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Executive Summary of CRADA Work: 

The primary objective of the proposed project is to evaluate the capabilities of Advanced 
Metering Infrastructure (AMI) based controls for grid operations. This includes monitoring and 
control at the secondary transformer level using existing AMI infrastructure. In addition, some of 
the challenges of using a model-less control will also be identified. The lessons learned will be 
disseminated to other utilities around the country through peer-reviewed publications with the 
consent of SDG&E. The scope of the work includes using data from SDG&E’s existing AMI 
infrastructure and working with third party vendors selected by SDG&E. The grid edge 
monitoring systems and controls provided by the selected vendors will perform grid operations 
using AMI data. The National Renewable Energy Laboratory (NREL) will perform a software 
and controller-based evaluation of the grid edge controller, intelligent devices and sensors, at the 
Energy System Integration Facility (ESIF) laboratory. 

CRADA Benefit to DOE, Participant, and US Taxpayer: Assists laboratory in achieving 
programmatic scope 

Summary of Research Results: 

Task 1: Develop feeder models: 

This study used two SDG&E’s feeders, namely Feeder A and Feeder B. Two AMI datasets are 
used for Feeder A. The first dataset has the AMI data of the three-month period between October 
1, 2018 to December 31, 2018 (2018 dataset) and the second dataset has the AMI data for the 
entire 2019-year period. For Feeder B, the AMI data for the entire year of 2019 was used. The 
phase identification results of the two feeders are documented in this section.  

Feeder A is a 12-kV feeder with a peak load of 10.3 MW. The topology of the feeder is shown in 
Figure 1. The substation transformer is equipped with a load tap changer. Three capacitor banks 
are available on the feeder for reactive power support. The feeder serves more than 5,000 
customers using 341 service transformers. Solar generation of approximately 70% relative to the 
peak load is present in this feeder. 
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Figure 1. Topology of Feeder A. 

The second feeder used for this study is Feeder B. This is also a 12-kV feeder with a peak load of 
13.29 MW. The topology of the feeder is shown in Figure 2. The substation transformer is 
equipped with a load tap changer. Two capacitor banks are available on the feeder for reactive 
power support and there are no line voltage regulators. This feeder has 657 service transformers. 
Solar generation of 3.14 MW is present in this feeder which is approximately 24% relative to the 
peak load. 

 
Figure 2. Topology of Feeder B. 

Both feeders were provided by SDG&E with Synergi format. The feeder models are converted 
into OpenDSS format and the OpenDSS feeders are used in this study. 
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Task 2: Develop use case scenarios (Task 2 of original CRADA and Tasks 1, 2, and 4 of 
modified CRADA): 

The documentation in this section relates to the following tasks: 

• PV Smart Inverter Study: Task 2 of original CRADA, Task 1 of modified CRADA 
(Analyze the impact of different levels of PV penetration on feeder voltage profile using 
AMI data) 

• Utility Planning Network Model Anomaly Detection Tool: Task 2 of original CRADA 
• Phase Identification Tool: Task 2 of original CRADA, Task 2 of modified CRADA 

(Validate and Implement Algorithms for Phase Identification) 
• Meter-to-Transformer Mapping: Task 2 of original CRADA 
• Modified Task 4 (Validate using field verification) 

Four use cases are developed in this study and the detail of each use case is introduced as 
follows: 

PV Smart Inverter Study 

The first use case developed is studying the effectiveness of PV smart inverter. High PV 
penetration levels in distribution feeders can cause operational challenges including voltage 
issues, reverse power flow, and protection issues. Standards recommend using PV smart 
inverters to support the distribution grid services, specifically voltage regulation. However, there 
are many smart inverter settings recommended by the standards and their performance on the 
SDG&E feeders has not been reported in the literature. In this study, the impact of various smart 
inverter settings including California Rule 21 (CA 21), Hawaii Rule 14, IEEE 1547, CA 21 with 
no deadband, hockey stick, and volt-var-watt control on the selected SDG&E feeders was 
examined. 

