



## MATBOX, an Open-Source Microstructure Analysis Toolbox for Meshing, Generation, Segmentation, and Characterization of 3D Heterogenous Volumes

F. L. E. Usseglio-Viretta<sup>a</sup>, P. Patel<sup>a</sup>, E. Bernhardt<sup>a</sup>, J. Allen<sup>a</sup>, and K. Smith<sup>a</sup>

<sup>a</sup> National Renewable Energy Laboratory

InterPore2021 Online, 13<sup>th</sup> Annual Meeting, 31 May – 4 June 2021

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

## Resources

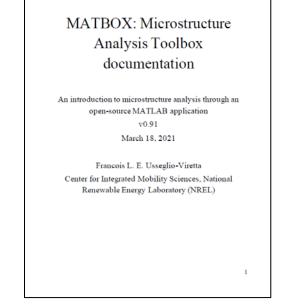
**Journal article:** F. L. E. Usseglio-Viretta et al., *MATBOX: An Open-source Microstructure Analysis Toolbox for microstructure generation, segmentation, characterization, visualization, correlation, and meshing,* SoftwareX, submitted

Software repository and documentation: https://github.com/NREL/MATBOX\_Microstructure\_analysis\_toolbox\_

**Requirements:** MATLAB 2020a + Image Processing toolbox

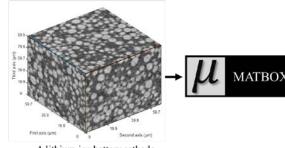
Current version: v1.0 - May 2020

License: BSD license. NREL Software Record number SWR-20-76


**Third-party algorithms/software:** *TauFactor*<sup>1</sup> (UCL, S. Cooper), *Iso2mesh*<sup>2</sup> (Northeastern Univ., Q. Fang), *additive generation*<sup>3</sup> (Purdue University, A. Mistry, P. P. Mukherjee)

+ other codes from MATLAB file exchange (full list in documentation)

<sup>1</sup> S.J. Cooper et al., Softwarex. 5 (2016) 203–210, <u>https://doi.org/10.1016/j.softx.2016.09.002</u>.


<sup>2</sup> Q. Fang et al., IEEE (2009) 1142–1145, <u>https://doi.org/10.1109/isbi.2009.5193259</u>.

<sup>3</sup> A. Mistry et al., ACS Applied Materials & Interfaces. (2018), <u>https://doi.org/10.1021/acsami.7b17771</u>.



Exhaustive documentation (~190 pages)

MATBOX is a MATLAB application for performing various microstructure-related tasks including microstructure numerical generation, image filtering and microstructure segmentation, microstructure characterization, three-dimensional visualization, result correlation, and microstructure meshing. MATBOX was originally developed to analyze electrode microstructures for lithium-ion batteries; however, the algorithms provided by the toolbox are widely applicable to other heterogeneous materials.



A lithium-ion battery cathode 3D volume obtained from nanoscale imaging (computed tomography or FIB-SEM)

#### Application 1:

<u>Macro</u>structure scale battery modeling. MATBOX calculates microstructure parameters (particle size, effective diffusion coefficient, etc.) useful for battery macroscale models such as Pseudo-2D.

#### Application 2:

 <u>Microstructure scale battery modeling</u>. MATBOX produces meshes of full cells useful for battery microscale model (direct numerical simulation).

+ generation module allows you to investigate large design space for both applications, for optimization or microstructure-parameter sensitivity calculations.

## \* F. Usseglio\*viretta et al., JES. (2020), <u>https://doi.org/10.1149/1945-7111/ab913b</u> \* F. Usseglio-Viretta et al., JES. 165 (2018), <u>https://doi.org/10.1149/2.0731814jes</u> \* F. Usseglio-Viretta et al., ECS Transactions. 77 (2017), <u>https://doi.org/10.1149/07711.1095ecst</u>

\*\* J. Allen et al., J Sci Comput. 86 (2021), https://doi.org/10.1007/s10915-021-01410-5

\*\*\* ANL, INL, NREL, SLAC, LBNL, XCEL, extreme fast charge cell evaluation of Lithium-ion batteries, 2019. <u>https://blogs.anl.gov/access/wpcontent/uploads/sites/53/2019/09/Q3FY19-XCEL-Report.pdf</u> (pp 10-11)

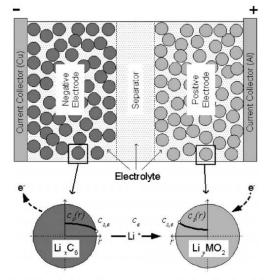
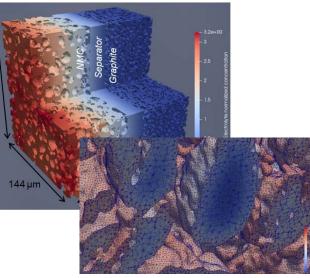
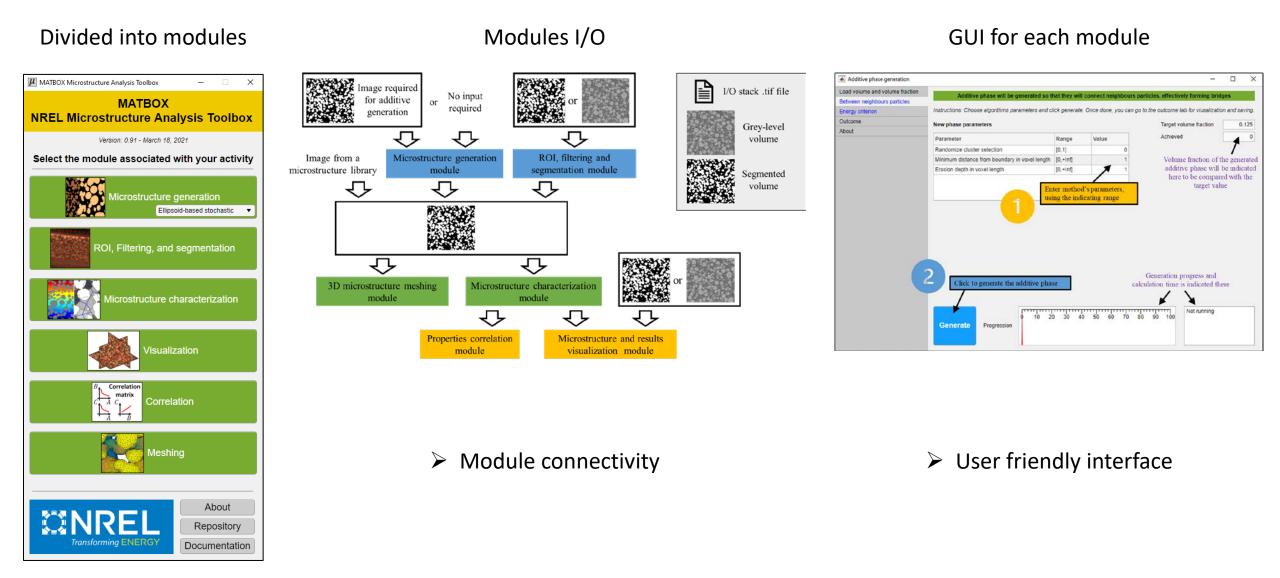
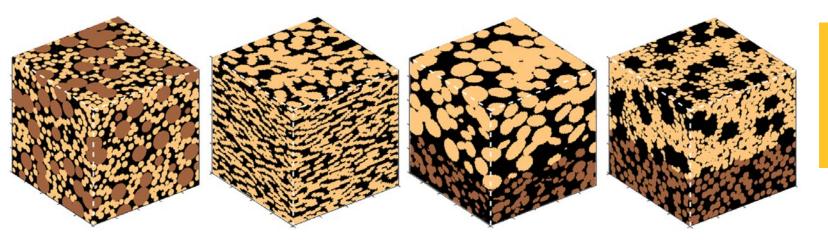




