Scalable Energy System Expansion Under Uncertainty Using Multi-stage Stochastic Optimization

Devon Sigler, Jonathan Maack, Ignas Satkauskas, Matthew Reynolds, Wesley Jones
Overview

- Multi-Stage modeling can be done at scale for power system infrastructure expansion problems
- Multi-Stage modeling allows for detailed representations of system operations and uncertainty
- Progressive Hedging provides a useful tool for solving such models at scale and can be effectively run on HPC systems
- Additional stages representing uncertainty do cause different build decisions, and moving forward it might be beneficial to explicitly consider uncertainty in renewables and operations when analyzing expansion decisions
General Infrastructure Expansion Model

What detail is needed in $O(x)$?

$$\begin{align*}
\text{minimize} & \quad C(x) + O(x) \\
\text{subject to} & \quad x \in X
\end{align*}$$

- Where $x \in X$ represents the build decisions made subject to constraints
- $C(x)$ represents annual payment on assets x built
- $O(x)$ represents the annual cost of operations given assets x are built
Infrastructure planning decisions should be co-optimized against many potential operational scenarios

- Allows for planning decisions to be made under uncertainty
- Allows for inclusion of important scenarios when it is not obvious which are the important ones

Two Stage Scenario Based Model

Expansion Decisions

Operational Scenario

Operational Scenario

Operational Scenario

Could have a multi-stage representation of operations
Scalable algorithms exist for solving multi-stage scenario based optimization problems

- Progressive Hedging (PySP)
- Schur Complement based iterative methods (IPOPT, PIPSNLP)

\[
\begin{align*}
\min_{x,y_i,i=1,...,N} & \quad c^T x + \sum_{i=1}^{N} d_{\xi_i}^T y_i \\
\text{s. t.} & \quad A x + \sum_{i=1}^{N} T_{\xi_i} x + W_{\xi_i} y_1 + W_{\xi_2} y_2 + \cdots + W_{\xi_N} y_N = b \\
& \quad T_{\xi_1} x + W_{\xi_1} y_1 = b_{\xi_1} \\
& \quad T_{\xi_2} x + W_{\xi_2} y_2 = b_{\xi_2} \\
& \quad \vdots \\
& \quad T_{\xi_N} x + W_{\xi_N} y_N = b_{\xi_N} \\
& \quad x \geq 0, \quad y_1 \geq 0, \quad y_2 \geq 0, \quad \ldots, \quad y_N \geq 0.
\end{align*}
\]
Transmission Expansion Problems

• Traditional solution approaches are limited in the sources and detail of uncertainty they can consider
 • Few operational scenarios are considered
 • Renewable generation forecasts are assumed to be perfect
 • Time scales tend to be either
 • Long
 • Snap shots in time
• What is lost by ignoring various forms of uncertainty?
Two Stage vs. Three Stage Models

Two Stage Model

FIRST STAGE
Transmission
Expansion Decisions

SECOND STAGE
Scenario Data Realized
Multi-Period DCOPF

DCOPF
Scenario

DCOPF
Scenario

Three Stage Model

FIRST STAGE
Transmission
Expansion Decisions

SECOND STAGE
Thermal Set Points
Thermal Ramping
Load Realization

Load
Scenario

THIRD STAGE
Wind Realization
Thermal Recourse
Multi-Period DCOPF

Wind
Scenario

Wind
Scenario

Wind
Scenario
Goal: Understand the effects of uncertainty in wind generation on transmission expansion decisions

2-Stage
\[
\min_{x \in \mathcal{X}} \quad c(x) + E(\eta, \xi) [o(x, \eta, \xi)]
\]

3-Stage
\[
\min_{x \in \mathcal{X}} \quad c(x) + E_\eta [o(x, \eta) + E_{\xi|\eta} [h(x, \eta, \xi)]]
\]

- Load and wind uncertainty handled simultaneously
- Effectively modeling grid operations only with perfect renewable forecasts
- Builds a system that can operate under many different load profiles when there is no uncertainty in the wind
- Load and wind uncertainty in different stages
- Modeling grid operations with uncertain wind generation
- Leads to decisions informed by more cautious operating decisions
Progressive Hedging Concept

