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Executive Summary 
This report describes the Advanced Research Projects Agency-Energy Performance-Based 
Energy Resource Feedback, Optimization, and Risk Management (PERFORM) Electric 
Reliability Council of Texas (ERCOT) dataset consisting of load, solar, and wind deterministic 
and probabilistic forecasts at three timescales. This dataset consists of 1 year of time-coincident 
load, wind, and solar actuals and probabilistic forecasts for a region similar to ERCOT.  

All the data are stored in Hierarchical Data Format 5 (HDF5) files and have been uploaded to an 
Amazon Web Services repository1. The ERCOT data set has 2 years (2017, 2018) of actuals and 
1 year (2018) of probabilistic forecasts. These data are provided at various spatial (i.e., site-level, 
zone-level, and system-level) and temporal scales (i.e., day-ahead, intraday, and intra-hour). 
Specifically, data are provided for 125 existing wind sites, 22 existing solar sites, 139 proposed 
wind sites, and 204 proposed solar sites. The following variables are provided for ERCOT: 

• Metadata (coordinates, capacity, and other configuration data): 
o 125 actual wind sites 
o 139 proposed wind sites 
o 22 actual solar sites 
o 204 proposed solar sites. 

• Actual data (power [MW]): 
o Wind power (site level, zone level, and system level) 
o Solar power (site level, zone level, and system level) 
o Load (zone level and system level). 

• Probabilistic point forecasts(power [MW]): 
o Wind power (site level, zone level, and system level) 
o Solar power (site level, zone level, and system level) 
o Load (zone level and system level). 

Code examples are also provided to extract data from the HDF5 files, as shown in Figure ES-1.  

 
Figure ES-1. A code segment to extract actual wind power  

 
1 https://registry.opendata.aws/arpa-e-perform/ 



iv 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Table of Contents 
1 Chapter 1: Renewable Generation and Load Basis Datasets .......................................................... 1 

1.1 Basis Solar Datasets ...................................................................................................................... 1 
1.2 Basis Wind Data Sets .................................................................................................................... 4 

2 Chapter 2: Forecasting Wind, Solar, and Load Datasets ................................................................. 6 
2.1 Forecast Timescales ...................................................................................................................... 6 

2.1.1 Operational Time Constraints and Timesteps .................................................................. 6 
2.2 European Centre for Medium-Range Weather Forecasts Numerical Weather Predictive Datasets

 ....................................................................................................................................................... 8 
2.3 Solar Forecast Datasets ................................................................................................................. 9 

2.3.1 ECMWF-Based Solar Power Forecasts ......................................................................... 10 
2.3.2 Probabilistic Solar Power Forecasts ............................................................................... 13 

2.4 Wind Forecast Datasets ............................................................................................................... 20 
2.4.1 ECMWF-Based Wind Power Forecasts ......................................................................... 20 
2.4.2 Probabilistic Wind Power Forecasts............................................................................... 22 

2.5 Load Forecast Data Sets .............................................................................................................. 23 
2.5.1 Deterministic Load Forecasts ......................................................................................... 23 
2.5.2 2.5.2 Probabilistic Load Forecasts ................................................................................. 28 

3 Conclusions ........................................................................................................................................ 30 
References ................................................................................................................................................. 31 
 



v 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

List of Figures 
 
Figure ES-1. A code segment to extract actual wind power ........................................................................ iii 
Figure 1. A map of the 266 solar power plant locations considered in the high solar penetration scenario . 1 
Figure 2. The output of two hypothetical plants with 14% system losses .................................................... 3 
Figure 3. Very high clipping due to low system losses. All losses except for inverter efficiency losses 

were set to zero. ....................................................................................................................... 3 
Figure 4. Production curves for April 7–8, 2017, under the high-loss and low-loss settings on the SAM 

platform .................................................................................................................................... 3 
Figure 5. Wind and solar PV plant geospatial locations: (left) existing wind plants in ERCOT based on 

the U.S. Wind Turbine Database and the OpenEI data set and (right) the existing and 
proposed solar and wind plants ................................................................................................ 4 

Figure 6. Wind speed-to-wind power conversion examples of five wind plants .......................................... 5 
Figure 7. An illustration of the relationships among forecast attributes ....................................................... 6 
Figure 8. The forecast attributes, this time with operational times added. This figure is only reflective of 

the intraday forecast. ................................................................................................................ 8 
Figure 9. A schematic of the overall data collection and forecasting process ............................................ 10 
Figure 10. ECMWF direct flux vs. NSRDB DNI. Three solar sites and two ensemble models are 

randomly selected for comparison. ........................................................................................ 11 
Figure 11. Comparison of the NSRDB DNI and the modified ECMWF DNI forecasts. The upper plots 

show the 10-day DNI and GHI curves in the ECMWF and NSRDB. The lower plots show 
the 1-year DNI and GHI curves in the two databases. ........................................................... 12 

Figure 12. The updated ECMWF solar power forecasts. The first 200 hours of data of the randomly-
selected 9 PV sites are used for demonstration. ..................................................................... 13 

Figure 13. Overall framework of the M3 method ....................................................................................... 14 
Figure 14. Probabilistic forecasting time series of 22 solar power plants ................................................... 15 
Figure 15: Reliability plot for  day ahead solar forecasts for zone Coast ................................................... 19 
Figure 16: Reliability plot for  day ahead solar forecasts for for entire balancing area. ............................. 20 
Figure 17. ECMWF wind power forecasts. The top figures show the capacity factor. The bottom figures 

show the wind power forecasts. Two ECMWF ensemble members were randomly selected 
for demonstration. .................................................................................................................. 21 

Figure 18. ECMWF wind power forecasts. The top figures show the capacity factor. The bottom figures 
show the wind power forecasts. Two ECMWF ensemble members were randomly selected 
for demonstration. .................................................................................................................. 21 

Figure 19: Reliability plot for  day ahead wind forecasts for for entire balancing area. ............................. 22 
Figure 20. This heat map of errors shows where the model is performing best and where the larger errors 

occur, with the month on the y-axis, and the hour of the day on the x-axis. As expected, the 
larger errors appear at times of extreme temperatures, such as in January or during the 
summer months. ..................................................................................................................... 24 

Figure 21. This heat map of errors shows where the model is performing best and where the larger errors 
occur, with the month on the y-axis, and the hour of the day on the x-axis. As expected, the 
larger errors appear at times of extreme temperatures, such as in January or during the 
summer months. ..................................................................................................................... 25 

