term VG ISO-NE models 

with ERWH or HPWH, Claim10 or Claim30 contingency reserve available from water heaters 

4.4 Grid Impacts 

When contingency reserve from water heaters is included as a resource in our PLEXOS models 

of ISO-NE as a no cost resource, water heaters (WH) provide as little as 9% and as much as 14% 

of the annual reserve depending on the water heater type and the length of the notification period 

(Figure 28). The low bound is set by ERWHs providing Claim10 service because this combi- 

nation is most energy-limited (unable to maintain full response for the entire event duration due 

to tank temperatures dropping too low). Although ERWH Claim30 service is also more energy- 

limited than the HPWH responses, it sets the upper bound of contingency reserve provided by 

water heaters because the countervailing effect of starting with more load (compared to HPWHs) 

overcomes the energy effects in this case. Both types of water heaters are impacted by the dura- 

tion of the expected response. Because we estimate that only 30 minutes of response has to be 

provided by Claim30 resources, compared to 50 minutes of response for Claim10 resources, the 

hourly resource in MW for Claim30 is larger than it is for Claim10. In either case, water heaters 

displace reserve provision from Gas combined-cycle (CC) units in the Near-Term VG model. 

In the Mid-Term VG model, reserve from water heaters displaces reserve that would otherwise 

come from both Gas CC and Wind units. 
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Figure 29. Annual generation differences (from the No DER case, Fig- 

ure 11) in the Near-Term VG and Mid-Term VG ISO-NE models with ERWH or 

HPWH, Claim10 or Claim30 contingency reserve available from water heaters 

Procuring reserve from electric water heaters has the follow-on effect of modifying the overall 

dispatch stack, as the capacity previously held for reserve is now available for generation. Fig- 

ure 29 shows the resulting net change in annual generation. The first thing to notice is that the 

changes are small relative to the total annual generation in New England, which is about 105 

TWh in our models. However, while the changes are on the order of 0.01% of annual generation 

in the Near-Term VG model, they are on the order of 0.1% in the Mid-Term VG model. The 

types of changes seen are fairly consistent within the two models. Except for the HPWH, Claim 

10 case, in the Near-Term VG model coal, gas boiler, and gas combustion turbine (CT) genera- 

tion decrease and are replaced by more gas CC generation and fewer exports (represented as an 

increase in net imports). Storage losses also increase (represented as a decrease in storage "gen- 

eration"), which means that there is more energy shifting from pumped hydro plants than in the 

No DER case. Across all water heater contingency types, the Mid-Term VG model shows a clear 

pattern of using reserve from water heaters to reduce curtailment of wind generation, which also 

results in less gas CC generation and more exports (negative net imports). 

Similar to generation, the total system cost changes from using water heaters for reserve is fairly 

small, and the relative differences are much smaller for the Near-Term VG model (0.01% - 

0.03%) than they are for the Mid-Term VG model (0.2% - 0.3%) (Figure 30). The Mid-Term 

VG model percent savings are larger not only because the absolute magnitudes of the savings are 

several times larger than those in the Near-Term VG model, but also because the total cost de- 

nominator is about half as large due to more generation from zero or low marginal cost resources. 

Where cost savings come from is also different between the two models–WH reserve mostly 
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Figure 30. Total operational system costs and difference for claim cases versus 

the No DER case in the Near-Term VG and Mid-Term VG ISO-NE models with ERWH 

or HPWH, Claim10 or Claim30 contingency reserve available from water heaters 

avoids Start & Shutdown Costs in the Near-Term VG model whereas savings are weighted more 

toward Fuel Costs in the Mid-Term VG model. 

Thus we see that while the potential contingency reserve resource from electric water heaters in 

New England is modest, harnessing this resource could make a measurable difference in the New 

England power system, especially in a future with significantly more wind generation. While 

the use of water heater reserve in our Near-Term VG and Mid-Term VG models is similar, the 

impacts on generation and system costs are on the order of 0.01% in the Near-Term VG model 

but on the order of 0.1% in the Mid-Term VG model in which water heater reserve enables the 

use of otherwise-curtailed wind generation. While these percentages are small, they represent 

$0.3 to 0.7 million total savings ($0.40/WH-yr to $1.20/WH-yr) in the Near-Term VG model 

and $2.3 to 3.2 million savings ($3.80/WH-yr to $5.30/WH-yr) in the Mid-Term VG model. As 

expected, Claim30 (if that is sufficient from an operational perspective) is more impactful than 

Claim10 because it is able to present more megawatts of capacity to the system. Similarly, the 

value of ERWHs is higher than that of HPWHs in the Claim30 case because ERWHs are simply 

a larger resource than HPWHs on a heater-for-heater basis. Our HPWH results also highlight the 

extent to which water heaters with larger tank volumes can provide more resource and more value 

for services that require a longer response (Claim10 in this case). 
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5 Shifting Service 

The individual surrogate models developed in the previous section are the starting point for eval- 

uating the ability of water heaters to shift energy use from higher- to lower-price times. Because 

grid-supportive shifting profiles can be different from day to day and could be implemented via 

either set point changes or direct load control, here we rely on the validation done for contin- 

gency response to limit our focus to TankT models for ERWHs and Simple models for HPWHs 

and do not perform shifting-specific validation against EnergyPlus. We evaluate shifting at the 

individual water heater level and at an aggregate level. For the former we perform price-taking 

dispatch of hourly individual surrogate models against hourly energy prices from our PLEXOS 

day-ahead production cost models. For the latter, we are only able to analyze ERWHs because 

our aggregation mathematics do not currently apply to HPWHs with time-varying (and tank 

temperature-dependent) efficiency ( η ) and maximum power (

 

P ) parameters. However, when we 

are able to create aggregate surrogate models, we represent them directly in our PLEXOS day- 

ahead production costs models so as to observe the grid impacts in a price-making sense; that is, 

in that case the water heater flexibility is dispatched alongside the supply-side resources and is 

thus able to impact unit starts and shutdowns, as well as help to set the energy price. 

5.1 Methods 

5.1.1 Price-taking Dispatch 

Many individual surrogate models developed as described in Chapter 2 can be dispatched in 

parallel to maximize total profit given a price profile p ( t ) . PLEXOS provides such price pro- 

files in units of $/MWh. For this project we created an optimization formulation in GAMS that 

maximizes: 

∑ 

k , t 

− p ( t ) · ∆ Pk( t ) (5.1) 

subject to each discretized flexibility model’s Equation 4.1 to Equation 4.3 with individual water 

heaters indexed by k and all of the parameters, whether constant across all devices, constant for 

each device, or completely time varying, handled and imported automatically such that the same 

formulation and supporting Python code is used for the two different types of water heaters (and 

can also be used for other flexible devices such as behind-the-meter battery systems and electric 

vehicles). 

Each water heater is dispatched against prices for the node it is connected to, load-weighted 

dispatch zone prices, or load-weighted regional prices. This provides direct outputs of (a) shifted 

load profiles and (b) estimated price-taking profits. We also export the shifted load profiles for 

import into PLEXOS and are thus able to obtain the grid impacts as measured by the PLEXOS 

real-time model, which leaves the unit commitment and storage dispatch profiles from the day- 

ahead model in place for all non-quick-start units9 and then adjusts the dispatch of available units 

to balance supply and demand intra-day. 

For both price-taking dispatch and in communicating shiftable resource size to PLEXOS, we 

account for a 5.3% distribution loss factor (Cohen et al. 2019). This means that any ± 1 kWh 

change at the electrical meter is expected to have a ± 1.053 kWh impact at the substation, where

 

9Quick start units include Gas CT units 
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nodal prices are estimated. Thus we increase price-taking profits by a factor of 5.3% and also in- 

crease the magnitude of all aggregate resource bounds by 5.3% to estimate the impact of behind- 

the-meter changes in load on the bulk power system. 

5.1.2 Aggregation of Electric Resistance Water Heaters 

We aggregate ERWHs as described in Subsection subsection 4.1.1 and Appendix A, but special 

care is needed when selecting which water heaters to aggregate to form inner approximations. 

First, to ensure dispatchability, the fractions βk 

need to be held constant over the whole day so 

that the energy deferred in one hour is actually repaid in a different hour. If the fractions varied 

from hour-to-hour, there would be no guarantee that the same water heaters who reduced load 

would be the same ones that increase load at another time. Then, because the aggregation sets 

energy and power bounds (in both directions) based on the worst-case values, to obtain any 

resource at all the water heaters being aggregated need to have similar-enough change-in-power 

and change-in-energy bounds such that there are some times available for both increasing and 

decreasing load. 

When calculating inner approximations, we group water heaters with similar profiles together by 

applying k-means clustering to each water heater’s ∆ P

 

k 

and ∆ S

 

k 

profiles normalized by

 

Pk. This 

is the last step in processing individual flexibility models prior to aggregation. The whole process 

is: 

1. Optionally group the water heaters by a geography, that is, by node, dispatch zone or load 

region. 