Methods: 

The distribution feeder model used in this study is Feeder A. The AMI data of this feeder was 
provided for the period between October 1, 2018, to January 15, 2019 (107 days). AMI load 
measurements from SDG&E included the net load consumption of each customer, therefore, a 
disaggregation was required to extract the PV profile and load profile for each load location. 
From the load definition in the feeder model, and peak power generation of each PV system, the 
determination was made that the PV penetration for this feeder is around 70% relative to peak 
load. The irradiance profile of the feeder area during the selected period of 107 days was 
downloaded from the National Solar Radiation Database (NSRDB) [1]. By using the ratings of 
each PV system, the irradiance profile, and the net load profile of each load node, the PV profile 
and load profile at each load location were disaggregated. After the disaggregation, the scenario 
of 100% PV penetration was modeled with the load and PV profiles. This was the case used in 
the following simulations. 
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In OpenDSS, the volt-var-watt smart inverter control function is not yet fully operational, 
therefore a Python function to implement the volt-var-watt control was developed. The inputs of 
the function include inverter rated kVA, solar irradiance at current time step, and measured per-
unit (p.u.) voltage at the previous time step. First, the volt-var and volt-watt curves were 
predefined. Then based on the voltage and volt-watt curve, the function determined the required 
real power output and the maximum available reactive power. After that, the maximum available 
reactive power, and volt-var curve, and the reactive power output was calculated based on the 
measured voltage. The outputs of this function were the real and reactive power outputs of the 
PV system. These outputs were used to update the PV system output in OpenDSS. The smart 
inverter curves for all cases are summarized in this section. Several smart inverter curves, both 
from the standards and the custom curves of interest were studied in this work. These curves are 
depicted in Figure 3. 

California Rule 21 (CA 21): The maximum and minimum percentage of available reactive 
power is +/-30%. This percentage is zero when the voltage is within 0.967-1.033 p.u., and 
reaches maximum/minimum when the voltage is below/over 0.92/1.07 p.u. 

Hawaii Rule 14 (HI 14): The maximum and minimum percentage of available reactive power is 
+/-44%. This percentage is zero when the voltage is within 0.97-1.03 p.u., and reaches 
maximum/minimum when the voltage is below/over 0.94/1.06 p.u. 

IEEE 1547: The maximum and minimum percentage of available reactive power is +/-44%. 
This percentage is zero when the voltage is within 0.98-1.02 p.u., and reaches 
maximum/minimum when the voltage is below/over 0.92/1.08 p.u. 

California Rule 21 without deadband: The maximum and minimum percentage of available 
reactive power is +/-30%. This percentage reaches maximum/minimum when the voltage is 
below/over 0.92/1.07 p.u. 

Hockey stick curve without compensation in low voltage region: The minimum percentage of 
available reactive power is -30%. This percentage is zero when the voltage is below 1.033 p.u., 
and reaches maximum when the voltage is above 1.07 p.u. 

Hockey stick curve with deeper Q absorption: The minimum percentage of available reactive 
power is -75%. This percentage is zero when the voltage is below 1.033 p.u., and reaches 
maximum when the voltage is above 1.07 p.u. 

Volt-VAR-Watt: The volt-var curve is the same as California Rule 21. For its volt-watt curve, 
the maximum available real power starts to decrease from 100% when the voltage is above 1.06 
p.u. and reaches zero when the voltage is above 1.1 p.u. 
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Figure 3. Volt-var and volt-watt curves for PV smart inverter. 

The performance of each smart inverter function was evaluated by using multiple metrics: 
number of capacitor changes, number of LTC operations, average voltage, voltage fluctuation 
index, voltage unbalance index, and number of voltage exceedances nodes. Voltage fluctuations 
is described by as repetitive or random variations of the voltage envelope due to sudden changes 
in the real and reactive power drawn by the load.  
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Let the 𝑇𝑇 stand for the total time steps in the simulation and 𝑁𝑁 stand for the total number of 
nodes in the feeder, the average voltage is calculated by: 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑁𝑁

× (
1
𝑇𝑇
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(1) 

The voltage fluctuation index (VFI) measures how the nodal voltage is changing between time 
steps, i.e., voltage fluctuations all across the circuit. It is calculated by: 

𝑉𝑉𝑉𝑉𝑉𝑉 =
1
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1
𝑇𝑇
� � �𝑉𝑉𝑖𝑖(𝑡𝑡 + 1) − 𝑉𝑉𝑖𝑖(𝑡𝑡)�

𝑇𝑇

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1
) 

(2) 

The voltage unbalance index (VUI) measures the unbalance level of nodal phase voltages all 
across the circuit. It is calculated by: 

𝑉𝑉𝑉𝑉𝑉𝑉 =
1
𝑁𝑁

× (
1
𝑇𝑇
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(3) 

where 𝑉𝑉𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖 (𝑡𝑡) is calculated by using the maximum deviation from average voltage over the 
average voltage. 