Figure 22. This chart shows that most errors are quite small with a positive bias and that the errors exhibit 
a normal distribution. ............................................................................................................. 25 

Figure 23. This heat map of errors shows where the model is performing best and where the larger errors 
occur, with the month on the y-axis, and the hour of the day on the x-axis. As expected, the 
larger errors appear at times of extreme temperatures, such as in January or during the 
summer months. ..................................................................................................................... 26 



vi 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Figure 24. This chart shows that most errors are quite small with a positive bias and that the errors exhibit 
a normal distribution. ............................................................................................................. 27 

Figure 25. This heat map of errors shows where the model is performing best and where the larger errors 
occur, with the month on the y-axis, and the hour of the day on the x-axis. The ERCOT 
model does extremely well in the winter months, but then larger errors occur during the 
summer months as is to be expected given that air conditioning loads during the hottest days 
is the largest single variance factor for load. .......................................................................... 28 

Figure 26. This chart shows that most errors are quite small with a positive bias and that the errors exhibit 
a distribution that is symmetric about a mean of zero............................................................ 28 

Figure 27. Probabilistic forecasting time series of system-level load using BMA ..................................... 29 
Figure 28. Probabilistic forecasting time series of system-level load using the Gaussian process ............. 29 
  



vii 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

List of Tables 
Table 1. Module Type, DC-to-AC Ratio, and Azimuth Were Randomly Assigned to the 226 Solar Power 

Plant Sites in the Numbers and Percentages ............................................................................ 2 
Table 2. Forecasts Are Provided on Three Timescales at the Lead Time, Horizon, Resolution, and Update 

Rates. ........................................................................................................................................ 6 
Table 3. Issue Time, Horizon Start Time, and Horizon End Time for Day-Ahead and 2-Day-Ahead 

(Medium-Term) Forecasts ....................................................................................................... 7 
Table 4. Issue Time, Horizon Start Time, and Horizon End Time for Intraday (Short-Term) Forecasts ..... 8 
Table 5. The Surface-Level Parameters Gathered from ECMWF's MARS Database .................................. 9 
Table 6. A Comparison of the ECMWF Output Files with the PVWatts Input Files ................................... 9 
Table 7. M3 Point and Probabilistic Forecast Accuracy ............................................................................. 15 
Table 8. Point Forecast nMAE of the M3 Method (Decomposed to Different Steps Ahead) .................... 16 
Table 9. Point forecast nMAE of the Smart Persistence Benchmark (Decomposed to Different Steps 

Ahead) .................................................................................................................................... 17 
Table 10. Probabilistic Forecast nCRPS of the M3 Method (Decomposed to Different Steps Ahead) ...... 18 
Table 11. Intraday Forecasting Errors and Scores at IP Titan .................................................................... 19 
Table 12. Day-Ahead Forecasting Errors and Scores at IP Titan ............................................................... 19 
Table 13. Intraday Forecasting Errors and Scores at Aquilla Lake 2 Wind ................................................ 22 
Table 14. Day-Ahead Forecasting Errors and Scores at Aquilla Lake 2 Wind .......................................... 22 
Table 15. The CNN Model Exhibits Low Error for Very Short-Term (1-h) Forecast Lead Time, with 

Increasing Error for Short- and Medium-Term Forecasts, as Expected. According to the 
Literature, Forecast Error Expected for Load is approximately 3%. ..................................... 23 

Table 16. The RNN Model Exhibits Low Error for Very Short-Term (1-h) Forecast Lead Time, with 
Increasing Error for Short- and Medium-Term Forecasts, as Expected ................................. 24 

Table 17. The XGB Model Exhibits Low Percentage Error for Very Short-Term (1-h) Forecast Lead 
Time, with Increasing Error for Short- and Medium-Term Forecasts, as Expected. 
Predictions Tend to Be Lower Than Observations for This Model, as Evidenced by the 
negative MBE. ....................................................................................................................... 26 

Table 18. The ERCOT Model Exhibits Low Percentage Error for Very Short-Term (1-h) Forecast Lead 
Time, with Increasing Error for Short- and Medium-Term Forecasts, as Expected. ............. 27 

Table 19. The CRPS and Error for the Probabilistic Forecast for the Machine Learning Ensemble .......... 29 
 
 



 

1 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

1 Chapter 1: Renewable Generation and Load Basis 
Datasets 

Wind and solar PV generation datasets are developed to serve as an uncertainty qunaitifcation 
basis for the Performance-Based Energy Resource Feedback, Optimization, and Risk 
Management (PERFORM) program. The basis solar generation datasets are produced from the 
meteorological data available in the National Solar Radiation Database (NSRDB) for 204 utility-
scale proposed and 22 existing solar power plant locations in the Electric Reliability Council of 
Texas (ERCOT) service territory. These 226 existing and proposed plants comprise a high solar 
penetration scenario of 42 GW of solar photovoltaic (PV) capacity. Figure 1 shows a map of the 
226 plant locations, taken from geolocation data from the ERCOT interconnection queue as of 
May 2019. The basis wind datasets are produced though a similar method, where the Wind 
Integration National Dataset (WIND Toolkit) [1] meteorological data was utilized. The load 
actual dataset is was produced in collaboration with the team that created the ACTIVSg2000 
2,000-bus synthetic grid [2]. Additionally, the National Renewable Energy Laboratory’s 
(NREL’s) ResStock® and ComStock® platforms [3] are leveraged to produce the basis time-
series load datasets within ERCOT. The following sections provide details into the development 
of the Wind and solar PV generation and load basis datasets for ERCOT. 

 
Figure 1. A map of the 266 solar power plant locations considered in the high solar penetration 

scenario 

1.1 Basis Solar Datasets 
The solar actuals were up-sampled from 30-minute to 5-minute temporal resolutions and from 4-
km x 4-km to 2-km x 2-km geographic resolutions for the year 2017 using a method developed 
internally by NREL’s NSRDB team, whereas the 2018 data were natively at the desired 
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resolution [4]. Consistent geographic resolution, temporal resolution, and meteorological years 
will be used for the wind, solar, and load data. The data are provided for the years 2017 and 2018 
and are organized based on three geographic scales: site level, zone level, and total ERCOT 
system balancing area. 