2. Split each flexibility model’s timeseries data by day to produce separate flexibility model 

sets. At the end of this step, each day has its own set of surrogate flexibility models. 

3. Apply k-means clustering to the resulting groups of surrogate flexibility models. Each 

group represents a single day and may also come from a single geography (if step 1 was 

applied). 

At this point, aggregation proceeds largely as before, but is applied separately to each cluster, 

day, and (optionally) geography combination. Furthermore, the inner aggregations specify con- 

stant βk 

values for the whole period even though the power and energy bounds for each water 

heater vary over the day. This makes it so that the objective function we used to select optimal 

βk 

for contingency service, Equation 4.9, is no longer well-defined. Instead we apply proxies for 

how each water heater’s bounds translate to | L

 

| and | U

 

| . We estimate the overall energy capacity 

of each water heater in a worst-case sense as 

min 

( 

min
t 

| ∆ S

 

k( t ) | , min
t 

|

 

∆ Sk( t ) | 

) 

(5.2) 

and use

 

Pk 

as a constant power capacity estimate. These values are then used to replace 

ck min 

( 

T̃k 

− T

 

k 

,

 

T k 

− T̃k 

) 

and P̃k( t ) , respectively, in Equation A.72. However, that step is applied 

after screening out resources with insufficient energy capacity, which are defined as resources 

whose values of Equation 5.2 are smaller than 

0 . 1 · max 

( 

max 

k , t 

| ∆ S

 

k( t ) | , min 

k , t 

|

 

∆ Sk( t ) | 

) 

. (5.3) 
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Table 5. ERWH Groupings Used for Shifting Service Aggregation

 

Name No. Geographies No. Clusters per Geography No. Resources

 

k5, Region 8 5 40 

k15, Region 8 15 120 

k30, Region 8 30 240 

k40, ISO-NE 1 40 40 

k120, ISO-NE 1 120 120 

k240, ISO-NE 1 240 240

 

In testing, we found that more shifting resource is obtained when k-means clustering, as opposed 

to geography, is the primary way water heaters are grouped together. This is a natural conse- 

quence of the worst-case selection of inner approximation aggregate model parameters—the 

more similar profiles of water heaters in the same cluster compared to a similar number of water 

heaters selected in another way yield larger power and energy bounds. From prior experience, we 

also know that the PLEXOS model will perform better with fewer and larger resources. We there- 

fore explore six different ways to select water heaters for aggregation–three that first group by 

load region and then apply k-means, and three that do not group at all by geography. The two sets 

match in terms of total numbers of resources as shown in Table 5. Also in all cases we examined 

inner approximations with w ∈ { 0 , 0 . 5 , 1 . 0 } in price-taking analyses and w = 1 . 0 in PLEXOS, as 

well as the outer approximation computed using the k5, Region grouping. 

5.1.3 Price-making Dispatch in PLEXOS 

Representing Equation A.54 to Equation A.55 in PLEXOS requires translation from that math- 

ematical form to an hourly discretized pumped hydro model with a head storage, a tail storage, 

and a turbine (generation) block. Generation is bounded between 0 and − U

 

( t ) . Pumping (from 

the tail storage to the head storage) is bounded between 0 and

 

U ( t ) . Pumping efficiency is η and 

generation efficiency is 1 / η , although in our case (ERWHs originally modeled in EnergyPlus) 

these values are both simply equal to 1. The energy bounds can then be modeled by defining 

Lbase 

= max 

( 

max
t 

| L

 

( t ) | , max
t 

|

 

L ( t ) | 

) 

, (5.4) 

setting head storage bounds as 

L

 

( t )+ Lbase 

≤ Lhead( t ) ≤

 

L ( t )+ Lbase 

, (5.5) 

and setting tail storage bounds as 

Lbase 

−

 

L ( t ) ≤ Ltail( t ) ≤ Lbase 

− L

 

( t ) . (5.6) 

The head and tail storages are also guaranteed to stay between 0 and 2 Lbase. Although it should 

be possible to model the dissipation term ( − α L ( t ) ) in PLEXOS using waterways and/or custom 

constraints, we leave that for future work given the small α values (less than 0.004 h− 1) in our 

models. 
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5.2 Resource 

We estimate shifting resource starting with ERWH TankT surrogate models and HPWH Simple 

surrogate models computed with

 

T tank = 145◦F and T

 

tank = 105◦F, which represent ± 20◦F bounds 

on the nominal set point of 125◦F. The resulting resources analyzed at the individual water heater 

level are summarized in the first two rows of Table 6. The individual models capture all of the 

baseline load and are able to shift it to other times subject to energy and power bounds. However, 

each resource is only a single water heater and is thus small, on the order of 1 kW and 3 kWh. 

The third row of the table describes an aggregate ERWH outer approximation, which, like the 

set of individual ERWH models, is able to shift all ERWH load. By representing the shiftability 

of 603,500 water heaters using only 240 battery-like models, the size of each resource is greatly 

increased. The median maximum energy capacity is 35.5 MWh, the median maximum ability to 

decrease load is 4.7 MW, and the median maximum ability to increase load is 18.4 MW. Based 

on how these outer approximation models are constructed, we expect these aggregate models 

to strictly overestimate the ability of ERWHs to shift load from one time to another. Below, 

we see that this is the case for this particular outer approximation, which was made using the 

same groupings of water heaters as the k30, Region inner approximation also shown in Table 6. 

The effect is even more pronounced in more aggregated outer approximations such as the ones 

computed starting from the k5, Region groupings of water heaters, only use 40 resources to 

summarize ERWH load flexibility in ISO-NE. 

Of the 18 sets of ERWH inner approximation aggregations (rows with aggregation levels "k5, 

Region" through "k240, ISO-NE"), the most important factors that determine how much of 

the original baseline load is available for shifting are total number of resources and whether 

resources are first grouped geographically or are only grouped according to baseline profiles. 

The range of outcomes across these two aggregation choices is large. Creating 40 resources 

starting with water heaters grouped by load region only captures 1.1% of the 1547 GWh of 

total ERWH load. Increasing the number of resources to 240 but still grouping first by load 

region captures 20% of total load. Staying with 240 resources but ignoring water heater location 

and only grouping by profile similarity increases the amount of load captured to 35%, which is 

similar to our hourly aggregation results for contingency resource at the dispatch zone and load 

region levels (Table 4). 

The w weighting between power ( w = 0) and energy ( w = 1) has little impact on how much 

baseline energy is captured in the inner approximation aggregate power bounds, but does impact 

the amount of energy capacity available to each resource. Median energy capacity is about 1.5 

to 1.8 times larger with w = 1 compared to w = 0. Median maximum power capacities are well 

above the 100 kW (0.1 MW) minimum suggested in FERC Order 2222 (FERC 2020), although 

that bound is violated for several of the resources computed for each day (since water heaters 

with little baseline power consumption are grouped together) and even relatively large resources 

will have hours in which they are not able to reduce load at all. For example, the data for June 

3 for the k240, ISO-NE dataset includes 9 resources with U

 

equal to zero in all hours and 4 

resources with all | U

 

| < 100 kW. Of the 227 resources that at times exceed the 100 kW threshold, 

average size above the threshold ranges from 119 kW to 3.1 MW and the fraction of time above 

the threshold ranges from 4% to 96%, with a median of 40%. 
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5.3 Grid Impacts 

All of the energy shifting resources, at the individual water heater and aggregate levels, are eval- 

uated by dispatching them against day-ahead energy prices extracted from our PLEXOS Near- 

Term VG and Mid-Term VG ISO-NE models (Subsection 5.3.1). An outer approximation of 

ERWH flexibility (30 aggregates computed for each load region, that is, 240 flexibility resources 

in total) is also dispatched directly (i.e., endogenously) in the PLEXOS day-ahead models, which 

lets ERWH flexibility impact unit commitment and help set prices. We directly compare the 

endogenous dispatch and price-taking dispatch results by running all the resulting changes in 

load through the PLEXOS real-time models to ascertain impacts on supply-side dispatch and 

production costs (Subsection 5.3.2). 