The voltage exceedance is defined as voltage out of range 0.94-1.06. The exceedance node is 
defined as a node with more than 12 hours exceedance in the three-month period. 

Utility Planning Network Model Anomaly Detection Tool 

In the second use case, an automated tool was demonstrated that uses the AMI measurement data 
to identify the inaccuracies in the network model used for distribution planning. Numerous 
distribution network analysis, monitoring, and control applications; including volt/var 
optimization, state estimation, and distribution automation, require accurate distribution network 
models. The GIS maintained by utilities can be inaccurate because of a significant amount of 
missing data, restoration activities, and network reconfiguration which can lead to network 
model inaccuracies. The utility planning network model anomaly detection tool used the AMI 
data to identify network model issues. It accomplished this by building the approximated 
secondary network models from the AMI data and using them to estimate the primary voltages. 
The estimated primary voltages were then compared with the primary voltages obtained from the 
simulations of the utility planning network model to identify model anomalies. 

Methods and Results: 

The software tool uses the combination of a physics-based method and a machine learning 
method to estimate the primary bus voltages from the AMI voltage measurements on the 
distribution secondary network. 
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Physics-based Method 

In the physics-based primary voltage estimation method, the voltage magnitudes on the primary 
side of the distribution service transformers were estimated using only two smart meters per 
secondary network. The smart meters were strategically placed on the closest and farthest load 
from the transformer, in the electrical sense. This method relies exclusively on smart meter data, 
and therefore it is fully data driven. 

The physics-based primary voltage estimation method has two stages: 

First Stage – Linear Regression: The first stage performed a linear regression on the latest data 
window available at the control center. A data window of 288 points was used, which is 
equivalent to a day for five-minute sampling resolution. The first stage was executed only once. 

The equivalent circuit shown in Figure 4 was used for each service transformer. In this circuit, 𝑟𝑟𝑝𝑝 
and 𝑟𝑟𝑠𝑠 denote the losses in the primary and the secondary winding of the service transformer, 
respectively. The variables, 𝑣𝑣𝑝𝑝′  and 𝑣𝑣𝑠𝑠′ denote the voltage magnitudes at the primary and the 
secondary of an ideal transformer, respectively and 𝑛𝑛𝑡𝑡 is the transformer turns ratio. The 
variables, 𝑣𝑣1 and 𝑝𝑝1 denote the voltage magnitude and the active power measured at the closest 
load from the service transformer while 𝑣𝑣2 and 𝑝𝑝2 denote the voltage magnitude and the active 
power measured at the farthest load from the transformer. The variables  𝑟𝑟1 and 𝑟𝑟2 account for 
cable impedance; and 𝑣𝑣𝑢𝑢 and 𝑝𝑝𝑢𝑢 are unknown. A constrained linear least-squares minimization 
problem was solved to estimate the resistance 𝑟𝑟2 and the equivalent resistance between the first 
meter and the primary bus. 

 
Figure 4. Equivalent circuit used for each secondary in physics-based voltage estimation method. 
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Second Stage – Kalman Filtering: The second stage used a Kalman filter to update the primary 
voltage magnitude estimates continuously, based on new data points. The processing steps in 
both stages are discussed in [2]. 

Machine Learning Method 

Machine learning approaches typically require a training data set that contains the features to be 
estimated. In this application, the inputs included AMI measured power and voltages of two 
customers under each service transformer and the total power consumption of all customers 
under the service transformer. The output is the transformer primary-side voltage. Therefore, the 
transformer primary voltage data must be included in the training data set in addition to the other 
specified feature data. However, because no primary-side measurements were available for this 
feeder, except the RTU voltage, time-series voltage data recorded from the simulations in 
OpenDSS were used to form the required training data set in the algorithm development stage. 
The quasi-static time-series (QSTS) simulation of Feeder A was performed in OpenDSS for the 
period between October 1, 2018 to January 15, 2019 (107 days) to obtain primary-side voltages. 
In the QSTS simulation, time resolution was set to hourly to follow AMI load time resolution. 
The load profile of each secondary-side measured load was set to be the AMI measured total 
power under that transformer. The simulated primary-side synthetic voltages from the QSTS 
simulation and the actual measured secondary-side voltages at the two AMI measured loads were 
used to train the machine learning model. The machine learning method for this application is 
discussed in [3]. 