The 226 existing and proposed solar plant in the ERCOT service territory represent a total of 42 
GW of AC capacity and feature diverse configurations; one of 30 potential solar energy system 
configurations were assigned to each plant at random. All profiles assumed a single-axis tracking 
system with zero-degree tilt in the north-south direction and differed with respect to thin-film 
versus silicon panel material, azimuthal angle (systems were assigned either 165-, 180-, or 195-
degree azimuth), and DC-to-AC ratios (ranging from 1.2 to 1.4). This process resulted in 226 
unique hypothetical solar energy plants, with the distribution of these attribute values shown in 
Table 1. 

Table 1. Module Type, DC-to-AC Ratio, and Azimuth Were Randomly Assigned to the 226 Solar 
Power Plant Sites in the Numbers and Percentages 

Module 
Type Count %  DC-to-AC 

Ratio Count %  Azimuth Count % 

Silicon 177 78%  1.2 26 12%  165 10 4% 

Thin Film 49 22%  1.25 50 22%  180 205 91% 
    1.3 59 26%  195 11 5% 
    1.35 51 23%     

    1.4 40 18%     

These hypothetical plants served as inputs to the System Advisor Model’s (SAM’s) PVWatts® 
platform [5], generating plant-level energy production data for the years 2017 and 2018 with the 
up-sampled time resolution of 5 minutes and a geographic resolution of 2 km x 2 km. The 
PVWatts preset system losses totaled 14%, so, initially, the output results featured very little 
clipping (Figure 2). Because of the high solar resource in Texas, more clipping is expected than 
is exhibited using these presets, so we reduced the expected loss inputs; After eliminating all 
losses except for the inverter efficiency losses, the power generation profile, shown in Figure 3 
and Figure $, was produced which illustrates an unreasonably high level of clipping.  
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Figure 2. The output of two hypothetical plants with 14% system losses 

 

 
Figure 3. Very high clipping due to low system losses. All losses except for inverter efficiency 

losses were set to zero. 

 
Figure 4. Production curves for April 7–8, 2017, under the high-loss and low-loss settings on the 

SAM platform 

To produce a more reasonable solar generation dataset, losses were modulated from the high-loss 
setting by incorporating all modeled losses featured in PVWatts except for soiling, shading, and 
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availability losses as these loss vectors are crudely applied uniformly over time, which would be 
unrealistic. Utility-scale systems do not typically experience shading except for interrow 
shading, so we are assuming the plant will be installed to avoid this. With the panels typically 
non-horizontal because of the tracking, debris and dust should not accumulate too much, and 
soiling should not be a significant issue. Finally, we decided not to incorporate availability 
because the way this is modeled in the SAM system is to decrease daily energy production by a 
percentage—instead of modeling plant failure realistically as a few hours or days at a time—and 
would produce inaccurate results. Eliminating all three of these losses resulted in a total loss of 
6.81%. 

1.2 Basis Wind Data Sets 
A total of 125 existing wind plants and 139 proposed wind plants wind power plant locations in 
ERCOT were identified, as shown in Figure 5. The wind speed time series was converted to a 
basis wind power time series using NREL’s SAM. All wind turbines were assumed to have a 
height of 100 m. Three parameters—including wind speed at 100 m, surface temperature, and 
surface pressure—were used to generate wind power. Then, wind speeds were converted to 
power by applying normalized power curves for turbine classes 1–3. When wind speeds above 
cut-out wind speed occurred, wind turbines shut down and would not restart until the wind speed 
was 5 meters per second (m/s) slower than the cut-out speed [1]. The power curves used are 
composites of three to four commercially available wind turbines commonly used for each wind 
class. Examples of wind speed-to-wind power conversion are shown in Figure 6. 

 
Figure 5. Wind and solar PV plant geospatial locations: (left) existing wind plants in ERCOT based 
on the U.S. Wind Turbine Database and the OpenEI data set and (right) the existing and proposed 

solar and wind plants 
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Figure 6. Wind speed-to-wind power conversion examples of five wind plants 
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2 Chapter 2: Forecasting Wind, Solar, and Load 
Datasets 

2.1 Forecast Timescales 
The probabilistic solar forecasts for the PERFORM program were produced on three 
timescales—day ahead, intraday, and hour ahead—as detailed in Table 2. The lead times, 
defined as the length of time between the forecast issuance and the beginning of the forecasted 
time period, are also defined in Table 2. The horizon is defined as how far into the future the 
forecast extends from the initial forecast time. The temporal resolution is the resolution of the 
forecast itself. Finally, the update rate is the time between subsequent issue times. A timeline 
illustrating these forecast attributes is shown in Figure 7. 

Table 2. Forecasts Are Provided on Three Timescales at the Lead Time, Horizon, Resolution, and 
Update Rates. 

 
 

 
Figure 7. An illustration of the relationships among forecast attributes 

2.1.1 Operational Time Constraints and Timesteps 
For each forecast, the start and end times are constrained by operational timelines. The ERCOT 
system operator must receive the day-ahead forecast by noon CST (1:00 p.m. CDT), with the 
time horizon spanning from midnight the following day to the following midnight. In some 
cases, the system operator might wish to have a day-ahead forecast with a 1-day look-ahead (a 2-
day-ahead forecast), hence the longer time horizon for this forecast. The issue times and start/end 
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times for these forecasts are detailed in Table 3. Note that the European Centre for Medium-
Range Weather Forecasts (ECMWF) data are given in UTC, so the time steps chosen for these 
forecasts vary depending on whether the local time is standard time (early November through 
mid-March) or daylight savings time (mid-March through early-November) as detailed in Table 
3. 

Table 3. Issue Time, Horizon Start Time, and Horizon End Time for Day-Ahead and 2-Day-Ahead 
(Medium-Term) Forecasts 

 
 
For the intraday forecast, the start and end times are constrained by the weather model data 
update time (how quickly new data become available) and the balancing gate closure time, 
defined as the “point in time when submission or update of a balancing energy bid for a standard 
product on a common merit order list is no longer permitted” [6]. Gate closure time has been 
added to the schematic in Figure 8. 
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Figure 8. The forecast attributes, this time with operational times added. This figure is only 

reflective of the intraday forecast. 