Fig. 1. Schematic of 1D (x-direction) electrochemical cell model with coupled 1D microscopic (r-direction) solid diffusion model.


Microstructure parameters for macroscale LIB model\*




Full cell meshing\*\*

Design space analysis\*\*\*

## How to use MATBOX ?



## **Microstructure generation**



Bridge approach

### In-house stochastic generation algorithm

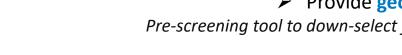
- n-phases microstructure
- Ellipsoid-based, with particle overlapping control
- Control of volume fractions, particle size, elongation and orientation distributions all along the thickness
  - Generation order control



In-house distance-based additive generation algorithm and third-party energy-based additive generation algorithm

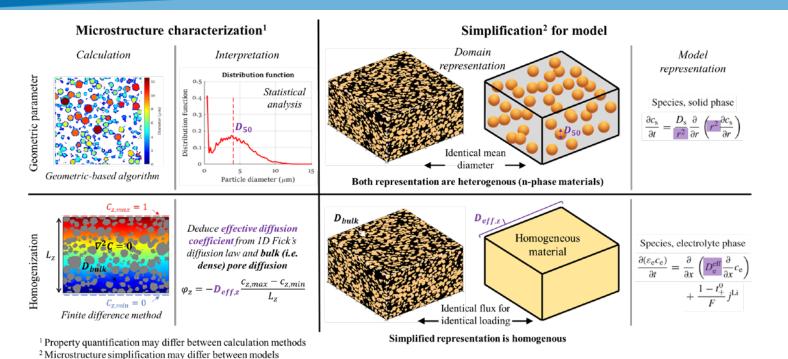
- Preferential location between neighbored particles (bridge).
- Preferential deposition toward active material (thin surface layer, w=0.001) or additive phase (dendriticlike phase, w=0.999).

### Investigate 'what if' microstructures and complement imaging limitations


Pore

Additives

Active material


- Provide effective parameters for macroscale electrochemical model
  - Provide geometries for microscale electrochemical model

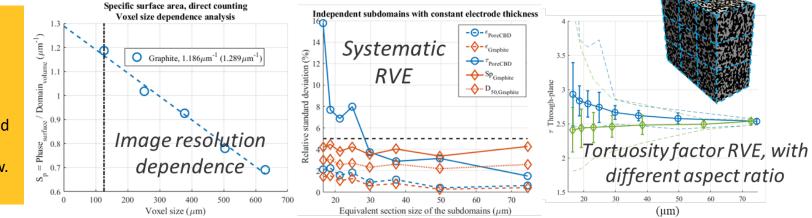
Pre-screening tool to down-select few architectures worth manufacturing/testing from large design space



Energy criterion approach

## Microstructure characterization and homogenization




# Microstructure characterization and homogenization for macroscale models

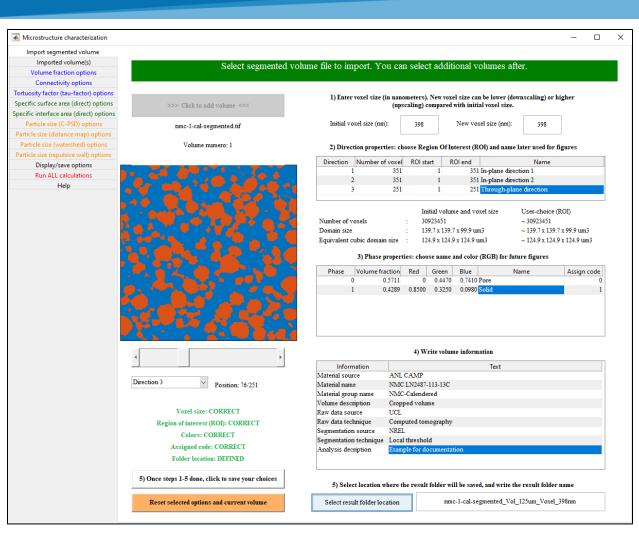
- volume fractions, connectivity (both isotropic and directional), tortuosity factor, geometric tortuosity
  - specific surface area, particle size, particle identification and morphology.





- Automated voxel size dependence analysis (evaluate microstructure parameter error induced by limited image resolution)
- Automated representative volume element (RVE) analysis (evaluate microstructure parameter error induced by limited field of view) → hundreds of calculations automated
- batch calculations to characterize multiple volumes in a row.
  - Results organized in subfolders (.png, .fig, .xlsx)




## Microstructure characterization: particle analysis

X-ray Computed tomography typically provides a near fully connected active material phase.

