Projections of environmental impacts of biofuels across scenarios using prospective LCA

Vassilis Daioglou, Romain Sacchi, Patrick Lamers, et al.

OR2022
8th September 2022

IEA Bioenergy Task 45
https://task45.ieabioenergy.com/
Integrated Assessment Models (IAMs) assess the interactions between human and natural systems.

They contain stylized representations of:
- Energy system
- Agricultural economy
- Climate
- Land system

They bridge the Science/Policy interface:
- Scenario Analysis: What if?
- What are the drivers or constraints of change?
- How do technology and policy choices lead to different outcomes?
- Uncertainties? Sensitivities?

Environmental impacts of biofuels using prospective LCA
Their focus area has been studying climate change mitigation strategies
- Working Group III of the Intergovernmental Panel on Climate Change (IPCC)
- Amongst others, they have highlighted the importance of biofuels
Their focus area has been studying climate change mitigation strategies
- Working Group III of the Intergovernmental Panel on Climate Change (IPCC)
- Amongst others, they have highlighted the importance of biofuels

Share of biofuels in Transport final energy
Colours represent increasing climate targets

![Graph showing the share of biofuels in transport final energy over time.](IPCC_AR6_WGIII_SPM_2022)

Context

8th September 2022

IPCC, AR6 WGIII, SPM (2022)
Their focus area has been studying climate change mitigation strategies
- Working Group III of the Intergovernmental Panel on Climate Change (IPCC)
- Amongst others, they have highlighted the importance of biofuels

Increasingly, *Sustainable Development Goals* are becoming an important guiding principle
- But the SDGs cover a huge landscape, which IAMs do not yet cover
Their focus area has been studying climate change mitigation strategies
 – Working Group III of the Intergovernmental Panel on Climate Change (IPCC)
 – Amongst others, they have highlighted the importance of biofuels

Increasingly, **Sustainable Development Goals** are becoming an important guiding principle
 – But the SDGs cover a huge landscape, which IAMs do not yet cover

In order to better understand the broader implications of decarbonization strategies, need to look beyond (climate change) mitigation potential
Their focus area has been studying climate change mitigation strategies
- Working Group III of the Intergovernmental Panel on Climate Change (IPCC)
- Amongst others, they have highlighted the importance of biofuels

Increasingly, *Sustainable Development Goals* are becoming an important guiding principle
- But the SDGs cover a huge landscape, which IAMs do not yet cover

In order to better understand the broader implications of decarbonization strategies, need to look beyond mitigation potential

→ *Investigate broader environmental impacts of different strategies*
Linking IAMs and LCA

Different scopes of methods

<table>
<thead>
<tr>
<th>Integrated Assessment Models</th>
<th>Life Cycle Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward looking</td>
<td>Single timestep</td>
</tr>
<tr>
<td>Projects system dynamics</td>
<td>Snapshot of system (energy, land, etc.)</td>
</tr>
<tr>
<td>Aggregate</td>
<td>High detail</td>
</tr>
<tr>
<td>Focus on costs & emissions</td>
<td>Multiple impact categories</td>
</tr>
</tbody>
</table>

![Graph showing environmental impacts of biofuels using prospective LCA](image)
Linking IAMs and LCA

- Different scopes of methods

Research Aim: Use IAM projections to make prospective LCA consistent with system-wide changes – focusing on the case of biofuels.
Linking IAMs and LCA

- **premise**: open-source tool that integrates IAM scenarios into Life Cycle Inventory databases

- IAMs scenarios used as input into the LCI database (e.g., ecoinvent)

- Transform LCI database, to represent the future background system (transport, industry, electricity, land use, etc.), at different timesteps

- Export database into common LCA software

- Steps 4 & 5 would return LCA indicators back into IAM decision process (work in progress).

Sacchi et al. (2022)
Method

› Use the **IMAGE** Integrated assessment model
 - Developed and maintained by the *PBL Netherlands Environmental Assessment Agency*
 - www.pbl.nl/IMAGE

› Scenarios
 - Shared Socioeconomic Pathway 2 (SSP2) – middle of the road socioeconomic and technological developments
 - *Baseline, RCP2.6* (∼2°C), *RCP1.9* (∼1.5°C)

› Model results used to transform LCI database
 - Transport & industrial energy use
 - Power system
 - Land use and agricultural system
 - 26 regions
Method

LCA

1. CO₂ emissions from agricultural activities.
2. Transportation of agricultural products.
3. CO₂ emissions from manufacturing processes.
5. Land use change.
6. Consumption and use phase.
7. Final disposal and recycling.
Method