Essentially, the only interesting forecasts are those upon which the operator can base decisions. 
The forecast data dissemination time is 6 hours and 40 minutes for ECMWF’s operational 15-
day ensemble forecasts, according to their published dissemination times [7], and it is assumed to 
be shorter for a single day of data. With a balancing gate closure time of approximately an hour 
for most operators, the lead time is assumed to be approximately 6 hours total. Temporal 
attributes for the intraday forecasts are detailed in Table 4. 

Table 4. Issue Time, Horizon Start Time, and Horizon End Time for Intraday (Short-Term) 
Forecasts 

 

2.2 European Centre for Medium-Range Weather Forecasts 
Numerical Weather Predictive Datasets 

The European Centre for Medium-Range Weather Forecasts (ECMWF) Meteorological Archival 
and Retrieval System (MARS) database provides 30 years of archival meteorological data to 
authorized users. MARS holds petabytes of data, mainly using the GRIB format for 
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meteorological fields. The data required for producing solar forecasts with the PVWatts model 
include surface-level global horizontal irradiance (GHI), direct normal irradiance (DNI), air 
temperature, and wind speed. The relevant ECMWF parameters are shown in Table 5. 

Table 5. The Surface-Level Parameters Gathered from ECMWF's MARS Database 

 

ECMWF data collection was divided into four queries: 2017 intraday, 2017 day ahead, 2018 
intraday, and 2018 day ahead. These queries were run on NREL’s Eagle high-performance 
computing system and a local server using NREL’s ECMWF Python scripts. The queries are 
gathered the parameters detailed in Table 5 for 50 perturbed ensemble members and one control 
member. They span 60 time steps for the day-ahead forecast (with an issue time of 18:00 UTC) 
and 12 time steps for the intraday forecast (with issue times of 00:00, 06:00, and 12:00 UTC). 
The resulting ECMWF datasets are converted from the GRIB format to the Hierarchical Data 
Format 5 (HDF5) and converted from four-dimensional variables to single-dimensional hourly 
time-series data according to Table 6 to serve as inputs into the SAM PVWatts platform. 

Table 6. A Comparison of the ECMWF Output Files with the PVWatts Input Files 

 

2.3 Solar Forecast Datasets 
The short-term and medium-term solar forecasts for this project were trained on hypothetical 
historical solar production data at the 226 locations obtained from the NSRDB and NREL’s 
SAM PVWatts model, as detailed in Chapter 1. The inputs to the PVWatts model include both 
the site characteristics from the 226 sites and 2017–2018 ensemble model weather data from the 
ECMWF’s MARS, which is widely considered to be the most accurate numerical weather 
prediction (NWP) model at the time resolutions that this project requires. The forecast error 
metrics will be verified with the NSRDB 2018 “actuals.” The overall process for the solar 
portion of this project is detailed in Figure 9.  
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Figure 9. A schematic of the overall data collection and forecasting process 

2.3.1 ECMWF-Based Solar Power Forecasts 
The daily weather files queried from ECMWF for 2017 and 2018 were converted to site-level 
files for all 226 utility-scale solar power plants considered in the high renewable penetration 
scenario via the process detailed in the proceeding section. These site-level files, containing 51 
ensemble members, were then converted to power using the SAM PVWatts platform. The latest 
version of the SAM PVWatts can calculate diffuse horizontal irradiance based on geographic 
location and solar zenith angle. PVWatts takes as input GHI, DNI, and temperature and 
calculates capacity factor, which is then converted to megawatt output by multiplying by the AC 
capacity of the plant.  
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Figure 10. ECMWF direct flux vs. NSRDB DNI. Three solar sites and two ensemble models are 

randomly selected for comparison. 

The ECMWF forecasts provide direct flux (defined as DNI*cos(zenith angle)), which is 
significantly smaller than DNI. This is shown in Figure 10, where comparisons of the ECMWF 
irradiance and NSRDB irradiance are visualized. It is observed that the GHI forecast error is 
small, whereas the DNI forecast error (direct flux forecast – actual DNI) is much larger; 
therefore, we first modified the DNI forecasts in the ECMWF by converting direct flux to DNI, 
which is shown in Figure 11. After improving the DNI and using the same PV system loss 
(6.81%), the updated ECMWF-based day-ahead and intraday solar power forecasts were 
generated. Figure 12 shows the ECMWF solar power forecasts from an ensemble member 
(discussed above) and their comparisons to the NSRDB-based actual solar power. The forecast 
errors are reduced. 
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Figure 11. Comparison of the NSRDB DNI and the modified ECMWF DNI forecasts. The upper plots 
show the 10-day DNI and GHI curves in the ECMWF and NSRDB. The lower plots show the 1-year 

DNI and GHI curves in the two databases. 
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Figure 12. The updated ECMWF solar power forecasts. The first 200 hours of data of the randomly-

selected 9 PV sites are used for demonstration. 

2.3.2 Probabilistic Solar Power Forecasts 
Two probabilistic methods were used to develop the solar power forecasts: the machine learning-
based multi-model method (M3) and the Bayesian model average (BMA). 

2.3.2.1 M3 Method 
The M3 forecasting framework is a two-step data-driven methodology that provides both point 
and probabilistic forecasts for very short-term wind [8], solar [9], and load forecasting [10]. The 
M3 method generates point forecasts in the first step with a two-layer machine learning ensemble 
algorithm, which serves as the input to the pinball loss optimization-based predictive distribution 
model to generate the probabilistic forecasts in the second step.  

Specifically, in the point forecasting step, a collection of machine learning models form the first 
layer, including three artificial neural networks with backpropagation, three support vector 
regression models with different kernels, three gradient boosting machine models with three 
different distribution functions, and a random forest model. These models generate independent 
point forecasts, which were ensembled in the second layer by another machine learning model to 
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generate the final point forecasts. The ensemble model is expected to provide more accurate and 
robust point forecasts than single-algorithm models.  

Then, in the probabilistic forecasting step, the genetic algorithm was used to optimize the 
standard deviation of the predictive distributions, sigma, given the mean value (assumed to be 
the point forecast from the first step). A support vector regression surrogate model was first 
trained based on the point forecasts and sigma values, which was used to estimate the pseudo 
sigma to generate the quantiles. 