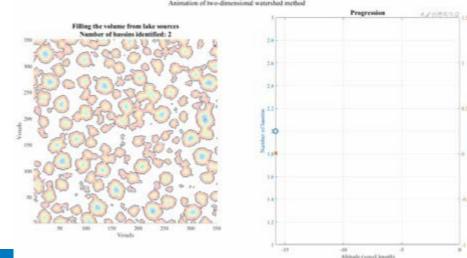
- There is not a unique definition of what is a particle in a connected cluster.
- There is a large choice of numerical methods in the literature consequently, with a wide range of diameter between methods.
- Module provides continuum particle size distribution (c-PSD), in-house Euclidean distance map fitting (EDMF), Watershed algorithm with in-house over segmentation correction, and in-house particle identification algorithm (PCRF, F. Usseglio-Viretta et al., JES. (2020), <u>https://doi.org/10.1149/1945-7111/ab913b</u>)



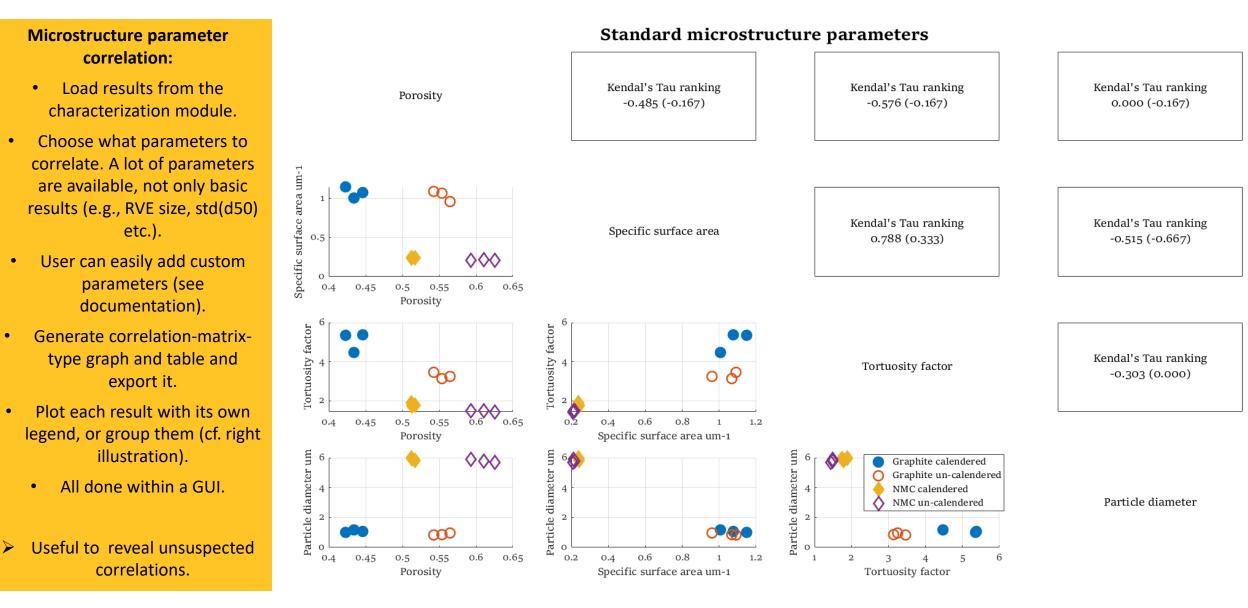
## Microstructure characterization: how to use



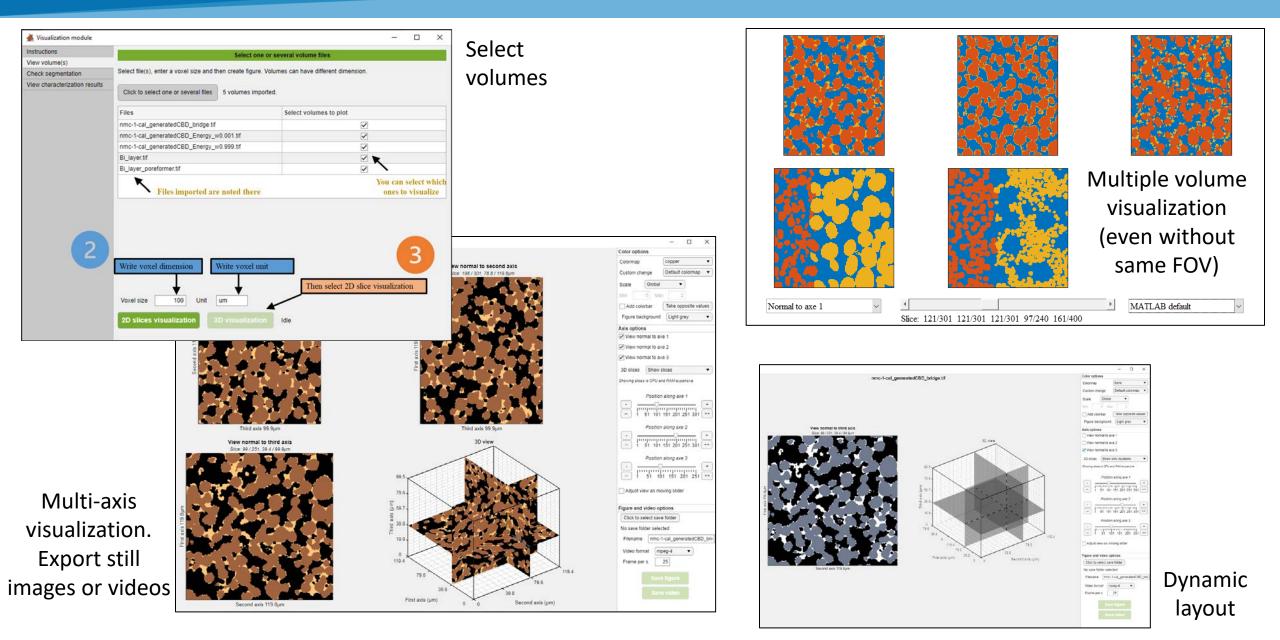
Select microstructures to analyze and properties to investigate using GUI