After validating the performance of the machine learning-based algorithm using simulation data, 
it was applied to actual AMI measurement data recorded in the field. In this stage, the machine 
learning models were trained using the primary voltages estimated by the physics-based method 
instead of the simulation data.  

Combined Method 

Both the physics-based and the machine learning-based methods have limitations in estimating 
the primary-side voltages when applied individually. The physics-based method can use the 
available AMI data to conduct the estimation, but the accuracy is lower than desired. The 
machine learning-based method can have a higher estimation accuracy, but requires 
measurements of service transformer primary voltages, which was not included in the dataset 
provided. A combined method was developed to leverage the advantages of both these methods. 
In the combined method, primary voltages were estimated by the physics-based method for a 
given time duration, a primary voltage correction was applied, and corrected primary voltages 
were used to train a machine learning model. The trained machine learning models can be used 
to estimate primary voltages for any time duration. 

Voltage drop across a service transformer typically varies from two to 13 V. The average voltage 
drop between the two AMI meters in all the secondaries of SDG&E Feeder A is 0.58 V. This 
implies that the voltage drop on a service transformer would be four to 20 times of the voltage 
drop between the AMI meters in the corresponding secondary. Accordingly, a correction factor 
was applied to the primary-side voltages estimated by the physics-based method before using 
them as training data for the machine learning models. 
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Phase Identification Tool 

The third use case in this study is developing a phase identification tool. The phase identification 
tool performs automated phase mapping of the AMI meters based on AMI data. The GIS 
database maintained by the utility is known to have phase connectivity errors due to restoration 
activities, network reconfiguration, human error, and missing data. Traditionally, the phase 
connectivity database is periodically updated by field verification which is expensive and time-
consuming. With the availability of AMI data, the phase connectivity can be identified through 
data analytics. The existing phase identification techniques work well in distribution feeders that 
have low or no PV generation; however, they fail to identify the phases accurately when 
considerable PV generation is present. The phase identification tool demonstrated in this project 
uses supervised learning to determine the phase connectivity accurately even when significant 
PV generation is present. 

Methods: 

The key assumption in this study is that voltage profiles from AMI meters pertaining to each 
phase connectivity are highly correlated with each other. Thus, the voltage magnitude time series 
of the AMI meters that are on the same phase tend to exhibit similar variations in the voltage 
measurements which are different from the meters on the other phases. 

Phase Identification using Supervised Learning 

Phase identification was performed using the random forest classifier [4], [5]. The random forest 
classifier is a supervised machine learning model. In the phase identification process, first the 
voltage magnitude time series from each meter in the AMI dataset was obtained for a selected 
duration of time. Next, a preset percentage of meters were selected for each phase connectivity 
as a training dataset for the supervised machine learning algorithm. The phase connectivity of 
these meters must be accurate since this is part of the training process for the machine learning 
algorithm. Then a random forest classifier was constructed, which is a function that predicts the 
phase connectivity of each meter in the training dataset based on the voltage magnitude time 
series data. Finally, the trained random forest classifier was used to identify the phase 
connectivity of the rest of the meters in the AMI dataset based on their voltage magnitude time 
series. 

The phase identification algorithm steps are given below: 

1. Data preprocessing: Load the AMI dataset with the voltage magnitude time series 
data and perform data standardization. A small number of meters with consistently 
reported bad data or empty data were removed from the AMI dataset in this step. 

2. Training the random forest classifier: Select 30% of the AMI meters for each phase 
connectivity for training the random forest classifier. The phase connectivity of these 
AMI meters, obtained through field validation or some other means, was supplied to 
the random forest classifier in this step. 