 

Figure 13. Overall framework of the M3 method 

During the development stage, the M3 model was trained for a total of 22 ERCOT solar sites with 
the 2017 data and tested with 10 representative days. The M3 method outputs point forecasting 
time series and 1th–99th quantiles to form the probabilistic forecast. Table 7 shows the point and 
probabilistic forecast accuracy of the M3 method. Further development is planned to improve the 
M3 performance by applying a zenith angle filter and emphasizing reliability optimization. 
Figure 14 shows a probabilistic forecasting time series in the form of quantiles (i.e., 1st, 5th, 95th, 
and 99th quantiles). Results indicate satisfying reliability and sharpness. 
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Figure 14. Probabilistic forecasting time series of 22 solar power plants 

Table 7. M3 Point and Probabilistic Forecast Accuracy 

nRMSE [%]  nMAE [%] MBE [MW] CRPS [MW] Mean Pinball Loss [MW] 

2.45 1.27 -1.9E-19 12.57 5.72 

In addition to balancing area-level forecasts, intra-hour forecasts at the solar site level were also 
generated. The normalized mean absolute error (nMAE) of the M3 method and the smart 
persistence benchmark are listed in Table 8 and Table 9, respectively. Different columns indicate 
different lead times (e.g., 4-SA means 4-step-ahead, which is 1 hour ahead for 15-min resolution 
data), whereas different rows indicate the 22 solar plants. It was found that the proposed M3 
method provides more accurate point forecasts. Also, probabilistic forecast normalized 
continuous ranked probability score (nCRPS) was used to assess the probabilistic forecast 
accuracy, which is detailed in Table 10. By comparing the nCRPSs to state-of-the-art 
probabilistic forecasting methods that applied to similar solar sites, the M3 probabilistic forecasts 
show competitive to better accuracy. 
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Table 8. Point Forecast nMAE of the M3 Method (Decomposed to Different Steps Ahead) 

4-SA 5-SA 6-SA 7-SA 8-SA 9-SA 10-SA 11-SA 4-7SA 8-11SA Overall 

5.72% 6.18% 6.88% 7.34% 7.80% 8.74% 8.30% 8.57% 6.53% 8.35% 7.60% 

5.94% 6.62% 6.92% 8.07% 8.88% 9.69% 9.43% 9.70% 6.89% 9.42% 8.37% 

6.72% 7.30% 7.63% 8.31% 8.65% 9.19% 9.61% 9.92% 7.49% 9.34% 8.61% 

6.16% 6.77% 7.17% 7.62% 8.12% 8.42% 8.88% 9.05% 6.93% 8.62% 7.95% 

6.29% 6.91% 7.48% 7.96% 8.24% 8.55% 8.77% 9.29% 7.16% 8.71% 8.12% 

7.01% 7.50% 8.07% 8.36% 8.91% 9.15% 9.55% 9.86% 7.74% 9.37% 8.76% 

6.84% 7.33% 7.88% 8.35% 8.66% 8.81% 9.13% 9.51% 7.60% 9.03% 8.52% 

6.65% 7.03% 7.57% 8.07% 8.33% 8.63% 8.84% 9.37% 7.33% 8.79% 8.28% 

5.83% 6.48% 6.88% 7.71% 7.86% 8.08% 8.27% 8.56% 6.72% 8.19% 7.62% 

6.32% 7.03% 7.37% 7.78% 8.15% 8.89% 9.13% 9.12% 7.12% 8.82% 8.13% 

6.62% 7.41% 8.14% 8.41% 9.30% 9.37% 9.40% 9.90% 7.64% 9.49% 8.71% 

6.30% 6.96% 7.69% 8.09% 8.48% 8.65% 9.17% 10.11% 7.26% 9.11% 8.35% 

6.57% 7.24% 7.92% 8.28% 8.84% 9.33% 9.95% 10.38% 7.50% 9.63% 8.81% 

6.47% 6.97% 7.33% 7.85% 8.42% 8.90% 9.32% 9.70% 7.16% 9.08% 8.34% 

6.85% 7.24% 7.86% 8.23% 8.76% 9.27% 9.52% 10.01% 7.55% 9.39% 8.69% 

6.37% 6.82% 7.68% 7.87% 8.28% 8.65% 8.95% 9.31% 7.18% 8.80% 8.21% 

6.75% 6.84% 7.42% 7.97% 8.48% 8.97% 9.21% 9.74% 7.24% 9.10% 8.39% 

6.60% 7.01% 7.58% 8.10% 8.49% 9.14% 9.38% 9.85% 7.32% 9.22% 8.48% 

6.27% 6.68% 7.21% 7.73% 8.11% 8.57% 8.92% 9.29% 6.97% 8.72% 8.05% 

6.85% 7.49% 7.96% 8.39% 8.86% 9.25% 9.53% 9.82% 7.67% 9.36% 8.70% 

6.42% 7.05% 7.66% 8.07% 8.45% 8.87% 9.10% 9.51% 7.30% 8.98% 8.35% 
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Table 9. Point forecast nMAE of the Smart Persistence Benchmark (Decomposed to Different 
Steps Ahead) 