5.3.1 Price-taking Dispatch 

The price-taking dispatch results are computed using nodal day-ahead energy prices from 

PLEXOS, as well as load-weighted average energy prices for each dispatch zone, load region, 

and for ISO-NE as a whole. Thus, flexibility resources can be dispatched against prices at any of 

these aggregation levels: node, dispatch zone, load region, or ISO-NE. Note that the more aggre- 

gated price data (e.g., load region or ISO-NE averages) will tend to be less volatile than price data 

at finer levels of resolution (e.g., node, dispatch zone). This can be seen for dispatch zone prices 

versus average ISO-NE prices by examining the price duration curves shown in Figure 31 and 

Figure 32. Figure 31 shows all hours but cuts off the y-axis at $100/MWh ($0.1/kWh). Figure 32 

shows the full range of prices for the top 100 hours. Note that the very high prices in Figure 32 

are set by various penalties in the PLEXOS model, e.g., for violating constraints such as reserve 

requirements and line limits. Although somewhat artificial in an economic sense, the high prices 

do represent real reliability concerns, and so we keep them as-is to reflect the high value of re- 

ducing load during those times. The highest prices in the Mid-Term VG model are lower than the 

highest prices in the Near-Term VG model because of transmission capacity adjustments made 

to reduce transmission congestion to more reasonable levels. Based on correspondence with 

ISO-NE our adjusted transmission assumptions are also largely in line with planned transmission 

system refurbishment.10 

The Near-term VG model has almost no zero-price hours, fairly smooth price duration curves in 

the non-top hours, and little price variation between dispatch zones in the non-top hours, except 

that Springfield MA’s prices are often higher than the others’. In contrast, the Mid-Term VG 

model has over 1000 zero-price hours, and significant price variations across dispatch zones for 

hours 3500 to 7000 (Figure 31). In the 100 top hours, in both models the highest-priced hours 

are limited to approximately the top 20 hours, and the Near-Term VG model appears to have 

more severe constraint violations with an average highest price of $5048/MWh as compared to 

$1579/MWh in the Mid-Term VG model (Figure 32). 

The outcomes of dispatching the resources summarized in Table 6 against the day-ahead prices 

partially shown in Figure 31 and Figure 32 are summarized in Table 7 for the Near-Term VG 

model and Table 8 for the Mid-Term VG model. The first four rows of each table summarize 

outcomes for directly dispatching individual water heater flexibility against prices, and as such

 

10The key exception to this statement is our assumption of increased transmission capacity into the Boston area, 

which would require adding another circuit to an existing underground cable. 
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Figure 31. Load-weighted energy price duration curves for the PLEXOS ISO-NE Near- 

Term VG and Mid-Term VG models for the whole system (Average) and per dispatch 

zone. All hours to $100/MWh. Dispatch zones in the same load region are given similar colors. 

provide benchmarks for the actual amount and value of shifting ERWH and HPWH load. The 

individual dispatch results are largely as expected. Dispatching against nodal prices results in 

slightly more profit (about 0.5%) than dispatching against the less volatile dispatch zone prices. 

ERWH shiftability is more valuable than HPWH shiftability. Energy shifting is more valuable 

under Mid-Term VG than Near-Term VG conditions. Somewhat surprisingly, ERWH shifting is 

only 75% more to about twice as valuable as HPWH shifting even though it represents more than 

a doubling of load (ERWH load is 240% of HPWH load). However, this is explainable based on 

the ERWH models having too-low power capacities and smaller tank volumes compared to the 

HPWH models (see Section 2.2). We observe a round-trip efficiency boost for HPWHs based 

on shifting energy from lower-efficiency to higher efficiency times, which means that the shifted 

HPWH profiles actually use less energy overall than the baseline profiles. However, we are not 

capturing the impact of shifting on efficiency but are rather directly using the hourly average 

efficiencies from the baseline run, so the advantages of this effect (round trip efficiency of 108% 

to 109%) might be overstated. 
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Figure 32. Load-weighted energy price duration curves for the PLEXOS ISO-NE Near-Term VG 

and Mid-Term VG models for the whole system (Average) and per dispatch zone. Top 100 hours. 

The first thing to notice in comparing the aggregated ERWH results to the individual ERWH re- 

sults is that the outer and inner approximations of aggregate ERWH flexibility provide upper and 

lower bounds on the amount of ERWH water heater load that can be shifted, and the expected 

profits mostly follow this rule as well. The inner approximations (with non-null w values) strictly 

underestimate the shiftability of ERWH load and likewise underestimate profitability. For exam- 

ple, although the ERWH k240, ISO-NE aggregated resources have about 30% of the water heater 

load available to them as a shiftable resource, dispatching those aggregate resources against 

day-ahead prices only shifts about 15% as much energy as the individual flexibility models and 

similarly only captures about 10% of the profits. On the other hand, the outer approximation 

(which was estimated using the same groupings of water heaters as the k30, Region inner approx- 

imation), shifts 7% (Near-Term VG) to 17% (Mid-Term VG) more load than the individual water 

heater dispatch. However, the impact of this extra shifting on profits is much smaller or even 

negative—the outer approximation produces 1.4% more profit and 0.5% less profit than is actu- 

ally available based on dispatching the individual water heater flexibility against Near-Term VG 

and Mid-Term VG day-ahead prices, respectively. This result highlights the competing effects 

of the outer approximation artificially increasing resource size (because its constraints are more 

relaxed than those of the individual water heaters) and the more-aggregated prices (i.e., at the 
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regional instead of the nodal level) being less volatile and thus less amenable to arbitrage. The 

latter effect mitigates the former effect under both grid conditions, but in the Mid-Term VG case 

the latter effect overwhelms the former effect to produce less overall profit in the outer approxi- 

mation scenario as compared to the no-aggregation scenarios. Note that this finding is sensitive 

to the amount of aggregation—more-aggregated groupings like k5, Region do show more profit 

for the outer approximation with regional Mid-Term VG prices as compared to individual water 

heaters dispatched against nodal Mid-Term VG prices. 

Overall we find that the aggregation processes described in this report either overestimate flexi- 

bility (outer approximation) or do not maintain overall shifting resource quality in proportion to 

the amount of load nominally made available for shifting (inner approximations). By comparing 

inner approximation results within the same aggregation level but with different w values, we see 

that different w values do not qualitatively change the results but it is the case that w = 1 (max 

S) inner aggregations consistently produce higher profits than w = 0 (max P) or w = 0 . 5. For 

this reason, for the remainder of this report we focus on w = 1 . 0 (max S) results when discussing 

inner approximations. 

Demand response studies often find significantly more value for energy shifting under higher- 

VG conditions, but that effect is muted here because of the expanded transmission capacity and 

subsequent reduction in penalty prices in the Mid-Term VG model as compared to the Near- 

Term VG model. Overall the differences in profit between the Near-Term VG and Mid-Term VG 

models are relatively small, about 16% more for HPWHs and 3% more for ERWHs under Mid- 

Term as compared to Near-Term VG conditions. HPWHs probably experience more of a boost 

under Mid-Term conditions because their larger energy capacities and smaller power capacities 

are better suited to taking advantage of numerous zero price hours in the Mid-Term VG model 

as opposed to mitigating the few high price hours in the Near-Term VG model. However, the 

advantage lies with ERWHs on a per water heater basis, with price-taking profits on the order of 

$40/year compared to about $20/year for HPWHs. 

The diurnal profiles shown in Figure 33 illustrate how resource magnitude differs between water 

heater and aggregation types, and how shifted load shapes differ by season and grid conditions. 

First, comparing the "ERWH, k240, Max S" profiles to the others, we observe how conservative 

the shifted profiles are—only a small amount of load is moved into the early morning hours and 

away from peak morning and evening hours. All of the baseline load shown in that column is 

available for shifting, but the worst-case selection of bounds results in severe energy constraints 

that limit how much that load can be shifted in time. The individual HPWHs and the ERWHs, on 

the other hand, tend to move significant quantities of load into the early morning hours and away 

from the morning and evening residential load peaks. In the winter, the morning peak is avoided 

nearly as much as the evening peak under all grid conditions. Shifted ERWH load keeps its two 

peak shape, but now with a large peak in the early morning and a smaller peak in the early after- 

noon. The HPWH shifted profiles look similar, but with a smaller early afternoon peak relative 

to the early morning peak. The story is more complex in the shoulder and summer seasons. In 

the Near-term VG model, morning hours are obviously preferred to afternoon and evening hours 

in both the shoulder and (especially) summer months. However, in the Mid-Term VG model, the 

preference for morning hours is shifted later (toward daytime and away from early morning) and 

attenuated (especially in shoulder months). The desire to avoid evening hours is also attenuated, 
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especially in the early evening when there may still be some solar generation on the grid. As 

expected, the ERWH outer approximation results are similar to, but more exaggerated than, the 

ERWH individual water heater results. Because the outer approximation is able to shift the same 

amount of load but with fewer constraints (40 sets of aggregate constraints rather than 2,640 sets 

of individual constraints), the additional shifting represents the grid preferences encoded in day- 

ahead PLEXOS prices but is unrealistic from an individual water heater point of view (that is, if 

these shifts were realized we would expect water heater tank temperatures to stray outside of the 

allowed ranges, either too cold or too hot).