# Functions have two syntax: one for the GUI (no command line required), one to be used as standalone

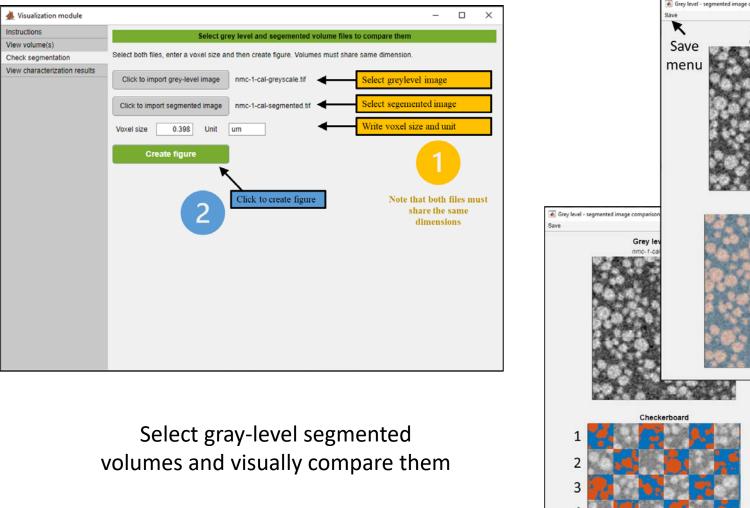
function [] = Function\_particle\_size\_CPSD(Phase\_microstructure, PROPERTY, OPTIONS, INFO)
%Calculate Particle size with a spherical assumption (C-PSD)
% Function\_particle\_size\_CPSD(array, PROPERTY, OPTIONS, INFO) - when use with the toolbox
% or
% Function particle size CPSD(array, voxelsize) - when use as a standalone function


# Look for \*\_algorithm.m for the core function (i.e., w/o any post-processing and figures). Allow you to easily modify code w/o touching the GUI.

M=function\_load\_tif('C:\Users\fussegli\Desktop\nmc-1-cal-segmented.tif'); solid\_phase\_id = 1; binary\_phase = zeros(size(M)); binary\_phase(M==solid\_phase\_id)=1; [Particle\_size] = Function\_particle\_size\_CPSD\_Algorithm(binary\_phase);

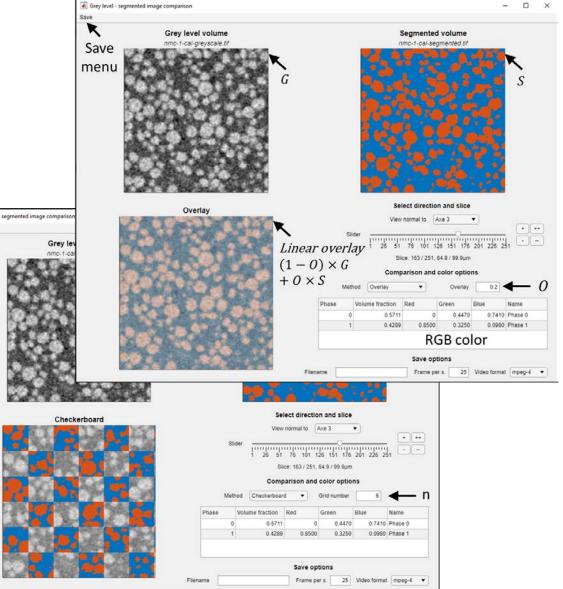

# Some complex functions have a step-by-step visualization optional arguments for education/understanding (see documentation)



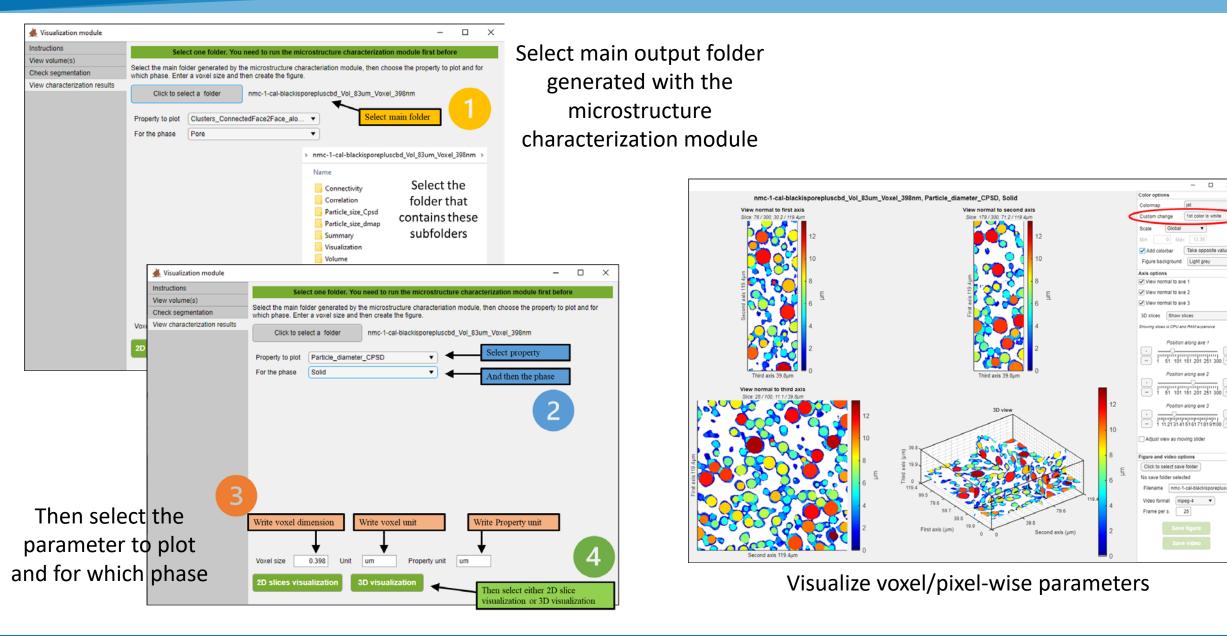

## **Microstructure correlation**



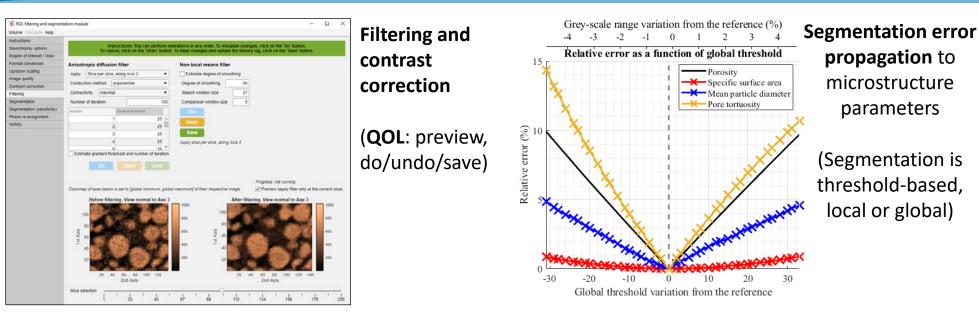
## Microstructure visualization: 1/3 simple visualization