4-SA 5-SA 6-SA 7-SA 8-SA 9-SA 10-SA 11-SA 4-7SA 8-11SA Overall 

9.24% 11.33% 13.38% 15.42% 17.37% 19.14% 20.79% 22.29% 12.34% 19.90% 16.12% 

7.27% 8.47% 9.62% 10.87% 12.12% 13.29% 14.40% 15.47% 9.06% 13.82% 11.44% 

8.46% 9.89% 11.36% 12.90% 14.38% 15.70% 16.93% 18.07% 10.65% 16.27% 13.46% 

8.02% 9.60% 11.08% 12.42% 13.70% 14.91% 15.96% 16.94% 10.28% 15.38% 12.83% 

9.89% 11.90% 13.91% 15.77% 17.56% 19.21% 20.77% 22.22% 12.87% 19.94% 16.40% 

10.61% 12.74% 14.87% 16.85% 18.75% 20.50% 22.15% 23.69% 13.77% 21.27% 17.52% 

14.23% 17.80% 21.24% 24.50% 27.61% 30.56% 33.32% 35.87% 19.44% 31.84% 25.64% 

12.84% 15.99% 19.04% 21.95% 24.74% 27.38% 29.86% 32.16% 17.46% 28.53% 22.99% 

12.66% 15.84% 18.93% 21.89% 24.75% 27.46% 30.01% 32.39% 17.33% 28.65% 22.99% 

12.84% 15.99% 19.04% 21.95% 24.74% 27.38% 29.86% 32.16% 17.46% 28.53% 22.99% 

6.87% 8.11% 9.22% 10.25% 11.21% 12.12% 12.95% 13.72% 8.61% 12.50% 10.56% 

7.41% 8.76% 9.95% 11.07% 12.11% 13.09% 13.99% 14.82% 9.30% 13.50% 11.40% 

6.56% 7.66% 8.70% 9.65% 10.55% 11.39% 12.25% 12.94% 8.15% 11.78% 9.96% 

6.74% 7.87% 8.93% 9.89% 10.80% 11.67% 12.54% 13.25% 8.36% 12.07% 10.21% 

5.95% 7.03% 8.07% 9.05% 9.95% 10.76% 11.52% 12.16% 7.53% 11.10% 9.31% 

6.42% 7.58% 8.70% 9.76% 10.73% 11.60% 12.42% 13.12% 8.11% 11.97% 10.04% 

5.80% 6.83% 7.78% 8.67% 9.48% 10.20% 10.85% 11.41% 7.27% 10.49% 8.88% 

6.11% 7.24% 8.31% 9.38% 10.38% 11.29% 12.16% 12.91% 7.76% 11.68% 9.72% 

6.19% 7.31% 8.39% 9.41% 10.35% 11.19% 11.98% 12.65% 7.83% 11.54% 9.68% 

6.06% 7.16% 8.22% 9.23% 10.15% 10.97% 11.76% 12.42% 7.67% 11.33% 9.50% 

7.90% 9.26% 10.62% 11.95% 13.16% 14.29% 15.43% 16.39% 9.93% 14.82% 12.38% 
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Table 10. Probabilistic Forecast nCRPS of the M3 Method (Decomposed to Different Steps Ahead) 

4-SA 5-SA 6-SA 7-SA 8-SA 9-SA 10-SA 11-SA 4-7SA 8-11SA Overall 

4.73% 5.03% 5.54% 5.85% 6.16% 7.04% 6.48% 6.81% 5.29% 6.62% 6.06% 

13.12% 13.23% 13.26% 13.52% 13.73% 13.94% 13.78% 13.83% 13.28% 13.82% 13.59% 

6.33% 6.91% 7.23% 7.91% 8.25% 8.79% 9.21% 9.52% 7.10% 8.94% 8.21% 

5.48% 6.02% 6.41% 6.85% 7.32% 7.63% 8.13% 8.31% 6.19% 7.85% 7.20% 

18.29% 18.37% 18.44% 18.53% 18.55% 18.57% 18.61% 18.66% 18.41% 18.59% 18.52% 

6.04% 6.50% 7.02% 7.30% 7.81% 8.05% 8.44% 8.77% 6.71% 8.27% 7.70% 

6.34% 6.55% 6.85% 7.03% 7.19% 7.27% 7.40% 7.54% 6.69% 7.35% 7.11% 

5.29% 5.51% 5.88% 6.35% 6.42% 6.54% 6.72% 7.07% 5.76% 6.69% 6.38% 

4.62% 5.00% 5.47% 5.99% 6.06% 6.20% 6.44% 6.71% 5.27% 6.36% 5.95% 

5.56% 6.20% 6.53% 6.93% 7.31% 8.06% 8.21% 8.17% 6.30% 7.94% 7.27% 

5.40% 5.78% 6.31% 6.47% 6.87% 7.07% 7.17% 7.35% 5.99% 7.12% 6.64% 

5.24% 5.56% 6.03% 6.42% 6.40% 6.58% 6.81% 7.72% 5.81% 6.87% 6.45% 

6.54% 6.80% 7.05% 7.18% 7.43% 7.74% 8.03% 8.28% 6.89% 7.87% 7.50% 

5.29% 5.63% 5.81% 6.17% 6.54% 6.79% 7.10% 7.28% 5.73% 6.93% 6.46% 

5.52% 5.84% 6.37% 6.70% 7.18% 7.63% 7.87% 8.30% 6.11% 7.74% 7.12% 

5.08% 5.45% 6.14% 6.31% 6.66% 6.97% 7.24% 7.57% 5.74% 7.11% 6.61% 

5.42% 5.50% 5.98% 6.45% 6.91% 7.35% 7.60% 8.04% 5.84% 7.48% 6.85% 

5.26% 5.63% 6.09% 6.56% 6.94% 7.47% 7.71% 8.10% 5.88% 7.56% 6.90% 

5.39% 5.76% 6.26% 6.76% 7.12% 7.56% 7.93% 8.27% 6.04% 7.72% 7.08% 

5.96% 6.56% 6.98% 7.40% 7.83% 8.23% 8.50% 8.75% 6.72% 8.33% 7.70% 

5.98% 6.61% 7.20% 7.61% 7.99% 8.40% 8.63% 9.07% 6.85% 8.52% 7.89% 

2.3.2.2 Bayesian Model Averaging Method 
For the intraday and day-ahead probabilistic solar power forecasting, a Bayesian Model 
Averaging (BMA) method was implemented. BMA is a kernel dressing technique that applies a 
probability density to each member of an NWP ensemble, with each member dressed in a 
mixture model: each model includes a discrete component forecasting power clipped at the 
inverter rating plus a continuous kernel for outputs that are less than the rated maximum [11]. As 
is appropriate for this method, we gathered perturbed forecast data and control forecast NWP 
ensemble data from the MARS’ ENFO (Ensemble Prediction System) model. These NWP 
ensembles are then post-processed with BMA to address weaknesses and to smooth the ensemble 
from a discrete set of points to a full cumulative distribution function, mitigating the sunny bias 
and underdispersion typically found in these ensembles. We converted the site-level files to 
PVWatts input files.  

The intraday and day-ahead forecasting errors and scores using BMA with Beta kernels and three 
state-of-the-art benchmark models at Site Titan are detailed in Table 11 and Table 12, 
respectively. It is shown that the BMA outperforms the other three benchmark models and 
achieves the best accuracy.  



 

19 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

In addition to the site-level probabilistic solar forecast, zone-level and balancing-level 
probabilistic forecasts are included in the delivery.  