 

Figure 33. Baseline and shifted diurnal profiles, by sea- 

son (rows), resource type (columns), and grid model (lines) 
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5.3.2 Price-making Dispatch and Impacts 

We created aggregate ERWH flexibility resources with the intention of including them directly in 

large-scale grid models. In this section we fulfill that intention by examining the performance of 

an outer approximation of ERWH flexibility endogenously dispatched by PLEXOS in the Near- 

Term VG and Mid-Term VG day-ahead models. As in Section 5.3.1, the outer approximation 

is computed using the k30, Region groupings of water heaters, which in PLEXOS yields 240 

storage-like resources with time-varying power and energy bounds that are able to impact day- 

ahead unit commitment decisions and energy prices. We also worked with inner approximations 

in the PLEXOS day-ahead model but found their energy constraints to be overly conservative and 

difficult for the model to dispatch. We therefore exclude those results from this report. 

The impact of both endogenously dispatched (price-making) and price-responsive (price-taking) 

water heater flexibility on supply-side dispatch can be observed using PLEXOS real-time models 

with fixed storage dispatch (i.e., fixed profiles for water heaters, pumped hydro, etc.) and fixed 

unit commitment decisions for coal and other slow-start resources. The only differences between 

the real-time models for the two dispatch mechanisms, endogenous dispatch and price-responsive 

dispatch, is that storage dispatch and unit commitment decisions are taken from day-ahead mod- 

els with or without the outer approximation of ERWH flexibility included, respectively; and that 

the real-time water heater load profiles are set to match the results summarized in Section 5.3.1 

in the case of price-responsive dispatch. The real-time model runs so constructed allow us to 

describe and quantify the changes in grid system costs associated with how the remainder of the 

system responds to water heater energy shifting no matter which type of dispatch mechanism 

is used, thereby producing comparable supply-side results. Note, however, that this modeling 

approach does not replicate other common differences between real-world day-ahead and real- 

time models such as load, wind, and solar forecast errors; finer time resolution; and unexpected 

outages or other deviations from day-ahead plan. 

The annual generation differences that result from including shifted water heater load profiles in 

our PLEXOS ISO-NE real-time models are shown in Figure 34. First, we see that endogenous 

dispatch, as expected, has a larger impact than all instances of price-responsive dispatch because 

those scenarios rely on an outer approximation of aggregate ERWH flexibility and are able to 

impact day-ahead unit commitment and pumped hydro storage dispatch decisions. The magni- 

tude of these two effects can be estimated by comparing the "ERWH, None" and "ERWH, Outer 

Approx." Price-Responsive Dispatch results to see the impact of using an aggregate outer ap- 

proximation rather than individual water heater constraints; and by comparing the "ERWH, Outer 

Approx." results for Endogenous Dispatch and Price-Responsive Dispatch to see the impact of 

the same resource being able to impact day-ahead decisions in the former, but not the latter, case. 

Focusing on the Near-Term VG results, across all dispatch mechanisms we see that the overall 

amount of change in annual dispatch by generation type is small relative to the amount of load 

that was shifted. For example, per the price-taking results, individual ERWHs and HPWHs shift 

about 710 GWh and 360 GWh, but the annual generation differences in the real-time PLEXOS 

model are only about 50 GWh and 30 GWh, respectively. This means that, when viewed through 

an annual net change lens, for the most part these resources are shifting energy between gener- 

ators of the same type, e.g., from higher-price gas generators to lower-price gas generators. The 
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Figure 34. Annual generation differences (from the No DER case, Figure 11) in the Near- 

Term VG and Mid-Term VG ISO-NE models with energy shifting available from water heaters 

annual generation by type changes that do result are qualitatively different depending on dis- 

patch type and water heater type. The endogenously dispatched ERWH, Outer Approx. resources 

reduce (pumped hydro) storage losses, increase gas CC generation, increase coal generation, 

and decrease gas boiler and gas CT generation. Thus, these resources are able to displace a less 

efficient form of storage and make better use of gas CC and coal capacity that is already on- 

line (thereby preventing coal shut downs and gas generator start ups). Because price-responsive 

ERWH shifting is not able to change unit commitment decisions for coal nor dispatch decisions 

for pumped hydro storage, the individual and aggregated ERWHs dispatched against day-ahead 

prices increase gas CC generation, decrease coal and other gas generation, and do not impact the 

amount of storage losses in the system. Across the three ERWH aggregation types (None; k240, 

ISO-NE; and Outer Approx.), the types of changes seen in the price-responsive results are largely 

the same while magnitude of changes tracks the amount of shifting ability reflected by the dif- 

ferent aggregations. The main effect of the individual HPWH shifting is to reduce the amount of 

electricity generation based on its 109% round-trip efficiency, which might be overstated because 

we did not model how shifting would change hourly average efficiency from baseline conditions. 
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Figure 35. Annual curtailment differences (from the No DER case, Figure 11) in 

the Mid-Term VG ISO-NE model with energy shifting available from water heaters 

Water heater energy shifting impacts supply-side dispatch more substantially under Mid-Term 

VG, as compared to Near-Term VG, conditions. In this case, price-taking dispatch of individual 

water heaters results in about 615 GWh and 315 GWh of ERWH and HPWH shifting, respec- 

tively, and annual generation by type differences have a similar order of magnitude—about 190 

GWh and 130 GWh, respectively. Across all dispatch mechanisms and water heater types the 

predominant change is an increase in net imports and a decrease in gas CC generation. The in- 

crease in net imports actually corresponds to a decrease in exports—the water heater load shifting 

is relieving various physical and reliability constraints in the system that enables, e.g., within- 

system gas CC generation to be used locally rather than being exported to neighboring regions. 

Aside from this first-order effect, we do see different second-order impacts when we compare 

across dispatch types and water heater types. Endogenous dispatch of ERWHs leaves overall VG 

curtailment relatively static (Figure 35 shows a trade off between increased wind curtailment and 

decreased solar curtailment) while reducing the use of pumped hydro storage (shown as positive 

net generation from reduced storage losses in Figure 34) and increasing biomass and gas CT gen- 

eration. Price-responsive dispatch of ERWHs generally reduces curtailment (increased wind and 

solar generation in Figure 34, details in Figure 35) and also increases gas CT generation. Finally, 

the two findings that (1) the ERWH inner approximation of aggregated resource (ERWH, k240, 

ISO-NE) has very little impact on annual generation by type and (2) reductions in electricity 

generation induced by 108% HPWH energy shifting round-trip efficiencies are both apparent in 

the Mid-Term VG results just as they were in the Near-Term VG results. By comparing Figure 35 

to Figure 11 and Table 2 we see that the curtailment changes across all dispatch mechanisms and 
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Figure 36. Total operational system costs for the No DER scenarios and differences in costs between real- 

time models with and without water heater energy shifting under Near-Term VG and Mid-Term VG conditions. 

water heater types are small relative to the baseline amount of VG curtailment in the Mid-Term 

VG system, on the order of 1% or less. 

The production cost savings from endogenous and price-responsive dispatch of electric water 

heater energy shifting are shown in Figure 36. One of the first things to notice is that endogenous 

dispatch of ERWH, Outer Approx. energy shifting achieves a lot of its savings in both models by 

reducing start and shutdown costs. This makes sense based on this resource being included in the 

day-ahead model where it can impact slow start unit commitment decisions, but it is still interest- 

ing to observe the direct comparison with price-responsive dispatch. Price-responsive dispatch 

reduces start and shutdown costs much less than does endogenous dispatch in the Near-Term 

VG model, and in the Mid-Term VG model price-responsive dispatch actually increases start 

and shutdown costs. In the Mid-Term VG model in particular, there are qualitative differences 

between how endogenous and price-responsive dispatch achieve some of their net production cost 

savings: endogenous dispatch of ERWH, Outer Approx. reduces start and shutdown costs as well 

as storage losses while keeping VG curtailment unchanged, and price-responsive dispatch of both 

water heater types reduces curtailment while actually increasing start and shutdown costs. 

The overall system cost savings for all the dispatch mechanisms and water heater types are 

summarized in Table 9. We list the results for the ERWH k240, ISO-NE inner approximation for 

informational purposes, but note that its overly conservative shifting bounds result in production 

cost savings an order of magnitude smaller than all of the other flexibility model types, and so 

do not discuss it further. For the Near-Term VG model, the potential savings range from $6.4 

million/yr to $9.3 million/yr which are 0.2% to 0.3% of the total production costs. The Mid-Term 

VG savings range from $2.0 million/yr to $11.4 million/yr, or 0.2% to 1.0% of total production 
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Table 9. Production Cost Savings Summary for Most Effective Energy Shifting Resources

 

Metric Shifting Resource Near-Term VG Mid-Term VG

 

Total Cost (million $) N/A 2800 1200

 

Total Savings (million $) Endogenous ERWH, Outer Approx. 6 . 7 11 . 4 

Price-responsive ERWH, None 9 . 3 5 . 6 

Price-responsive ERWH, k240, ISO-NE 1 . 0 1 . 2 

Price-responsive ERWH, Outer Approx. 8 . 2 2 . 0 

Price-responsive HPWH, None 6 . 4 4 . 4

 

Savings ($/WH-year) Endogenous ERWH, Outer Approx. 11 . 0 18 . 8 

Price-responsive ERWH, None 15 . 5 9 . 3 

Price-responsive ERWH, k240, ISO-NE 1 . 6 2 . 0 

Price-responsive ERWH, Outer Approx. 13 . 6 3 . 3 

Price-responsive HPWH, None 10 . 4 7 . 1

 

costs. (The cost of operating ISO-NE under Mid-Term VG conditions is less than half that of 

operating under Near-Term VG conditions because of increased zero marginal cost generation; 

therefore the same amount of savings translates into higher percent savings in the Mid-Term VG, 

as compared to to the Near-Term VG, models.) 