## Microstructure visualization: 2/3 segmentation



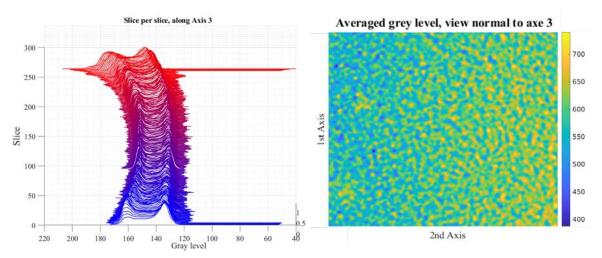

Δ


n=6



## Microstructure visualization: 3/3 microstructure results




## Microstructure filtering and segmentation

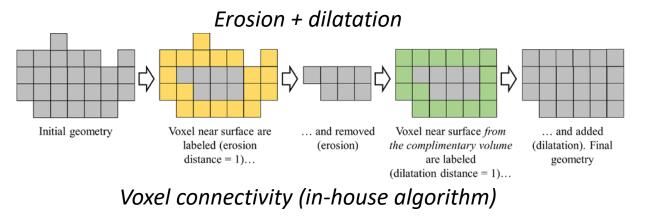


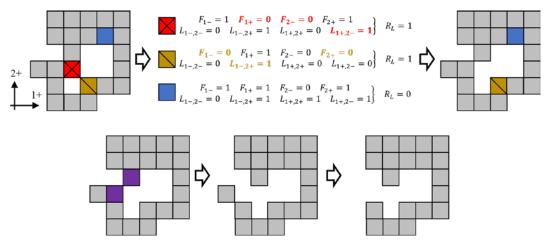
• Module uses quite simple methods.

- Focus is on user-friendliness and reproducibility
- If filtering and contrast correction followed by threshold-based segmentation is usually enough for your application the tool is relevant.

### Image quality (gray level deviation has been spotted)




**History log** (keep tracks of all changes, useful to enforce a systematic segmentation method)


| ROI, filtering and segment | tation module |                                        |                                                           |              | - | $\times$ |
|----------------------------|---------------|----------------------------------------|-----------------------------------------------------------|--------------|---|----------|
| Volume Calculate Help      |               |                                        |                                                           |              |   |          |
| Instructions               |               | Each operati                           | ons performed on the volume are recorded in the table bel | ow.          |   |          |
| Save/display options       |               | Each operati                           | ons performed on the volume are recorded in the table bei | uw.          |   |          |
| Region of Interest / View  | Step          | Operations                             | Parameters                                                | Elapsed time |   |          |
| Format conversion          | Jub           | Start date                             |                                                           | n/a          |   | _        |
| Up/down scaling            | -             |                                        | Friday, 11:32:45 -0600, May 7, 2021                       |              |   |          |
| Image quality              | -             | User name                              | fussegli                                                  | n/a          |   |          |
| Contrast correction        | -             | Computer name                          | FUSSEGLI-34154S                                           | n/a          |   |          |
| Filtering                  | -             | Operating system                       | Windows_NT                                                | n/a          |   |          |
|                            | -             | MATLAB version                         | 9.9.0.1467703 (R2020b)                                    | n/a          |   |          |
| Segmentation               | 1             | Loading file                           | C:\Users\fussegli\Desktop\Tifs\nmc-1-cal-greyscale.tif    | 0.8s         |   |          |
| Segmentation (sensitivity) | 2             | Crop volume                            | Axe 1: 25-300 Axe 2: 10-351 Axe 3: 1-200                  | 0.0s         |   | _        |
| Phase re-assignment        | 3             | Rotation volume                        | Normal to axe 3: 2.5 degrees                              | 0.6s         |   |          |
| History                    | 4             | Swap axis 1 with axis 3                | No parameters                                             | 0.3s         |   |          |
|                            | 5             | Data type conversion                   | 8-bit unsigned integer arrays                             | 0.1s         |   |          |
|                            | 6             | Burn image extreme values              | 1.00 percent of volume with higher values burnt 1.0       | 2.5s         | _ |          |
|                            | 7             | Image filtering: non local mean filter | Degree of smoothing: auto estimate, search window         | 29.0s        |   |          |