- Horizontal technique for solving multi-stage scenario based stochastic programs
- Solves individual subproblems with penalty terms to force consensus over time amongst the first stage decision variables
- Converges linearly when subproblems are convex

Progressive Hedging Implementation

- Implementation of the progressive hedging algorithm in the Julia language
- Uses the Julia Distributed.jl package, an implementation of distributed memory parallel computing
- User provides a function for constructing a JuMP model for an instance of scenario data
- User provides a dictionary of model variables for each stage
- User provides a multi-stage scenario tree with probabilities

https://github.com/jump-dev/JuMP.jl

https://github.com/NREL/ProgressiveHedging.jl
SIIP Framework: An example for electricity systems

Rigorous data model that defines infrastructure systems
- Collects information required for device level modeling
- Includes parsing capabilities
- Exploits Julia's parametric dispatch for efficient code development
- Agnostic to simulations that will be performed

Modular, interoperable, modeling components that define infrastructure modeling problems informed by system data

SIIP::Power

PowerSystems.jl

Mathematical formulations and simulation assemblies
- Support for optimization and dynamic simulation models
- Modular problem assembly to enable rapid development and extension
- Includes standard simulations (e.g. UC/ED)
- Deep integration with PowerModels.jl (LANL) to enable non-linear power flow formulations

PowerSimulations.jl
An Integrated Modeling Vision

Framework Design Objectives

Modularity and Accessibility – flexible and transparent problem creation that is easily extensible

Integration – coherency between models representing distinct phenomena

Scalability – address scales that matter through efficient problem simulation and parallelism
Leveraging SIIP

- Use SIIP framework to read data and build models
 - PowerSystems.jl provides needed parsing capabilities
- PowerSimulations.jl provides model building
- Alter constructed models to fit our formulation
- Reduces debugging time enormously

```julia
## Second Stage
ops_model = PowerSimulations.EconomicDispatch(ops_sys,  
  PowerSimulations.CopperPlatePowerModel,  
  JuMPmodel=model, parameters=false)
delte_1d_constraint(ops_model, :CopperPlateBalance)
```

```julia
## Third Stage
(Br_ptdf, Bus_ptdf) = PowerSystems.buildptdf(  
  ops_sys.branches, ops_sys.buses)  
wind_model = PowerSimulations.EconomicDispatch(wind_sys,  
  PowerSimulations.StandardPTDFForm,  
  JuMPmodel=model, parameters=false, PTDF=Br_ptdf)

replace_flow_constraints(wind_model, l_OL)  
ll_dict, ol_dict = create_slack_variables(  
  wind_model, cost_ll=ps_dict["baseMVA"], cost_ol=ps_dict["baseMVA"])  
add_thermal_and_slack_to_stage3(ops_model, wind_model,  
  ps_stage2["gen"]["Thermal"], ll_dict, ol_dict,  
  Br_ptdf)
```

RTS-GMLC is a modernized version of the IEEE Reliability Test System-1996. It was developed to satisfy the need for a standardized data base to test and compare results from different power system reliability evaluation methodologies.

- Buses 73
- Lines 120
- Generators 158
- Three weakly connected regions

https://github.com/GridMod/RTS-GMLC
Problem Setup

- RTS-GMLC test system using DCOPF
- 16 hours used
 - 4 days, one from each season
 - 4 times from each day
- 20 wind scenarios for each hour to total 320 scenarios
- Each hour is 12 periods at a 5 minute resolution
- Line flow constraints where modified as follows

\[-U_l \leq f^t_i \leq U_l \quad -U_l(1 + x_i) \leq f^t_i \leq U_l(1 + x_i) \]

Expansion

Decisions x

Operations Model

Model

- Generator Setpoints y
- Wind Setpoints, Slack Variables z

Three-Stage Stochastic Program Formulation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>First</td>
<td>Transmission Expansion Decisions</td>
</tr>
<tr>
<td>y</td>
<td>Second</td>
<td>Thermal Generator Setpoints</td>
</tr>
<tr>
<td>z</td>
<td>Third</td>
<td>Loss of Load</td>
</tr>
<tr>
<td>η</td>
<td>Second</td>
<td>Possible Hour of System Operations (determines load)</td>
</tr>
<tr>
<td>ξ</td>
<td>Third</td>
<td>Possible Available Wind Power for an Hour</td>
</tr>
</tbody>
</table>
Realistic Wind Scenarios

Wind Power Scenario for Each of the 22 Wind Farms. These are 6 steps at 5-minute resolution. Scenarios are given as deviations from persistence. Significant changes in wind power occur even for a single wind farm over 30 minutes.