As expected, individual HPWHs performing price-responsive dispatch produce less system cost 

savings than ERWHs dispatched in the same manner. However, as in the price-taking results they 

produce more savings than the size of their load would indicate. That is, HPWHs present about 

40% of the load for shifting as compared to ERWHs (Table 7), but their cost savings are about 

70% of the ERWHs’ in both the Near-Term VG and Mid-Term VG models (Table 9). The relative 

rankings of the various ERWH results (other than the price-responsive inner aggregation) are not 

entirely as expected. Overall one would expect the endogenously dispatched outer approxima- 

tion to produce the most system cost savings, which did happen in the Mid-Term VG model but 

did not happen in the Near-Term VG model. One would also expect the price-responsive outer 

approximation to out-perform price-responsive individual water heaters, but this does not happen 

for either the Near-Term VG model nor the Mid-Term VG model. It is beyond the scope of this 

report to fully explain these observations, but (a) we saw even in the price-taking results that 

at what level in the system (e.g., node, dispatch zone, or load region) flexibility is modeled can 

significantly impact outcomes, and (b) ISO-NE is a complex system with connections to neigh- 

boring regions that were difficult to capture in our PLEXOS models. Nonetheless, despite these 

idiosyncrasies the results do demonstrate that aggregated ERWH flexibility can be dispatched by 

PLEXOS and that doing so qualitatively changes the types of impacts such flexibility can have on 

the system as compared to purely price-responsive mechanisms that are not anticipated in load 

forecasts. 
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6 Conclusions 

The research documented in this report developed and tested new methods for representing how 

electric water heaters can be operated flexibly in response to grid signals. The methods start 

with detailed building energy models as created by ResStock and then summarize the flexibility 

of water heaters in small, dynamic, battery-like surrogate models. The surrogate model forms 

were designed to be simple enough to include in linear and mixed-integer programs, and to 

be potentially aggregatable to the MW-scale, both of which are required for the models to be 

compatible with typical bulk grid investment and operational planning optimization formulations. 

We demonstrated the methodology in the context of (a) New England housing stock as modeled 

by ResStock and (b) prospective New England power grids as modeled in PLEXOS by extracting 

the ISO-NE system from the Interconnections Seam Study. We examined two scenarios for both 

the housing stock and the grid. The housing stock was modeled both with default ResStock 

parameters and with all electric water heaters replaced with 80 gallon HPWH models. The grid 

was modeled under both Near-Term VG and Mid-Term VG conditions. 

In comparing the ability of ERWHs and HPWHs to provide contingency reserve, we found that 

the modeled representations of ERWHs and HPWHs responded differently to prescribed claim 

events and thus called for slightly different surrogate modeling methods. The main differences 

between how ERWHs and HPWHs were modeled for this study is that the HPWHs have larger 

absolute storage volumes (80 gallons compared to 50 gallons or less) and relative heating ca- 

pacities (due to unintentionally modeling ERWHs with heating capacities more than three times 

less than typical) compared to ERWHs than is typical. Higher storage volume and higher heating 

capacity results in less frequent heating cycles and greater stratification (meaning that the temper- 

ature at the upper element can be significantly higher than both the average tank temperature and 

the temperature at the lower element). And because the modeled HPWH control logic weights 

the upper element temperature more heavily than the lower element temperature (at a ratio of 

3:1), the modeled HPWHs are more likely than the modeled ERWHs to (1) be able to provide 

a full contingency response for the full duration of claim events; and (2) to outperform the pre- 

dicted response of the TankT models (because the control temperature for HPWHs is often higher 

than the average tank temperature). On the other hand, ERWHs are much more likely to cycle 

due to low temperature at the lower element (which is weighted heavily by the ERWH controls 

and is often less than the average tank temperature). Practically, these differences resulted in 

different surrogate modeling assumptions for the two different water heater types–"TankT" as- 

sumptions for ERWHs to capture their limited ability to shed load due to lower storage volumes 

and lower control temperatures, and "Simple" assumptions for HPWHs to represent that they 

were generally able to take advantage of higher storage volumes and higher control temperatures 

to ride through almost all claim events. These different assumptions resulted in better matches 

between the contingency responses simulated with EnergyPlus and our surrogate models, but 

this result is likely dependent on specific equipment configurations and control logic. That is, 

"TankT" for ERWHs and "Simple" for HPWHs is likely more a reflection of the specific ERWH 

and HPWH systems modeled in this study rather than a general description of HPWH technology 

versus ERWH technology. The fact that storage volume and implemented control logic varies sig- 

nificantly across the stock of real-world water heaters indicates that demand flexibility potential 

(and corresponding model representation) will be device-dependent and cannot be generalized by 

technology type. 
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We estimated contingency reserve resource by aggregating individual water heater surrogate flex- 

ibility models and then simulating a contingency response for each hour of the year. This method 

is much less computationally intensive and more transferable to different types of contingency 

response than is directly simulating all possible contingency events in EnergyPlus with ResStock. 

As part of validating our surrogate models and aggregation methods, we demonstrated that we 

can compute aggregate models that bound the actual responses observed from directly dispatch- 

ing individual water heaters with EnergyPlus for a few example events. The naïve aggregation 

method of simply summing up individual bounds to construct aggregated bounds forms an "outer 

approximation" that strictly overestimates actual flexibility. The provably dispatchable "inner ap- 

proximations," on the other hand, are conservative in that individually dispatching water heaters 

with full information can provide a much larger response than simply dispatching the "inner ap- 

proximation" aggregate. Given the aforementioned differences in simulated behavior between 

the ERWHs and the HPWHs, using an inner, as opposed to an outer, approximation for the ER- 

WHs was very important (so as not to overstate the actual amount of resource), but was less so 

for the HPWHs because they tended not to be energy-limited (due to higher storage volume and 

higher control temperatures) when providing 30 minute responses for ISO-NE Claim30 events or 

50 minute responses for ISO-NE Claim10 events. Relatedly, ERWH resource was significantly 

attenuated by the aggregation process which made it so that HPWHs were sometimes estimated 

to be able to provide more contingency resource than ERWHs even though their baseline load 

is 60% smaller. For example, we estimated ERWH Claim10 resource to be 334 GW-h/yr to 488 

GW-h/yr, and HPWH Claim10 resource to be 567 GW-h/yr to 595 GW-h/yr, depending on the 

aggregation level. The amount of contingency reserve resource varied diurnally and seasonally 

for both types of water heaters. Estimated at the nodal level, the ERWH resource interquartile 

ranges were 45 MW–69 MW for Claim10 and 65 MW–102 MW for Claim30. At the Load Re- 

gion level, the HPWH interquartile ranges were 48 MW–88 MW for Claim10 and 52 MW–90 

MW for Claim30. 

The process to produce inner approximation aggregations relies on assigning each individual re- 

source a fraction of the aggregate dispatch signal and then setting the aggregate’s bounds so that 

after the signal is partitioned out to individual devices none of the individual bounds are violated. 

This worst-case bounds construction places several practical constraints on its application that 

come to the fore when considering how to create aggregate resources for energy shifting. First, 

the disaggregation fractions need to be held constant over the response period (e.g., a whole day) 

to ensure that each individual water heater is actually returned to a known (baseline) state before 

being asked to shift energy again. Second, worst-case bound setting means that if a single indi- 

vidual resource is unable to move in a particular direction (e.g., cannot increase power or cannot 

reduce the amount of thermal energy stored in its tank), the entire aggregation will be prohib- 

ited from moving in that direction. Finally, time-varying and path-dependent parameters such as 

HPWH electricity to thermal energy conversion efficiency and maximum power consumption do 

not carry neatly through the aggregation mathematics. These limitations caused us to only look 

at direct dispatch of aggregated energy shifting resources in grid models for the case of ERWHs. 