3. Phase identification: Input the voltage magnitude time series data of the rest of the 
meters to the random forest classifier model trained in Step 2 to identify the phase 
connectivity of the rest of the meters in the AMI dataset. 
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Data Requirements 

The phase identification algorithm in this demonstration used the voltage magnitude time series 
data of the AMI meters and the validated phase connectivity information for 30% of the meters 
in the AMI dataset for training. The AMI dataset had average, maximum, and minimum voltages 
for each meter at five-minute intervals. The five-minute average voltage magnitude data was 
used for phase identification. The inputs and output of this algorithm are summarized below: 

Inputs: 

1. Average voltage magnitude time series data (preferably three months or more) for 
each AMI meter at five-minute resolution  

2. Accurate phase connectivity information for 30% of the AMI meters for each type of 
phase connectivity 

Output: 

1. A table with AMI meter ID and associated phase connectivity for all the AMI meters 

Meter-to-Transformer Mapping 

The fourth use case in this study is a meter-to-transformer mapping algorithm. SDG&E has a 
meter-to-transformer connectivity mapping database. However, the records in this database do 
not always reflect the latest field conditions due to routine meter field change and human data 
entry errors. Accurate meter-to-transformer mapping information is needed for load balancing, 
service order work, and transformer load management. A solution that can check and correct the 
service transformer and meter mapping records is required to address this need. The goal of this 
use case was to demonstrate a proof-of-concept AMI meter-to-service transformer mapping 
solution that identified incorrect records based on AMI measurement data. 

Methods: 

The methodology for meter-to-transformer mapping solely uses the voltage data recorded by the 
AMI. There is no requirement for the length of the data and the methodology is also robust to 
missing data which can be observed frequently in the voltage dataset. 

The main idea is the voltage measurements from the AMIs connected to the same service 
transformer secondary should be highly correlated and have a high correlation coefficient. 
Therefore, the key is to find a threshold to identify the potential incorrect records. If the 
correlation coefficient is lower than the threshold, that means records are incorrect. The AMI 
meter to service transformer mapping procedure consists of the following steps: 

1. Calculate correlation coefficient between meters connected to the same service 
transformer for the records in the existing database 

2. Rank the calculated correlation coefficients and pick a threshold 
3. Loop through all the correlation coefficients and select the AMI records whose 

correlation coefficients are lower than the threshold 
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4. Calculate the correlation coefficients with the rest of the dataset and choose the 
service transformer with the highest score 

5. Perform Step 4 for each meter in the selected set of records in Step 3. If the score is 
higher than the threshold, then correct the record to the new service transformer and 
meter pair, otherwise keep the record the same 

For instance, consider that the correlation coefficient of AMI1 and AMI2 are lower than 
threshold 𝜏𝜏 in Figure 5, and they are connected to the service Transformer 1 in the original 
record. Then the algorithm will check the rest of the dataset to find a transformer with the highest 
correlation coefficient for both AMI1 and AMI2. If the score is higher than 𝜏𝜏 , then the algorithm 
will update the records. In this case, the mapping of AMI1 is changed to associate with 
Transformer 2 after running the algorithm. 

 
Figure 5. Illustration of the AMI meter to service transformer mapping algorithm. 
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Recall and precision are used to evaluate the performance of the proposed methodology. Recall 
evaluates the overall accuracy of the algorithm, and precision evaluates the accuracy of the 
correction. The equations below show the definition of recall and precision in mathematical 
formulas. In our case, the true positive is the right correction, the false positive is the wrong 
correction, and the false negative means the records remain the same as before. 

𝑅𝑅(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =
𝑇𝑇𝑇𝑇(𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑣𝑣𝑟𝑟)

𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑁𝑁(𝑉𝑉𝑟𝑟𝑟𝑟𝑃𝑃𝑟𝑟 𝑁𝑁𝑟𝑟𝑁𝑁𝑟𝑟𝑡𝑡𝑃𝑃𝑣𝑣𝑟𝑟)
 

 

(4) 

(𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛) =
𝑇𝑇𝑇𝑇(𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑣𝑣𝑟𝑟)

𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑇𝑇(𝑉𝑉𝑟𝑟𝑟𝑟𝑃𝑃𝑟𝑟 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑣𝑣𝑟𝑟)
 

 

(5) 

Three correlation coefficients namely Pearson [6], Kendall’s rank [7], and Spearman’s rank [8] 
are used in this work. These are defined as follows: 

The Pearson correlation coefficient is a measure of linear correlation between two sets of data. It 
is the ratio between the covariance of two variables and the product of their standard deviations. 
The Kendall rank correlation coefficient is a statistic used to measure the ordinal association 
between measured quantities. It is a measure of rank correlation and the similarity of the 
orderings of the data when ranked by each of the quantities. Spearman’s rank correlation 
coefficient is a nonparametric measure of rank correlation. It assesses how well the relationship 
between two variables can be described using a monotonic function. 