Table 11. Intraday Forecasting Errors and Scores at IP Titan 

Method CRPS [MW] nMAE [%] nRMSE [%] MBE 

BMA 10.26 4.23 7.48 -0.85 

PeEn 20.45 9.58 9.67 1.27 

Raw ensemble 17.25 5.42 8.64 -1.25 

EMOS 12.92 5.45 7.90 -0.98 

Table 12. Day-Ahead Forecasting Errors and Scores at IP Titan 

Method CRPS [MW] nMAE [%] nRMSE [%] MBE 

BMA 10.85 4.58 8.17 -0.94 

PeEn 22.33 10.23 10.67 1.86 

Raw ensemble 14.72 5.93 9.24 -1.30 

EMOS 13.36 6.04 9.28 -1.13 

Figure 15 shows a reliability plot of empirical coverage against nominal levels. For a perfectly 
calibrated simulation, the dotted line would follow the identity line, which is the red line shown 
in each plot. As can be seen, the median is generally close to the identity line. There is 
underdispersion at higher nominal level for BA levels solar as shown in Figure 16. 

 
Figure 15: Reliability plot for  day ahead solar forecasts for zone Coast 
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Figure 16: Reliability plot for  day ahead solar forecasts for for entire balancing area. 

2.4 Wind Forecast Datasets 

2.4.1 ECMWF-Based Wind Power Forecasts 
Wind power forecasts were obtained through wind power conversion. Similar to actual wind 
power simulation, forecasts of wind speed, temperature, and pressure are extracted from the 
ECMWF GRIB files and constructed as time series. Then, the SAM (reV) model is used to 
convert the weather time series to capacity factors and wind power. The same wind plant meta 
configuration setups are used in forecasting wind power conversion to maintain consistency. 
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Figure 17. ECMWF wind power forecasts. The top figures show the capacity factor. The bottom 

figures show the wind power forecasts. Two ECMWF ensemble members were randomly selected 
for demonstration. 

 
Figure 18. ECMWF wind power forecasts. The top figures show the capacity factor. The bottom 

figures show the wind power forecasts. Two ECMWF ensemble members were randomly selected 
for demonstration. 
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2.4.2 Probabilistic Wind Power Forecasts 
Similar to the intraday and day-ahead probabilistic solar power forecasting discussed above, 
BMA was applied to the intraday and day-ahead probabilistic wind power forecasting. The only 
difference being that the Gaussian kernels perform better than the Beta kernels for wind power 
forecasting. The intraday and day-ahead forecasting errors and scores using BMA with Gaussian 
kernels and three state-of-the-art benchmark models at Site Aquilla Lake 2 Wind are detailed in 
Table 13 and Table 14, respectively. Both zone-level and balancing-level probabilistic wind 
forecasts are provided along with site-level wind forecasts. There is underdispersion at lower 
nominal levels for BA level wind, as shown in Figure 19. 

Table 13. Intraday Forecasting Errors and Scores at Aquilla Lake 2 Wind 

Method CRPS [MW] nMAE [%] nRMSE [%] MBE 

BMA 7.62 5.86 18.24 4.85 

Table 14. Day-Ahead Forecasting Errors and Scores at Aquilla Lake 2 Wind 

Method CRPS [MW] nMAE [%] nRMSE [%] MBE 

BMA 8.34 5.38 18.66 5.82 

 
Figure 19: Reliability plot for  day ahead wind forecasts for for entire balancing area. 
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2.5 Load Forecast Data Sets 

2.5.1 Deterministic Load Forecasts 
Forecasted “air temperature” proved to be a strong predictor of system load and was utilized as 
the training features at horizon times from ECMWF data. An ensemble of machine learning-
generated forecast was developed to produce the point forecasts. Initially, 12 deterministic 
ensemble members we developed comprising three different machine learning models: a 
convolutional neural network (CNN), a recurrent neural network (RNN), and an extreme 
gradient boosting (XGB) model. Hyperparameter optimization was run for each model to find 
four sets of parameters exhibiting sufficiently low error and high diversity between the ensemble 
members to be useful. Point forecasts were produced for load at both the zone level and 
balancing area level (for the entire ERCOT territory). Each machine learning model was scored 
based on normalized root mean square error (nRMSE) and nMAE, each normalized on the basis 
of the maximum load for each zone. We also included the mean bias error (MBE) for each 
forecast, where a negative MBE indicates that predictions are generally lower than actuals, and a 
positive MBE indicates that predictions are generally higher than actuals. The following sections 
describe the development of the deterministic load forecasts. 

2.5.1.1 Convolutional Neural Network Method 
A CNN is a supervised machine learning technique developed originally for images, but it has 
been shown to work well for time-series problems. A CNN learns a filter that is passed over 
input features; the power of a CNN is that the learned filter extracts patterns from the features. 
We then connect the extracted CNN features to a neural network that learns to predict a sequence 
of data, thus a Deep-CNN. We used 2015 through 2017 weather data (temperature and humidity 
from 24 weather stations around Texas) and ERCOT electrical load data to train the Deep-CNN 
on a sequence of future electrical load. We then tested the Deep-CNN on the 2018 ERCOT load 
data. Ranges of horizon and results are shown in Table 15. 

Table 15. The CNN Model Exhibits Low Error for Very Short-Term (1-h) Forecast Lead Time, with 
Increasing Error for Short- and Medium-Term Forecasts, as Expected. According to the Literature, 

Forecast Error Expected for Load is approximately 3%. 

Model Horizon 
Horizon Range 
nRMSE 
Percentage 

Horizon Range 
nMAE 
Percentage 

Horizon Range 
MBE 

CNN Very short-term (1.08, 1.65) (0.79, 1.26) (-140, 52) 

CNN Short-term (3.76, 4.01) (2.89, 3.09) (-589, 80) 

CNN Medium-term (3.94, 5.37) (3.14, 4.09) (-1871, -901) 
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Figure 20. This heat map of errors shows where the model is performing best and where the larger 
errors occur, with the month on the y-axis, and the hour of the day on the x-axis. As expected, the 
larger errors appear at times of extreme temperatures, such as in January or during the summer 

months. 

2.5.1.2 Recurrent Neural Network Method 
An RNN is a supervised machine learning technique use for sequential data. The input to an 
RNN is a sequence of features, and the output is a sequence of targets. We used 2015 through 
2017 weather data (temperature and humidity from 24 weather stations around Texas) and 
ERCOT electrical load data to train the RNN on a sequence of future electrical load. We then 
tested the RNN on the 2018 ERCOT load data. Ranges of horizon and results are shown in Table 
16. 