When constructing inner (as opposed to outer) approximations we also had to group ERWHs pri- 

marily by power and energy profiles, rather than by geography, prior to aggregation to ensure that 

resources would end up with some ability to actually move energy from higher- to lower-price 

times. 
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Although our ability to investigate direct dispatch of aggregated electric water heater flexibility in 

large-scale grid models was more limited than we would have liked, we did dispatch individual 

surrogate models against day-ahead energy prices, inject the resulting load changes into real-time 

PLEXOS models of ISO-NE, and then observe the resulting changes in supply-side dispatch and 

costs. The aggregate resources we were able to include directly in the day-ahead models were 

then also run through the same real-time models to produce comparable results. In a price-taking 

sense, dispatching individual and aggregate flexibility models against PLEXOS day-ahead prices 

produced profits of about $20/WH-yr for individual HPWHs, about $38/WH-yr for individual 

ERWHs and ERWHs aggregated using an outer approximation, and up to $4/WH-yr for ERWHs 

aggregated using an inner approximation. When the supply-side response to these changes and 

the endogenous (price-making) dispatch of ERWH flexibility in the PLEXOS day-ahead mod- 

els is accounted for, the grid system cost savings ranged from $10.4/WH-yr to $15.5/WH-yr 

under Near-Term VG conditions and from $3.3/WH-yr to $18.8/WH-yr under Mid-Term VG 

conditions. Overall these energy shifting experiments showed that while outer approximations 

of aggregate ERWH shiftability do overstate flexibility, the magnitude of overestimation can 

be modest (i.e., less than 20%) and the gain of being able to include that flexibility in bulk grid 

models could be worth it because ERWHs can then influence day-ahead unit commitment and 

other longer-horizon planning decisions. In contrast, the severe conservatism of the inner approx- 

imations of aggregate ERWH flexibility make them unattractive in the energy shifting context. 

Finally, while we were not able to aggregate individual HPWH flexibility models, dispatching 

them directly against prices showed that in the energy shifting, as in the contingency, context, 

the HPWHs in this study were able to provide more value compared to ERWHs than one would 

expect simply based on the relative amounts of electricity both types of water heaters consume. 

This study provided an unprecedentedly detailed look at how electric resistance and heat pump 

water heaters could provide contingency reserve and energy shifting services in future grid sys- 

tems. Nonetheless, several areas of investigation remain and our results are subject to several 

caveats. While this study did use realistic models of future ISO-NE power systems, such models 

are known to produce less volatile prices than real-world operations, such that our estimates of 

value might be understated. We also did not capture fully detailed 5-minute grid operations with 

forecast errors, nor attempt to adjust energy-shifting and other storage dispatch at that timescale. 

Finally, more heuristic and less provably dispatchable aggregation methods, as well as aggrega- 

tion methods suitable for end-uses with significantly time-varying performance characteristics 

like HPWHs, might be able to unlock more price-making value for energy shifting and other grid 

services. 
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Appendix A. Aggregation Mathematics 

Hao et al. (2013) has demonstrated methods for creating generalized battery models that rep- 

resent aggregates of thermostatically controlled loads. Here we generalize their methods by 

accounting more explicitly for the storage characteristics of water heaters (and other DER re- 

sources) and the possibility of using these aggregation methods for longer-duration grid services 

than their context, which was frequency regulation. To do this, we start with a collection of water 

heaters (or similar DERs) with individual devices identified with indices k ∈ K and express their 

individual shiftability as: 

d ∆ Sk( t )

 

dt 

= ηk( t ) ∆ Pk( t ) − αk( t ) ∆ Sk( t )+ γk( t ) (A.1) 

∆ Sk

 

( t ) ≤ ∆ Sk( t ) ≤

 

∆ Sk( t ) (A.2) 

∆ Pk

 

( t ) ≤ ∆ Pk( t ) ≤

 

∆ Pk( t ) (A.3) 

Then we seek a similar model formulation to represent their aggregate flexibility: 

dL ( t )

 

dt 

= η ( t ) U ( t ) − α ( t ) L ( t )+ γ ( t ) (A.4) 

L

 

( t ) ≤ L ( t ) ≤

 

L ( t ) (A.5) 

U

 

( t ) ≤ U ( t ) ≤

 

U ( t ) (A.6) 

Following Hao et al. (2013), the general procedure for estimating the parameters η ( t ) , α ( t ) , γ ( t ) , 

S

 

( t ) ,

 

S ( t ) , U

 

( t ) , and

 

U ( t ) required to define the aggregate model is relatively straightforward 

in the Laplace domain, not in an exact sense, but in the sense of being able to create bounding 

models. Because we are most concerned with the flexibility realized in terms of the aggregate 

shifted energy 

∑ 

k 

wk∆ Pk( t ) , (A.7) 

where wk 

is a sample weight for individual resource k , the focus of model construction is on 

allowable shifting profiles at both the individual and aggregate levels. That is, if we define the 

sets of possible realizations at the individual level to be 

Pk 

= {∆ Pk( t ) | ∃ ∆ Sk( t ) with individual model (A.1) - (A.3) for device k ∈ K satisfied } , (A.8) 

and the possible realizations for the aggregate to be 

U ( t ) = 

{ 

∑ 

k 

wk∆ Pk( t ) 

∣∣∣∣∣∆ Pk( t ) ∈ Pk 

, ∀ k ∈ K 

} 

, (A.9) 

we can work to define pairs of generalized storage model parameters for which the resulting 

models define sets of allowable power profiles U ( t ) that are either strictly smaller or strictly 

larger than U ( t ) . 

To this end, let 

Φ = 

( 

η ( t ) , α ( t ) , γ ( t ) , L

 

( t ) ,

 

L ( t ) , U

 

( t ) ,

 

U ( t )
) 

(A.10) 
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be any realization of the aggregate storage model and 

UΦ( t ) = {U ( t ) | ∃ L ( t ) with the aggregate model (A.4) - (A.6) defined by Φ satisfied } . (A.11) 

Then we seek Φ

 

and

 

Φ such that 

UΦ

 

⊂ U ⊂ U

 

Φ 

. (A.12) 

Thus Φ

 

represents a lower-bound, inner-approximation, sufficient estimate of U ; whereas

 

Φ 

represents an upper-bound, outer-approximation, necessary estimate of U , and the size of the 

difference between them is a metric of estimate tightness. 

A.1 Aggregation of Individual Device Models in the Constant Parameters Case 

In the case of the parameters η , α , and γ in (A.1) being time-invariant, the techniques of Hao 

et al. (2013) are easily extended to this more-general context. 

Theorem 1. Outer approximation of general model with constant parameters. 

Assume ηk, αk 

and γk 

in (A.1) are time-invariant for all individual devices k ∈ K . Then with 

constants η and α arbitrarily chosen and 

γ = ∑ 

k 

wk 

η

 

ηk 

γk 

(A.13) 

the aggregate model represented by (A.4) - (A.6) with

 

L ( t ) = − L

 

( t ) = ∑ 

k 

wk 

η

 

ηk 

( 

1 + 

∣∣∣1 − 

αk

 

α 

∣∣∣ 

) 

max 

(
| ∆ Sk

 

( t ) | , |

 

∆ Sk( t ) |
) 

, (A.14) 

U

 

( t ) = ∑ 

k 

wk∆ Pk

 

( t ) ,

 

U ( t ) = ∑ 

k 

wk

 

∆ Pk( t ) , (A.15) 

defines an outer-approximation, necessary model U

 

Φ
( t ) for U ( t ) . That is,

 

Φ = 

( 

η , α ,∑ 

k 

wk 

η

 

ηk 

γk 

, L

 

( t ) ,

 

L ( t ) , U

 

( t ) ,

 

U ( t ) 

) 

, (A.16) 

with L

 

( t ) and

 

L ( t ) defined in (A.14), and U

 

( t ) and

 

U ( t ) defined in (A.15) constitutes an outer 

bound such that U ( t ) ⊂ U

 

Φ
( t ) . 

Proof of Theorem 1. First, we take the Laplace transform of (A.1) after dropping the time- 

dependence of ηk, αk, and γk: 

s ∆ Sk( s ) = ηk∆ Pk( s ) − αk∆ Sk( s )+ 

γk

 

s 

(A.17) 

and solve for ∆ Sk( s ) : 

∆ Sk( s ) = 

ηk

 

s + αk 

∆ Pc , k( s )+ 

γk

 

s ( s + αk) 

(A.18) 

We then similarly transform (A.4): 

sL ( s ) = η U ( s ) − α L ( s )+ 

γ

 

s 

, (A.19) 

72 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications



 

and solve for L ( s ) : 

L ( s ) = 

η

 

s + α
U ( s )+ 

γ

 

s ( s + α ) 

. (A.20) 

To connect these individual and aggregate models, we define 

U ( t ) = ∑ 

k 

wk∆ Pk( t ) , (A.21) 

such that 

U ( s ) = ∑ 

k 

wk∆ Pk( s ) . (A.22) 

This allows us to bring the individual models into (A.20) by first using (A.22): 

L ( s ) = 

η

 

s + α 

∑ 

k 

wk∆ Pk( s )+ 

γ

 

s ( s + α ) 

(A.23) 

and then substituting in (A.18) solved for ∆ Pc , k( s ) : 

L ( s ) = 

η

 

s + α 

∑ 

k 

wk 

(
s + αk

 

ηk 

∆ Sk( s ) − 

γk

 

s ηk 

) 

+ 

γ

 

s ( s + α ) 

. (A.24) 

Rearranging we arrive at: 

L ( s ) = ∑ 

k 

wk 

η

 

ηk 

( 

1 + 

αk 

− α

 

s + α 

) 

∆ Sk( s )+ 

1

 

s ( s + α ) 

( 

γ

 

| K | 

− wk 

η

 

ηk 

γk 

) 

. (A.25) 

The upper-bound, necessary estimate

 

Φ is constructed by specifying energy, charging, and dis- 

charging capacities that envelop all possible realizations of the individual devices’ shiftability. 