Task 3: Develop system control evaluations plan and prepare the testbed (Task 3 of 
original CRADA and Tasks 3 of modified CRADA “Implement SDG&E’s feeders on 
ADMS test bed to evaluate AMI-based algorithms”): 

The documentation in this section relates to Task 3 of original CRADA and Task 3 of 
modified CRADA. 

Data-centric Grid Operations 

The integration of ADMS and AMI measurements offers a unique opportunity to further 
modernize grid control. In this task, an AMI-based, data-driven, volt/var control algorithm, and 
its synergies with ADMS for distribution grid operations, were evaluated using SDG&E feeder 
and AMI data. The inputs of this algorithm were AMI power and voltage measurements. The 
algorithm controls the substation transformer load tap changer (LTC) tap position, capacitor 
bank switch positions, and PV inverter setpoints to ensure voltage regulation. This new paradigm 
for grid operations was demonstrated using NREL’s ADMS Test Bed capability wherein the 
feeders and the controls were implemented and evaluated in a realistic utility environment. 
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Methods and Results: 

In the voltage prediction task that attempts to predict the voltage issues in the distribution 
network, an AMI voltage forecasting model was prototyped for the distribution feeder. The 
secondaries were modeled as having three AMI data points, with the closest and furthest to the 
transformer as individual data points and a third one that is an aggregate of all other power 
consumed on the secondary. Synthetic average hourly voltage data was simulated for three and a 
half months. Two machine learning algorithms were used in modeling voltage time series data 
which can be used for forecasting s . The models are learned globally and simultaneously process 
all AMI time series data. Simulations with various scenarios of available historical data (60, 30, 
and 15 days) were performed which were explicitly incorporated into the model and evaluated 
for performance. The performance of a model hyper parameter set when forecasted 24-hours 
ahead is shown in Figure 6. The plot represents an averaging over five-folds in the validation set. 
The model is evaluated globally on all simulated meters on the distribution feeder. 

 
Figure 6. Twenty-four hour forecast performance of a hyperparameter run averaged over five 

folds. 

The integration of ADMS and AMI measurements offers a unique opportunity to further 
modernize distribution system control. In this task, an AMI-based data-driven volt/var control 
algorithm and its synergies with ADMS for distribution grid operations were evaluated using the 
SDG&E feeder and the AMI data. The inputs of this algorithm were AMI power and voltage 
measurements. The algorithm controls the LTC tap position, capacitor banks switches, and PV 
inverter setpoints to ensure voltage regulation.  

Figure 7 and Figure 8 show the results from the evaluation of this algorithm. In the base case, the 
LTC and capacitor banks follow their local controllers, and the PV smart inverters inject power 
at unity power factor. In the unity power factor operation, the PV smart inverters inject active 
power only and no reactive power is injected or absorbed. As observed in Figure 7, many 
customer voltages on the secondary are experiencing high voltage exceedances in the base case. 
In the next scenario in which the data-driven control algorithm is enabled, the voltage 
exceedances are significantly reduced, and the average voltages are closer to 1.0 p.u. Once the 
voltage deviates from the preset voltage regulation set point (selected 1.0 p.u. in this case), the 
algorithm primarily raises or lowers the LTC tap position to regulate the voltages as observed in 
Figure 8. 
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Figure 7. Comparison of bus voltages. 
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Figure 8. Comparison of LTC, capacitor bank statuses, and total PV generation. 
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Task 4: Execute use case scenarios and analyze results (Task 4 of original CRADA, 
Task 4 of modified CRADA “Validate using field verification”):  

The documentation in this section relates to the following tasks: 

• PV Smart Inverter Study Results: Task 4 of original CRADA 
• Utility Planning Network Model Anomaly Detection Results: Task 4 of original CRADA 
• Phase Identification Results: Task 4 of original CRADA, Task 4 of modified CRADA 
• Meter-to-Transformer Mapping Results: Task 4 of original CRADA 

PV Smart Inverter Study Results: 

The PV and load profiles were interpolated to five-minute resolution and the simulation was run 
using the data from October 2018 to January 2019 (107 days, 30816 data points in total). There 
were 1560 PV systems in the model in total, all with ratings between 5-10 kVA. For the baseline, 
the power outputs of PV systems were determined by the irradiance and inverter rating. For the 
case with smart inverter function enabled, the power outputs of these PV systems follow the 
corresponding curves. The voltage plots in this section are presented for one selected day i.e., 
October 1, 2018. The metrics were computed for the three-month period and summarized in 
Table 1 and 2. 