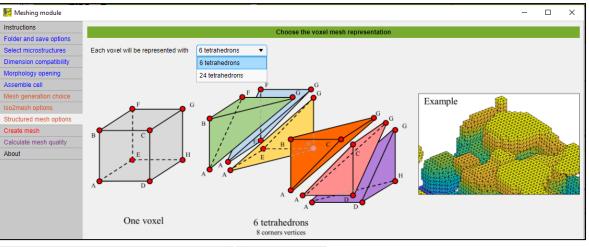
| nstructions                          | -                                                                |                                                                                                                                     |                                                                                                                                                      |                                                                                                                  |                                                                                                             |                                                                                                                                                           |                                        |                                                                            |                                                                |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |      |
|--------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------|
| Folder and save options              |                                                                  | Microstru                                                                                                                           | cture choice (                                                                                                                                       | One unique micr                                                                                                  | ostructure Of                                                                                               | R Half-cell or ful                                                                                                                                        | I-cell OR Poly                         | crystalline ar                                                             | chitecture                                                     | <ol> <li>Import segmented</li> </ol>                                                                                                                                               | volumes o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nly.                                                                       |      |
| Select microstructures               |                                                                  |                                                                                                                                     |                                                                                                                                                      |                                                                                                                  | Half                                                                                                        | ell or full cell (e                                                                                                                                       | oloct at least                         | 2 volumes)                                                                 |                                                                |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |      |
| Dimension compatibility              |                                                                  | One unique                                                                                                                          | e microstructu                                                                                                                                       | ire                                                                                                              | Half-cell or full-cell (select at least 2 volumes) CC Left electrode Separator Right electrode CC           |                                                                                                                                                           |                                        |                                                                            | Polycrystalline architecture                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |      |
| Morphology opening                   |                                                                  |                                                                                                                                     |                                                                                                                                                      |                                                                                                                  | CO Cen                                                                                                      | electione . Oet                                                                                                                                           | Anacon rugi                            | Leiecuode C                                                                |                                                                |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |      |
| Assemble cell                        | Import .tif                                                      |                                                                                                                                     |                                                                                                                                                      | Choose domain 🔹                                                                                                  |                                                                                                             |                                                                                                                                                           |                                        | included at                                                                |                                                                |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |      |
| Mesh generation choice               |                                                                  |                                                                                                                                     |                                                                                                                                                      | Import til or                                                                                                    |                                                                                                             | Homogenous medium                                                                                                                                         |                                        |                                                                            | Import_tif                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |      |
| so2mesh options                      |                                                                  |                                                                                                                                     |                                                                                                                                                      |                                                                                                                  |                                                                                                             | 1892                                                                                                                                                      | - Sumpervision Service                 |                                                                            | ~~                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |      |
| Structured mesh options              |                                                                  |                                                                                                                                     |                                                                                                                                                      |                                                                                                                  |                                                                                                             |                                                                                                                                                           |                                        |                                                                            |                                                                | Import full cel                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | per mate                                                                   | riai |
| Create mesh                          | C:\Users\                                                        | ranc\Documer                                                                                                                        | ts\GitHub\MA1                                                                                                                                        | BOX_Microstruct                                                                                                  | ture_analysis_t                                                                                             | oolbox\Data_exa                                                                                                                                           | ample\From co                          | mputed tomog                                                               | raphy\nmc                                                      | -1-cal-blackisporeplu                                                                                                                                                              | scod.tif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |      |
| Calculate mesh quality               | Volume fr                                                        | actions                                                                                                                             |                                                                                                                                                      |                                                                                                                  | 1) Select                                                                                                   | t the region of in                                                                                                                                        | nterest (ROI).                         | Lengths are e                                                              | xpressed                                                       | in number of voxels                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |      |
|                                      |                                                                  |                                                                                                                                     |                                                                                                                                                      |                                                                                                                  |                                                                                                             | Length (before                                                                                                                                            | e) Sta                                 | art                                                                        | E                                                              | nd                                                                                                                                                                                 | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (after)                                                                    |      |
| About                                | Id                                                               | Initial                                                                                                                             | ROI                                                                                                                                                  | Voxel size                                                                                                       | Axis                                                                                                        | renthenthenout                                                                                                                                            |                                        |                                                                            |                                                                |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |      |