Thus we construct upper and lower bounds on charging capacity: 

U

 

( t ) = ∑ 

k 

wk∆ Pk

 

( t ) ≤ U ( t ) ≤ ∑ 

k 

wk

 

∆ Pk( t ) =

 

U ( t ) . (A.26) 

To bound energy capacity, we first specify a value for η and then define γ as 

γ = ∑ 

k 

wk 

η

 

ηk 

γk 

(A.27) 

so that the final term of (A.25) drops out. We then let 

Hk( s ) = wk 

η

 

ηk 

( 

1 + 

αk 

− α

 

s + α 

) 

. (A.28) 

Then because 

L ( s ) = ∑ 

k 

Hk( s ) ∆ Sk( s ) , (A.29) 

we know that 

L ( t ) = ∑ 

k 

Hk( t ) ~ ∆ Sk( t ) , (A.30) 
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where ~ indicates the convolution operator. By the triangle inequality (first ≤ ) and Young’s 

convolution inequality (second ≤ ) we can bound the aggregate energy capacity as in: 

‖L ( t )‖r 

≤ ∑ 

k 

‖Hk( t ) ~ ∆ Sk( t )‖r 

≤ ∑ 

k 

‖Hk( t )‖p 

‖∆ Sk( t )‖q 

, (A.31) 

where 

1

 

p 

+ 

1

 

q 

= 

1

 

r 

+ 1 . (A.32) 

Inverting Hk( s ) we have 

Hk( t ) = wk 

η

 

ηk 

( 

δ ( t )+( αk 

− α ) e− α t 

) 

(A.33) 

where δ ( t ) is the Dirac delta function. Then letting p = 1, q = r = ∞ we can compute 

‖Hk( t )‖1 

= 

∫ 

∞ 

0 

∣∣∣∣wk 

η

 

ηk 

( 

δ ( t )+( αk 

− α ) e− α t 

)∣∣∣∣dt (A.34) 

= wk 

η

 

ηk 

( 

1 + | αk 

− α | 

∫ 

∞ 

0 

e− α tdt 

) 

(A.35) 

= wk 

η

 

ηk 

( 

1 + 

| αk 

− α |

 

α 

) 

(A.36) 

and specify 

‖L ( t )‖
∞ 

≤

 

L ( t ) = − L

 

( t ) = ∑ 

k 

wk 

η

 

ηk 

( 

1 + 

∣∣∣1 − 

αk

 

α 

∣∣∣ 

) 

max 

(
| ∆ Sk

 

( t ) | , |

 

∆ Sk( t ) |
) 

(A.37) 

as an outer-bound on energy capacity.

 

Theorem 2. Inner approximations of general model with constant parameters. 

Choose a βk 

for each k ∈ K such that 0 ≤ wk 

βk 

≤ 1 and ∑k wk 

βk 

= 1 . Then with 

η = ∑ 

k 

wk 

βk 

ηk 

and ∆ Pk( t ) = βkU ( t ) , (A.38) 

we see that 

U ( t ) = ∑ 

k 

wk∆ Pk( t ) (A.39) 

and we can show that UΦ

 

( t ) ⊂ U ( t ) , where U ( t ) is defined by (A.9) and 

Φ

 

= 

( 

∑ 

k 

wk 

βk 

ηk 

, α , γ , −

 

L ( t ) ,

 

L ( t ) , max 

k 

∆ Pk

 

( t )

 

βk 

, min 

k

 

∆ Pk( t )

 

βk 

) 

, (A.40) 

where α and γ are arbitrarily chosen and

 

L ( t ) ≤ 

αk

 

αk + | α − αk 

| 

η

 

βk 

ηk 

min 

(
∆ γk

 

αk 

(
1 − e− αkt 

) 

− ∆ Sk

 

( t ) ,

 

∆ Sk( t ) − 

∆ γk

 

αk 

(
1 − e− αkt 

)) 

∀ k ∈ K , 

(A.41) 

with 

∆ γk 

= γk 

− 

βk 

ηk

 

η 

γ . (A.42) 
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Proof of Theorem 2. Taking the Laplace transform of the expression for ∆ Pk 

in (A.38) and substi- 

tuting into (A.18) yields 

∆ Sk( s ) = ηk 

βk

 

s + αk
U ( s )+ 

γk

 

s ( s + αk) 

. (A.43) 

Rearranging (A.20) to solve for U ( s ) and substituting in yields 

∆ Sk( s ) = βk 

ηk

 

η 

( 

1 + 

α − αk

 

s + αk 

) 

L ( s )+ 

1

 

s ( s + αk) 

( 

γk 

− βk 

ηk

 

η 

γ 

) 

. (A.44) 

Now let 

Gk( s ) = 1 + 

α − αk

 

s + αk 

and ∆ γk 

= γk 

− 

βk 

ηk

 

η 

γ (A.45) 

and apply the inverse Laplace transform: 

∆ Sk( t ) = βk 

ηk

 

η 

Gk( t ) ~ L ( t )+ 

∆ γk

 

αk 

(
1 − e− αkt 

) 

. (A.46) 

Using Young’s convolution inequality and the derivation of Hk( t ) in the proof of Theorem 1 we 

have 

‖Gk( t ) ~ L ( t )‖
∞ 

≤ ‖Gk( t )‖1 

‖L ( t )‖
∞ 

(A.47) 

= 

( 

1 + 

| α − αk 

|

 

αk 

) 

‖L ( t )‖
∞ 

. (A.48) 

Then to ensure that (A.2) is always satisfied we set 

‖L ( t )‖
∞ 

≤ 

αk

 

αk + | α − αk 

| 

η

 

βk 

ηk 

min 

(
∆ γk

 

αk 

(
1 − e− αkt 

) 

− ∆ Sk

 

( t ) ,

 

∆ Sk( t ) − 

∆ γk

 

αk 

(
1 − e− αkt 

)) 

∀ k ∈ K 

(A.49) 

and similarly require 

Uc

 

( t ) ≥ 

∆ Pk

 

( t )

 

βk 

and

 

Uc( t ) ≤

 

∆ Pk( t )

 

βk 

∀ k ∈ K (A.50) 

to satisfy (A.3).

 

A.2 Electric Water Heaters 

Electric resistance water heaters can be assumed to have constant η and α parameters, and a zero 

γ term as long as the baseline temperature set-point T̃ is constant.11 HPWHs are problematic on 

two counts. First, η and

 

P vary with ambient (air surrounding the water heater) temperatures. 

This issue is mitigated if the water heater is located in a conditioned space with constant (or 

at least not widely-varying) temperature set-point. Second, η and

 

P also vary with tank tem- 

perature. This is perhaps more problematic as flexible operation necessitates allowing the tank 

temperature to float over a wider range; but is mitigated if the range is limited. In what follows, 

we nevertheless treat η as a constant. What this means in practice in the body of the report is that 

we only apply aggregation methods to HPWHs for contingency service, and in that case we use

 

11Assuming a constant α also involves ignoring the dependence of water thermal capacitance on temperature. 
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hourly data and assume η and

 

P are at the levels indicated by the baseline portfolio in each hour. 

In what follows, we also assume the bounds on acceptable tank temperatures, T

 

≤ T ( t ) ≤

 

T are 

constant. 

Under these simplifying assumptions, the shiftability of individual water heaters can be written 

as: 

d ∆ Sk( t )

 

dt 

= ηk∆ Pk( t ) − αk∆ Sk( t ) (A.51) 

ck 

( 

T

 

k 

− T̃k 

) 

≤ ∆ Sk( t ) ≤ ck 

(

 

T k 

− T̃k 

) 

(A.52) 

− P̃k( t ) ≤ ∆ Pk( t ) ≤

 

Pk 

− P̃k( t ) , (A.53) 

where αk 

= 1 / rc . Thus, the parameters ηk 

and αk 

in (A.51) are constant as are the bounds on 

∆ Sk( t ) , but the bounds on ∆ Pk( t ) are time-varying, as they depend on time-varying baseline 

operations.12 

This model structure leads us to construct aggregate models of shiftability of the form: 

dL ( t )

 

dt 

= η U ( t ) − α L ( t ) (A.54) 

L

 

≤ L ( t ) ≤

 

L (A.55) 

U

 

( t ) ≤ U ( t ) ≤

 

U ( t ) (A.56) 

Lemma 1. Outer approximation of aggregated electric water heaters. 