Table 1. Summary of Feeder Operations 

 Capacitor 
bank status 

changes 

LTC tap 
changes 

Average 
Voltage (V) 

V fluctuation 
index score 

V unbalance 
index score 

Baseline 562 1291 249.93 9.67 9.90 

CA 21 646 1335 249.20 9.68 9.86 

HI 14 538 1471 248.60 9.67 9.82 

IEEE 1547 580 1478 248.66 9.66 9.81 

No Deadband 606 1394 248.41 9.67 9.77 

HS-no 
compensation 

646 1335 249.20 9.68 9.86 

HS-deeper Q 624 1506 248.60 9.62 9.83 

Volt-Var-Watt 158 784 250.27 9.61 9.81 
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Table 2. Summary of Voltage Exceedances 

 Secondary Primary 

Voltage 
exceedances 

hours per node 

Number of 
voltage 

exceedances 
nodes 

Voltage 
exceedance-

hours per node 

Number of 
voltage 

exceedance 
nodes 

Baseline 23.52 752 42.83 481 

CA 21 0.55 16 0.61 0 

HI 14 0.21 9 0.76 12 

IEEE 1547 0.47 28 0.96 14 

No Deadband 1.05 37 2.84 42 

HS-no 
compensation 

0.55 16 0.61 0 

HS-deeper Q 0.09 3 0.91 12 

Volt-Var-Watt 4.45 110 2.95 53 

The results show the implementation of smart inverter settings improves the feeder voltage 
profile by reducing the voltage exceedances. Based on the results from the study, the Rule 21 
curve showed superior results in terms of the number of voltage regulation device actions and 
eliminating the primary voltage exceedances. The Rule 14 curve showed superior results in terms 
of eliminating the secondary voltage exceedances. The voltage exceedances for the volt-var-watt 
function are higher than the others, but it has the lowest number of voltage regulation device 
actions. The numbers of voltage regulation device changes are similar for all other smart inverter 
functions, and the average voltages are all near 249 V. Based on different purposes of controlling 
the feeder, the corresponding smart inverter functions can be selected by using the results from 
this study. For example, if the utility wants to minimize the action times of the voltage regulation 
devices, Rule 21 can be set for the smart inverters on this feeder. 

Utility Planning Network Model Anomaly Detection Tool: 

Physics-based Method Results 

Five service transformer locations as shown in Figure 9 were selected to perform the validation 
of the physics-based method. The corresponding secondaries were modeled in detail with the 
realistic topology and load data. Each secondary model comprises a few loads including the two 
loads for which the AMI load consumption data was available. The load profiles of the two loads 
were set to be the same as AMI load consumption data for those two loads. The aggregated 
power consumption data at the service transformer level (minus the sum of the two loads) were 
distributed evenly across the rest of the loads of that secondary. The primary voltages of the 
selected secondaries were estimated using the physics-based method. The estimation mismatch 
results are summarized in Table 3. It can be observed that the estimation mismatches are all 
around 4%, which is larger than expected. The physics-based method usually will overestimate 
the primary voltages. Therefore, a machine-learning based method and a combined method are 
developed to improve the estimation accuracy. 
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Figure 9. Five selected locations for the validation of physics-based method. 

Table 3. Physics-based method validation results 

 Estimation Mismatch 

Secondary 1 3.74% 

Secondary 2 4.06% 

Secondary 3 3.53% 

Secondary 4 4.28% 

Secondary 5 3.84% 

Machine Learning Method Results 

Multiple machine learning algorithms: random forest, adaptive boosting, and gradient boosting 
[9]-[11] were tested to find the relationship between the primary-side voltages and the AMI 
measurements under each service transformer. The data from each service transformer (341 in 
total) was trained separately to account for their unique characteristics, i.e., separate models were 
constructed for each service transformer. The input of each model was the hourly load 
measurement from two AMI meters under that service transformer, the average hourly AMI 
voltage measurement, and the total load of that service transformer. The output of the model was 
the voltage on the primary side of the service transformer. 