[Image: Line graph showing wind power scenario for each of the 22 wind farms]

Conference paper on these techniques accept at the 2020 IEEE PES General Meeting
The lines that were expanded are all near the large wind resources on the grid. The line that is not still seems to enable a transmission path from a large wind farm.

Map of the RTS-GMLC Network. 73 buses (red dots), 22 wind-generating buses (blue circles), 445 WTK wind sites (heat map), 120 transmission lines (black lines), and 4 expansion decisions (red lines)
We compared our 3 stage model expansion decisions with a 2 stage model where in the 2 stage a single wind scenario was considered for each of the 16 load cases.

- Large 3 stage model solved in less than 2 hours
- The same lines were expanded in both cases however in 3 out of 4 lines the 3 stage model chose a larger increase in line capacity.

<table>
<thead>
<tr>
<th>Branch</th>
<th>Initial (MW)</th>
<th>Model</th>
<th>Expand (%)</th>
<th>Expand (MW)</th>
<th>Final (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A27</td>
<td>375</td>
<td>2 Stage</td>
<td>17.383</td>
<td>65.186</td>
<td>440.186</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Stage</td>
<td>15.508</td>
<td>58.156</td>
<td>433.156</td>
</tr>
<tr>
<td>C2</td>
<td>131.25</td>
<td>2 Stage</td>
<td>0.098</td>
<td>0.128</td>
<td>131.378</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Stage</td>
<td>2.103</td>
<td>2.760</td>
<td>134.010</td>
</tr>
<tr>
<td>C29</td>
<td>375</td>
<td>2 Stage</td>
<td>29.213</td>
<td>109.548</td>
<td>484.548</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Stage</td>
<td>38.499</td>
<td>144.370</td>
<td>519.370</td>
</tr>
<tr>
<td>C6</td>
<td>131.25</td>
<td>2 Stage</td>
<td>22.883</td>
<td>30.034</td>
<td>161.284</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Stage</td>
<td>35.567</td>
<td>46.682</td>
<td>177.932</td>
</tr>
</tbody>
</table>
Strong Scaling

Strong Speed Up of ProgressiveHedging.jl. All runs were conducted on Eagle. IPOPT with HSL linear solver MA57 was used for the PH subproblem solutions.
Weak Scaling of ProgressiveHedging.jl. All runs conducted on Eagle. IPOPT with HSL linear solver MA57 was used to solve the subproblems. Wall clock time gives the average time for a PH iteration. Each core solved four subproblems.
Sources of Large Power Systems Models

• Temporal resolution
 • Timescale resolution
 • Number of timescales

• Spatial resolution
 • Number of nodes in the network
 • Number of devices on the network

• Representation of Stochastic Quantities
 • Load, wind, solar, hydro, policy
 • Future generation investments
 • Optimization Stages

• Representation of System Physics
 • Transport, DCOPF, ACOPF, dynamics
Decomposition on the HPC

• Using Progressive Hedging problems can be formulated in a decomposed manner
• Each scenario is a single JuMP model that can live in memory on its own HPC compute node
• Each scenario then can leverage the memory of the node it is on as well as the cores on that node
• This allows for huge problems to be stored on the HPC across nodes and for the compute resources of each node to be used on each scenario subproblem.
• Allows subproblems to be more detailed in time, space, and physics
• Summary: Large problems, lots of detail, using lots of memory across nodes, and lots computational power on each subproblem
Summary

- Multi-Stage modeling can be done at scale for power systems infrastructure expansion problems
- Progressive Hedging provides a useful tool for solving such models at scale and can be effectively run on HPC systems
- Additional stages representing uncertainty do cause different build decisions, and suggest moving forward it might be beneficial to explicitly consider uncertainty in renewables and operations when making expansion decisions
- Using decomposition techniques allows for extremely large problems to be solved and additional detailed to be added into each scenario when using HPC resources

Questions