| About                                | Id 0                                                             |                                                                                                                                     |                                                                                                                                                      |                                                                                                                  | Axis<br>1                                                                                                   | rentheriterent                                                                                                                                            | 600                                    |                                                                            | 1                                                              | 2                                                                                                                                                                                  | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            | 200  |
| About                                |                                                                  |                                                                                                                                     | 0.4870                                                                                                                                               | 0.5072                                                                                                           | Axis 1                                                                                                      | congui (ocion                                                                                                                                             | 600<br>604                             |                                                                            | 1                                                              |                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            | 200  |
| You can see in the impact of ROI and | 0<br>1.0000<br>nis table                                         | 0.5072                                                                                                                              | 0.4870                                                                                                                                               | 0.5072                                                                                                           | 1<br>2<br>3<br>2) Set or                                                                                    | ientation so tha                                                                                                                                          | 604<br>320<br>at for half-cell         | BAILTUNINESS                                                               | 1<br>1<br>1<br>e thicknes                                      | 2                                                                                                                                                                                  | 00<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | he first <mark>a</mark> xis                                                | 200  |
| You can see in th                    | 0<br>1.0000<br>his table<br>d scaling<br>Selec<br>need           | 0.5072<br>0.4928<br>t ROI, then<br>ed (the first :                                                                                  | 0.4870<br>0.5130<br>swap and/or                                                                                                                      | 0.5072<br>0.4928<br>flip axis if<br>the through-                                                                 | 1<br>2) Set or<br>Orienta<br>Through<br>In-plane                                                            | ientation so tha<br>tion<br>1-plane direction<br>e direction 1                                                                                            | 604<br>320                             | Length<br>3 1<br>2 2                                                       | 13 Rov                                                         | 2<br>1<br>ss (through-plane di<br>ws 1-2 (un-swaped)<br>ows 1-3 (swaped)                                                                                                           | Row 1 (u<br>Row 2 (u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in-flipped)                                                                | 200  |
| You can see in the impact of ROI and | 0<br>1.0000<br>his table<br>d scaling<br>Selec<br>need           | 0.5072<br>0.4928<br>t ROI, then<br>ed (the first :                                                                                  | 0.4870<br>0.5130<br>swap and/or<br>axis must be                                                                                                      | 0.5072<br>0.4928<br>flip axis if<br>the through-                                                                 | 1<br>2) Set or<br>Orienta<br>Throug!<br>In-plane                                                            | tientation so that<br>tion<br>-plane direction<br>direction 1<br>direction 2                                                                              | 604<br>320<br>at for half-cell<br>Axis | Length<br>3 1<br>2 2<br>1 2                                                | 13 Rov<br>00 Rov<br>00 Rov                                     | 2<br>1<br>ss (through-plane di<br>ws 1-2 (un-swaped)<br>ows 1-3 (swaped)<br>ws 2-3 (un-swaped)                                                                                     | 00<br>13<br>Row 1 (u<br>Row 2 (u<br>Row 3 (u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in-flipped)<br>in-flipped)<br>in-flipped)                                  | 200  |
| You can see in the impact of ROI and | 0<br>1.0000<br>his table<br>d scaling<br>Selec<br>need           | 0.5072<br>0.4928<br>t ROI, then<br>ed (the first :                                                                                  | 0.4870<br>0.5130<br>swap and/or<br>axis must be                                                                                                      | 0.5072<br>0.4928<br>flip axis if<br>the through-                                                                 | 1<br>2) Set or<br>Orienta<br>Throug!<br>In-plane                                                            | tientation so that<br>tion<br>-plane direction<br>direction 1<br>direction 2                                                                              | 604<br>320<br>at for half-cell<br>Axis | Length<br>3 1<br>2 2<br>1 2                                                | 13 Rov<br>00 Rov<br>00 Rov                                     | 2<br>1<br>ss (through-plane di<br>ws 1-2 (un-swaped)<br>ows 1-3 (swaped)<br>ws 2-3 (un-swaped)<br>o that each tif share                                                            | 00<br>13<br>Row 1 (u<br>Row 2 (u<br>Row 3 (u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in-flipped)<br>in-flipped)<br>in-flipped)                                  | 200  |
| You can see in the impact of ROI and | 0<br>1.0000<br>his table<br>d scaling<br>Selec<br>neede<br>plane | 0.5072<br>0.4928<br>c t ROI, then<br>ed (the first a<br>direction, i.                                                               | 0.4870<br>0.5130<br>swap and/or<br>axis must be<br>e., along cel                                                                                     | 0.5072<br>0.4928<br>flip axis if<br>the through-<br>l thickness)                                                 | 1<br>2) Set or<br>Orienta<br>Throug!<br>In-plane                                                            | ientation so that<br>tion<br>-plane direction<br>direction 1<br>direction 2<br>up/down scalin                                                             | 604<br>320<br>at for half-cell<br>Axis | Length<br>3 1<br>2 2<br>1 2<br>cell, you must                              | 13 Rov<br>00 Rov<br>00 Rov                                     | 2<br>1<br>ss (through-plane di<br>ws 1-2 (un-swaped)<br>ows 1-3 (swaped)<br>ws 2-3 (un-swaped)                                                                                     | 00<br>13<br>Row 1 (u<br>Row 2 (u<br>Row 3 (u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in-flipped)<br>in-flipped)<br>in-flipped)                                  | 200  |
| You can see in the impact of ROI and | 0<br>1.0000<br>his table<br>d scaling<br>Selec<br>neede<br>plane | 0.5072<br>0.4928<br>t ROI, then<br>ed (the first a<br>direction, i.                                                                 | 0.4870<br>0.5130<br>swap and/or<br>axis must be<br>e., along cel                                                                                     | 0.5072<br>0.4928<br>flip axis if<br>the through-<br>l thickness)                                                 | 2) Set or<br>Orienta<br>Through<br>In-plane<br>3) Apply<br>Orienta                                          | ientation so that<br>tion<br>-plane direction<br>direction 1<br>direction 2<br>up/down scalin                                                             | 604<br>320<br>at for half-cell<br>Axis | Length<br>3 1<br>2 2<br>1 2<br>cell, you must                              | 13 Rov<br>00 Rov<br>00 Rov                                     | 2<br>1<br>ss (through-plane div<br>ws 1-2 (un-swaped)<br>ows 1-3 (swaped)<br>o that each tif share<br>Scaling fector                                                               | 00<br>13<br>Row 1 (c<br>Row 2 (c<br>Row 3 (c<br>Row 3 (c<br>the same v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in-flipped)<br>in-flipped)<br>in-flipped)<br>oxel size                     | 200  |
| You can see in the impact of ROI and | 0<br>1.0000<br>his table<br>d scaling<br>Selec<br>neede<br>plane | 0.5072<br>0.4928<br>t ROI, then<br>ed (the first i<br>e direction, i.                                                               | 0.4870<br>0.5130<br>swap and/or<br>axis must be<br>e., along cel                                                                                     | 0.5072<br>0.4928<br>flip axis if<br>the through-<br>I thickness)<br>not share the<br>aging: scale                | 2) Set or<br>Orienta<br>Through<br>In-plane<br>3) Apply<br>Oriental<br>Through                              | ientation so tha<br>tion<br>-plane direction 1<br>e direction 2<br>up/down scalin<br>tion                                                                 | 604<br>320<br>at for half-cell<br>Axis | Length 3 1 2 2 1 2 cell, you must bre) Length                              | 13 Rov<br>00 Rov<br>00 Rov<br>rescale so<br>(after)            | 2<br>1<br>ss (through-plane dii<br>ws 1-2 (un-swaped)<br>ows 1-3 (swaped)<br>ws 2-3 (un-swaped)<br>o that each tif share<br>Scaling factor<br>Voxel size (befor                    | 00<br>13<br>Row 1 (k<br>Row 2 (k<br>Row 3 (k<br>Row 3 (k<br>the same v<br>1<br>e) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in-flipped) )<br>in-flipped) )<br>in-flipped) )<br>oxel size               | 200  |
| You can see in the impact of ROI and | 0<br>1.0000<br>his table<br>d scaling<br>Selec<br>neede<br>plane | 0.5072<br>0.4923<br>t ROI, then<br>ed (the first -<br>direction, i.<br>anode and ca<br>material so                                  | 0.4870<br>0.5130<br>swap and/or<br>axis must be<br>e., along cel<br>thode may r<br>ize from ima                                                      | 0.5072<br>0.4928<br>flip axis if<br>the through-<br>l thickness)<br>not share the<br>aging: scale<br>crial share | 1<br>2) Set or<br>Orienta<br>Througi<br>In-plane<br>1n-plane<br>3) Apply<br>Oriental<br>Through<br>In-plane | ientation so that<br>tion<br>-plane direction 1<br>direction 2<br>up/down scalin<br>tion<br>-plane direction                                              | 604<br>320<br>at for half-cell<br>Axis | Length 3 1 2 2 1 2 cell, you must bre) Length 113                          | 13 Rov<br>00 Rov<br>rescale se<br>(after)<br>113               | 2<br>as (through-plane dii<br>ws 1-2 (un-swaped))<br>ows 1-3 (swaped)<br>ws 2-3 (un-swaped))<br>o that each tif share<br>Scaling factor<br>Voxel size (befor<br>Voxel size (after) | 00<br>13<br>Row 1 (k<br>Row 2 (k<br>Row 3 (k<br>Row 3 (k<br>the same v<br>1<br>e) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in-flipped)<br>in-flipped)<br>in-flipped)<br>oxel size<br>Apply<br>scaling | 200  |
| You can see in the impact of ROI and | 0<br>1.0000<br>nis table<br>d scaling<br>Selec<br>neede<br>plane | 0.5072<br>0.4923<br>t ROI, then<br>t ROI, then<br>t direction, i.<br>anode and ca<br>aname voxel s<br>material so<br>sa<br>Once fin | 0.4870<br>0.5130<br>swap and/or<br>axis must be<br>e., along cel<br>thode may r<br>ize from inn<br>that all mate<br>me voxel siz<br>street, you must | 0.5072<br>0.4928<br>flip axis if<br>the through-<br>l thickness)<br>not share the<br>aging: scale<br>crial share | 1<br>2) Set or<br>Orienta<br>Through<br>In-plane<br>3) Apply<br>Oriental<br>Through<br>In-plane<br>In-plane | ientation so that<br>tion<br>-plane direction 1<br>direction 1<br>direction 2<br>up/down scalin<br>lion<br>-plane direction<br>direction 1<br>direction 2 | 604<br>320<br>It for half-cell<br>Axis | Length<br>3 1<br>2 2<br>1 2<br>cell, you must<br>brey Length<br>113<br>200 | 13 Rov<br>00 Rov<br>rescale so<br>(after)<br>113<br>200<br>200 | 2<br>ss (through-plane dii<br>ws 1-2 (un-swaped))<br>ows 1-3 (swaped)<br>ws 2-3 (un-swaped)<br>o that each tif share<br>Scaling factor<br>Voxel size (befor<br>Voxel size (after)  | 00<br>13<br>Row 1 (k<br>Row 2 (k<br>Row 3 (k<br>Row 3 (k<br>Row 3 (k<br>Row 3 (k<br>Row 3 (k<br>Row 1 (k)<br>Row 1 | in-flipped)<br>in-flipped)<br>in-flipped)<br>oxel size<br>Apply<br>scaling | 201  |