Assume ηk 

and αk 

in (A.51) are time-invariant for all individual devices k ∈ K . Then with con- 

stants η and α arbitrarily chosen the aggregate model represented by (A.54) - (A.56) with

 

L ( t ) = − L

 

( t ) = ∑ 

k 

wk 

η

 

ηk 

( 

1 + 

∣∣∣1 − 

αk

 

α 

∣∣∣ 

) 

max 

( 

ck 

∣∣∣T

 

k 

− T̃k 

∣∣∣ 

, ck 

∣∣∣

 

T k 

− T̃k 

∣∣∣ 

) 

, (A.57) 

U

 

( t ) = −∑ 

k 

wk 

P̃k( t ) ,

 

U ( t ) = ∑ 

k 

wk 

(

 

Pk 

− P̃k( t ) 

) 

(A.58) 

defines an outer-approximation, necessary model U

 

Φ
( t ) for U ( t ) as it is expressed in (A.9). That 

is, U ( t ) ⊂ U

 

ΦWH
( t ) , where

 

ΦWH 

= 

( 

η , α , 0 , L

 

( t ) ,

 

L ( t ) , U

 

( t ) ,

 

U ( t )
) 

, (A.59) 

with L

 

( t ) and

 

L ( t ) defined in (A.57), and U

 

( t ) and

 

U ( t ) defined in (A.58). 

Proof of Lemma 1. Lemma 1 is a simplification of Theorem 1.

 

12This representation therefore represents the Simple form of the surrogate model. In the TankT form of the 

surrogate model T̃k( t ) is the time-varying baseline tank temperature from EnergyPlus. Because making the bounds 

on ∆ Sk( t ) time-varying does not fundamentally change the mathematics that follow, we continue to use the Simple 

model in this section. 
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Lemma 2. Inner approximations of aggregated electric water heaters. 

Choose a βk 

for each k ∈ K such that 0 ≤ wk 

βk 

≤ 1 and ∑k wk 

βk 

= 1 . Then with 

∆ Pk( t ) = βkU ( t ) (A.60) 

we can show that UΦ

 

HW( t ) ⊂ U ( t ) , where U ( t ) is defined by (A.9) and 

Φ

 

HW 

= 

( 

η , α , 0 , −

 

L ( t ) ,

 

L ( t ) , max 

k 

− P̃k( t )

 

βk 

, min 

k

 

Pk 

− P̃k( t )

 

βk 

) 

, (A.61) 

where η and α are arbitrarily chosen and

 

L ( t ) ≤ 

αk

 

αk + | α − αk 

| 

η

 

ηk 

min 

 ck 

∣∣∣T

 

k 

− T̃k 

∣∣∣

 

βk 

, 

ck 

∣∣∣

 

T k 

− T̃k 

∣∣∣

 

βk 

  ∀ k ∈ K . (A.62) 

Proof of Lemma 2. Lemma 2 is a simplification of Theorem 2.

 

In the following lemma, we show how the βk 

for each water heater can be be chosen optimally 

to satisfy a desired balance between energy and power capacity. The version shown here only 

optimizes the ability to reduce load and amount of stored thermal energy. Although the lemma 

and proof are easily extended to also incorporate an objective function term for ability to increase 

load, in practice we have found this to be unimportant. Ability to increase load is not in play at 

all for providing a load shedding contingency service. For shifting load, we found the ability to 

increase load to be relatively abundant as compared to reducing load. For example, our aggregate 

ERWH shifting resources performed slightly better if we grouped resources based only on ∆ S

 

( t ) 

and ∆ P

 

( t ) profiles; including

 

∆ S ( t ) and

 

∆ P ( t ) profiles as well yielded results that were mostly 

unchanged but slightly less effective in terms of amount of load shifted and price-taking profits. 

Lemma 3. Optimal inner approximations of aggregated electric water heaters. Building on the 

setting in Lemma 2, the βk 

that maximize 

w

 

L +( 1 − w ) |U

 

| (A.63) 

with

 

L defined in (A.62), and |U

 

|= − U

 

defined as in (A.61), are equal to 

βk 

= 

φk

 

∑k wk 

φk 

, φk 

= w 

η

 

ηk 

αkck

 

αk + | α − αk 

| 

min 

( 

T̃k 

− Tk

 

,

 

Tk 

− T̃k 

) 

+( 1 − w ) P̃k( t ) . (A.64) 

Proof of Lemma 3. We seek to solve 

max 

βk 

,

 

L , U

 

w

 

L +( 1 − w ) η | U

 

| (A.65) 

s.t. βk

 

L ≤ 

η

 

ηk 

αkck

 

αk + | α − αk 

| 

min 

( 

T̃k 

− T

 

k 

,

 

T k 

− T̃k 

) 

∀ k ∈ K (A.66) 

βk 

| U

 

| ≤ P̃k( t ) ∀ k ∈ K (A.67) 

0 ≤ wk 

βk 

≤ 1 ∀ k ∈ K (A.68) 

∑ 

k 

wk 

βk 

= 1 (A.69) 
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Using (A.66) - (A.67) we can write for each k ∈ K : 

βk 

(
w

 

L +( 1 − w ) η | Uc

 

|
) 

≤ η 

( 

w
ck

 

ηk 

αk

 

αk + | α − αk 

| 

min 

( 

T̃k 

− T

 

k 

,

 

T k 

− T̃k 

) 

+( 1 − w ) P̃k( t ) 

) 

. 

(A.70) 

Then defining 

ψ = 

1

 

w

 

L +( 1 − w ) η | U

 

| 

(A.71) 

and 

φk 

= w
ck

 

ηk 

αk

 

αk + | α − αk 

| 

min 

( 

T̃k 

− T

 

k 

,

 

T k 

− T̃k 

) 

+( 1 − w ) P̃k( t ) (A.72) 

we have 

βk 

≤ η φk 

ψ (A.73) 

1 = ∑ 

k 

wk 

βk 

≤ ψ η ∑ 

k 

wk 

φk 

. (A.74) 

Noting that minimizing ψ is equivalent to maximizing our objective (A.65), we see that (A.74) 

implies 

ψ ≥ 

1

 

η ∑k wk 

φk 

, (A.75) 

such that the optimal ψ 

∗ is 

ψ 

∗ = 

1

 

η ∑k wk 

φk 

. (A.76) 

Changing (A.73) to an equality and thereby defining 

β 

∗ 

k 

= η φk 

ψ 

∗ = 

φk

 

∑k wk 

φk 

∀ k ∈ K (A.77) 

is then seen to yield the optimal values for βk 

since one can verify that ∑k wk 

β 

∗ 

k 

= 1 and substitut- 

ing the β 

∗ 

k 

’s into (A.61) yields

 

L , | Uc

 

| , and

 

Uc 

values that satisfy (A.66) - (A.67).

 

Between Lemmas 2 and 3 we see some difficulties arising because of the time-varying nature 

of water heater use. If we construct inner approximation aggregate models using constant βk 

values, then there may be times when we cannot increase or decrease load based on P̃k( t ) = 0 or 

P̃k( t ) =

 

Pk 

for some k ∈ K . One way to avoid such issues is to estimate baseline power draw P̃k 

over a coarse time frame t ∈ [ t

 

,

 

t ] , treat the aggregation problem within that window as non-time- 

varying, and then to ensure that L (

 

t ) = 0. It might also be reasonable to estimate time-varying 

aggregate model parameters based on the time-varying βk( t ) suggested by Lemma 3. However, 

additional conditions would almost certainly be needed to ensure that such an aggregate model 

was truly an inner approximation of the aggregate flexibility in the sense of an allowable aggre- 

gate dispatch not resulting in out-of-bounds operation of any of the individual devices. 

In this study we take the former approach to ensure feasible dispatch. For contingency service, 

this means that we use different βk 

for each hour and do not track what happens in the rebound 

period after the event. For shifting service we estimate constant βk 

for an entire day and ensure 

that L ( t ) is brought back to zero at the switchover time (midnight of each day). In both cases, we 
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apply tolerances to screen out any resources who cannot provide a sufficiently large individual 

response (and would therefore set overly restrictive bounds for the aggregate as a whole). For the 

shifting service we also cluster water heaters with similar profiles prior to aggregating since over 

an entire day it is not possible to escape, e.g., times when at least some water heaters are simply 

not on and thus are unable to reduce load. 
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