LCA

IAM
Method

- Investigate environmental impacts of bioethanol and biodiesel routes...
 - Maize
 - Sugarcane
 - Palm oil
 - Miscanthus
 - Poplar
 - Switchgrass
 - With and without Carbon Capture and Storage

- ... and how these impacts change with evolving energy and land systems
 - Across geographies, scenarios and time
 - Across different environmental indicators
Selected Results

GWP$_{100}$ | Functional Unit: 1 MJ of crop

- **Miscanthus**
 - Land use
 - energy (fuel, elec.)
 - pesticide
 - transport
 - N2O
 - fertilizer
 - seed
 - various additives
 - direct emissions
 - operation

- **Sugarcane**
 - Land use
 - energy (fuel, elec.)
 - machinery
 - transport
 - N2O
 - fertilizer
 - seed
 - pesticide
 - various additives
 - direct emissions
 - infrastructure

- **South Africa**
- **Indonesia**
- **Brazil**

- **+3.5C**
- **+2C**
- **+1.5C**

Environmental impacts of biofuels using prospective LCA

8th September 2022
Selected Results

Environmental impacts of biofuels using prospective LCA

8th September 2022

GWP\textsubscript{100} | Functional Unit: 1 MJ of ethanol

Miscanthus

Sugarcane

- Fossil gasoline (incl. combustion)
- Energy (fuel, elec.)
- Various additives
- Biomass input
- Infrastructure

+3.5°C

+2°C

+1.5°C
Selected Results

GWP$_{100}$ | Functional Unit: 1 MJ of ethanol with CCS

<table>
<thead>
<tr>
<th>Miscanthus (w. CCS)</th>
<th>Sugarcane (w. CCS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3.5C</td>
<td></td>
</tr>
<tr>
<td>+2C</td>
<td></td>
</tr>
<tr>
<td>+1.5C</td>
<td></td>
</tr>
</tbody>
</table>

Environmental impacts of biofuels using prospective LCA

8th September 2022
Selected Results

Functional Unit: 1 MJ of ethanol, 2010 = 1

- **Eucalyptus, Brazil**
- **Miscanthus, South Africa**
- **Palm oil, Indonesia**

Environmental impacts of biofuels using prospective LCA
Brazil, 2050, +3.5C

Selected Results

Functional Unit: 1 MJ of ethanol

- GWP 100a
- Agricultural land occupation
- Fossil depletion
- Freshwater ecotoxicity
- Freshwater eutrophication
- Human toxicity
- Ionising radiation
- Marine ecotoxicity

Categories:
- Biomass input
- Energy (fuel, elec.)
- Fermentation CO2
- Infrastructure
- Transport
- Various additives
Further work

- Incorporate back into IAM scenario analysis
 - Project pathways based on multiple environmental indicators (*not just CO₂ mitigation*)
 - Need to develop an appropriate *Environmental Impact* indicator
 - How to weigh different impacts?

Sacchi et al. (2022)
Incorporate back into IAM scenario analysis

- Project pathways based on multiple environmental indicators (*not just CO₂ mitigation*)
- Need to develop an appropriate *Environmental Impact* indicator
 - How to weigh different impacts?

Broaden analysis to other technologies

- Improve understanding of environmental implications of system change
- *Biofuels vs. fossil fuels vs. e-fuels*

Repeat analysis with other IAMs and broader scenario set

- Results depend on the projections of the IMAGE model.
 - Other models may show very different pathways
 - Standardized setup of the *premise* tool allows for study to be repeated with off-the-shelf results
- Investigate the effect of alternative scenario narratives (Green-growth, regionalization, post-growth, etc.)
Conclusions

› Environmental impact of biofuels not static
 – Varies across time, region, scenario
 – Need to account for these changes when developing strategies aiming to meet multiple goals

› Different biofuels types, different impacts
 – Advanced biofuels (miscanthus, poplar, switchgrass) have impacts from required additives (enzymes, acids, etc.)
 – Different crop productivities lead to different impacts related to land-use
 – Impacts may be further reduced with novel farming techniques reducing the need for land, fertilizers, and energy use (no-till, selection of high yielding species, selective fertilizing, etc.)

› Synergies between climate and environmental targets
 – Movement of energy system towards renewables reduces some of the impacts of biofuel production, but mostly when CCS is considered.
Thanks!

More information:

IMAGE & Scenarios: vassilis.daioglou@pbl.nl | @vassican
LCA & premise: romain.sacchi@psi.ch | @romainsacchi