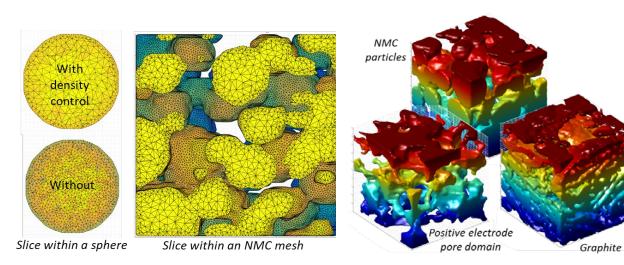
Mesh for a unique volume or a combination of several to create full cell mesh (**inputs are segmented 3D tiff**)

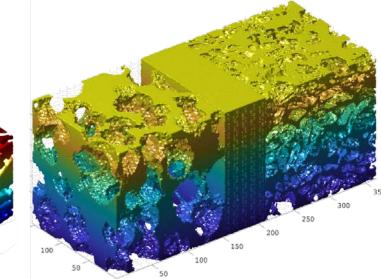
Meshing process divided into subtasks: 1) 3D array pre-processing: Import / dimension compatibility / morphology opening 2) Mesh options: Unstructured of structured 3) Meshing **Morphology opening** to reduce surface roughness and remove ill-defined voxel connectivity to ease mesh generation process and improve model numerical convergence.






# Microstructure meshing (tetrahedron-based)


### **Unstructured mesh**

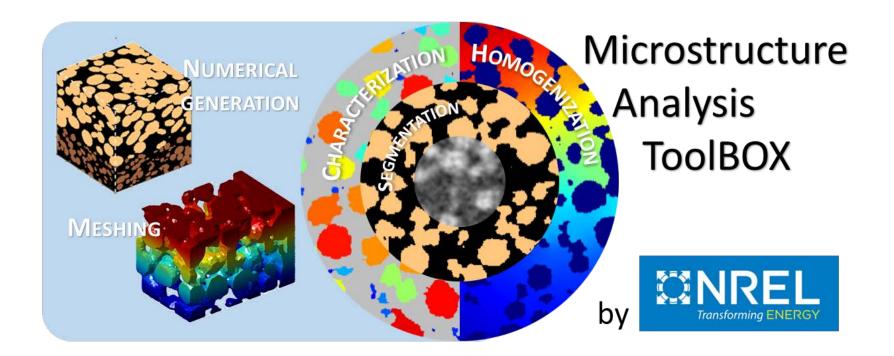

(with Iso2mesh. Q. Fang et al., IEEE (2009) 1142–1145, https://doi.org/10.1109/isbi.2009.5193259.)

- Surface mesh extraction: surface simplification or constrained Delaunay tetrahedralization (CGAL)
- Surface mesh smoothing: Laplacian, Laplacian-HC, Lowpass filters
- Volumetric mesh generation and adaptative resolution: Tetgen

### Structured mesh (voxel divided into 6 or 24 tetrahedrons)








Create one mesh for whole volume (monolithic model) and/or meshes per phase or group of phase (segregated domain model)

+ mesh quality calculations, export in .mat, .csv, .msh, .inp, .stl

## Acknowledgments

This software was authored by the **National Renewable Energy Laboratory**, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding for algorithm development was provided by the U.S. DOE Vehicle Technologies Office's **Computer-Aided Engineering of Batteries (CAEBAT) program** (program manager Brian Cunningham). Application of the algorithm for fast-charge analysis was provided by the **eXtreme Fast Charge Cell Evaluation of Lithium-Ion Batteries (XCEL) program** (program manager Samuel Gillard).



F. L. E. Usseglio-Viretta et al., MATBOX: An Open-source Microstructure Analysis Toolbox for microstructure generation, segmentation, characterization, visualization, correlation, and meshing, SoftwareX, submitted

https://github.com/NREL/MATBOX\_Microstructure\_analysis\_toolbox

www.nrel.gov



NREL/PR-5700-80049

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.