Table 16. The RNN Model Exhibits Low Error for Very Short-Term (1-h) Forecast Lead Time, with 
Increasing Error for Short- and Medium-Term Forecasts, as Expected 

Model Horizon 
Horizon Range 
nRMSE 
Percentage 

Horizon Range 
nMAE 
Percentage 

Horizon Range 
MBE 

RNN Very short-term (2.22, 3.96) (1.81, 3.27) (450, 573) 

RNN Short-term (3.21, 3.33) (2.59, 2.61) (-530, -30) 

RNN Medium-term (2.97, 4.26) (2.21, 3.13) (-1791, 1276) 
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Figure 21. This heat map of errors shows where the model is performing best and where the larger 
errors occur, with the month on the y-axis, and the hour of the day on the x-axis. As expected, the 
larger errors appear at times of extreme temperatures, such as in January or during the summer 

months. 

 
Figure 22. This chart shows that most errors are quite small with a positive bias and that the 

errors exhibit a normal distribution. 

2.5.1.3 Extreme Gradient Boosting Method 
A gradient boosting method trains a decision tree in which each observation is given equal 
weight, then the first tree is evaluated using gradients from the loss function to increase the 
weights of those observations that are difficult to classify and reduces the weights for 
observations that are easy to classify. Subsequent trees are grown with these new weights, and so 
on, until we have many trees. Predictions are then made from a weighted sum of the ensemble. 
The extreme in XGB comes from computational efficiencies developed to increase learning 
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speed and accuracy. We used 2015 through 2017 weather data (temperature and humidity from 
24 weather stations around Texas) and ERCOT electrical load data to train the XGB on a 
sequence of future electrical load. We then tested the XGB on the 2018 ERCOT load data. 
Ranges of horizon and results are shown in Table 17. 

Table 17. The XGB Model Exhibits Low Percentage Error for Very Short-Term (1-h) Forecast Lead 
Time, with Increasing Error for Short- and Medium-Term Forecasts, as Expected. Predictions Tend 

to Be Lower Than Observations for This Model, as Evidenced by the negative MBE. 

Model Horizon 
Horizon Range 
nRMSE 
Percentage 

Horizon Range 
nMAE 
Percentage 

Horizon Range 
MBE 

XGB Very short-term (1.2, 2.21) (0.92, 1.65) (-713.62, -339.65) 

XGB Short-term (3.68, 3.77) (2.84, 2.91) (-1256, -1206) 

XGB Medium-term (3.81, 5.52) (2.79,  4.15) (-1335, -590) 

 
Figure 23. This heat map of errors shows where the model is performing best and where the larger 
errors occur, with the month on the y-axis, and the hour of the day on the x-axis. As expected, the 
larger errors appear at times of extreme temperatures, such as in January or during the summer 

months. 
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Figure 24. This chart shows that most errors are quite small with a positive bias and that the 

errors exhibit a normal distribution. 

2.5.1.4 Ensemble Method 
Table 18. The ERCOT Model Exhibits Low Percentage Error for Very Short-Term (1-h) Forecast 

Lead Time, with Increasing Error for Short- and Medium-Term Forecasts, as Expected. 

Model Horizon Horizon Range nRMSE 
Percentage 

Horizon Range nMAE 
Percentage 

Horizon Range 
MBE 

ERCOT Short-
term 

(2.92, 3.05) (2.26, 2.38) (-67, 115) 
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Figure 25. This heat map of errors shows where the model is performing best and where the larger 

errors occur, with the month on the y-axis, and the hour of the day on the x-axis. The ERCOT 
model does extremely well in the winter months, but then larger errors occur during the summer 

months as is to be expected given that air conditioning loads during the hottest days is the 
largest single variance factor for load. 

 
Figure 26. This chart shows that most errors are quite small with a positive bias and that the 

errors exhibit a distribution that is symmetric about a mean of zero. 

2.5.2 2.5.2 Probabilistic Load Forecasts 
We produced three sets of probabilistic forecasts—one for each forecast run—using the three 
methods that we compare in this section. The first two methods are based on the ensemble of 
machine learning-generated point forecasts, as described in the previous section, by applying a 
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BMA post-processing method and a Gaussian process method to produce quantiles over 
respective distributions.  

These probabilistic forecasts were scored on the basis of sharpness (how well the point forecasts 
agree) and reliability (how well the ensemble agrees with the observed values). We applied the 
CRPS to measure both reliability and sharpness for each probabilistic forecast. 

For load probabilistic forecasting, we use the three point forecasts based on CNN, RNN, and 
XGB as ensemble inputs for the BMA approach. Each forecast will be dressed in a Gaussian 
model, in which the weight for each member will be adjusted via the Ensemble Method 
algorithm. Using the deterministic load forecasts without weather features, the performance of 
the BMA approach is shown in Figure 27, and the evaluation metrics are listed in Table 19.  

 
Figure 27. Probabilistic forecasting time series of system-level load using BMA 

 
Figure 28. Probabilistic forecasting time series of system-level load using the Gaussian process 

Table 19. The CRPS and Error for the Probabilistic Forecast for the Machine Learning Ensemble 

Model CRPS Mean Forecast 
nMAE Percentage 

Mean Forecast 
nRMSE 

Percentage 

MBE 

Ensemble 
Forecast 

477.95 7.2% 9.6% -51.04 
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3 Conclusions 
This report described the Advanced Research Projects Agency-Energy Performance-Based 
Energy Resource Feedback, Optimization, and Risk Management (PERFORM) Electric 
Reliability Council of Texas (ERCOT) dataset consisting of load, solar, and wind deterministic 
and probabilistic forecasts at three timescales. This dataset consists of 1 year of time-coincident 
load, wind, and solar actuals and probabilistic forecasts for a region similar to ERCOT.  

All the data are stored in Hierarchical Data Format 5 (HDF5) files and have been uploaded to an 
Amazon Web Services repository2. The ERCOT data set has 2 years (2017, 2018) of actuals and 
1 year (2018) of probabilistic forecasts. These data are provided at various spatial (i.e., site-level, 
zone-level, and system-level) and temporal scales (i.e., day-ahead, intraday, and intra-hour). 
Specifically, data are provided for 125 existing wind sites, 22 existing solar sites, 139 proposed 
wind sites, and 204 proposed solar sites.   

 
2 https://registry.opendata.aws/arpa-e-perform/ 
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