The data from the first month were selected to compare the estimation accuracy of different 
algorithms. K-fold cross validation was used to validate the machine learning models, and the 
validation was repeated 30 times. In each test, 80% of the monthly data was randomly drawn 
from the data set to train the model, and the remaining 20% was used for testing. The mean 
absolute percentage error (MAPE) and maximum absolute percentage error between the 
synthetic primary voltage and estimated primary voltage was used to evaluate the performance of 
each machine learning method. The performance comparison is shown in Table 4. 
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Table 4. Performance of Different Methods 

 
Machine Learning Method 

Random Forest AdaBoost Gradient Boost 

MAPE 0.12% 0.75% 0.48% 

Maximum 0.46% 1.08% 0.95% 

The results summarized in Table 4 show that the random forest model performs better than the 
other two models in the selected performance criteria; therefore, it was selected to estimate the 
primary-side voltages in this study. Another advantage of using the random forest algorithm (as 
random forest is an ensemble learning method that integrates multiple decision trees) is that it 
will combine these decision trees and use average, or voting, schemes to calculate the results. 
Therefore, any outliers in the AMI measurements can be handled with this algorithm. Further, an 
exhaustive search was conducted to determine the model parameters (number of decision trees 
and maximum depth). These two parameters are varied from one to 500 and one to 30, 
respectively, to test the estimation performance. Considering both estimation accuracy and 
training time, the number of decision trees were selected to be 80 and the maximum depth to be 
10. The time to build the machine learning model for each service transformer was around five 
seconds, and the total time for building the models for all service transformers was 30 minutes. 
As the process of training the model is usually developed for the distribution system planning 
studies, it meets the run-time requirement. 

The performance of the machine learning-based approach was validated by the synthetic 
primary-side voltages generated from the QSTS simulation of the feeder model in OpenDSS. A 
secondary model was built for each service transformer in OpenDSS. Each secondary model 
included the two loads with voltage measurements and a load without voltage measurement. The 
load profiles of each secondary measured load were set to be one AMI measured power for one 
meter under that transformer. The load profile of the unmeasured load was set to be the AMI 
measured total power at that service transformer minus the two measured loads. The primary-
side and secondary-side voltages at the two AMI measured loads recorded from the QSTS 
simulation were used to train the machine learning model. The data from the first 1,000 hours 
were used as a training data set to train the model for each service transformer, and the next 
1,568-hour data were used to test the performance of each machine learning model.  
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The MAPEs for the estimation of all service transformer primary-side voltages are shown in 
Figure 10. All of them are less than 0.07%. Although the largest estimation error is around 
0.65%, the number of such occurrences is very small. For most estimations, the error is less than 
0.02%. Overall, the MAPE for all predictions in the feeder is 0.012%, and the MAPE for the 
service transformer with maximum error is 0.056%. Comparing with the 4% error from the 
physics-based method, the estimation accuracy has been improved a lot, however, this method 
requires some primary voltage data to train the machine learning model for each node. The 
comparison between estimated and actual voltages (synthetic voltage, in this case) for one 
example service transformer is shown in the two subplots of Figure 11. The first subplot shows 
the voltage comparison, and the second subplot shows the estimation absolute percentage error at 
each time step. Generally, the shape of the estimated voltages follows the actual voltages. The 
mismatch between the estimated and actual voltages is within 0.2%, which is very small. The 
model was also tested when using the first 2,000-hour data as the training dataset and tested with 
the remaining 568-hour data. The performance is similar to the previous case, which means the 
over-fitting problem does not exist for the model. 

 
Figure 10. MAPE for the voltage estimation of each service transformer 
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Figure 11. Comparison between estimated and synthetic voltages for one example service transformer. 

Combined Method Results 

The performance of the combined method was validated by the synthetic primary-side voltages 
generated from the QSTS simulation of the OpenDSS model, since the primary-side voltages 
were not recorded in the field. The QSTS simulation was performed and the primary-side and 
secondary-side voltages at the two AMI measured loads for the five selected secondaries were 
recorded. These measurements from the secondary were used as AMI data to validate the 
combined methods. The estimation results are summarized in Table 5. From the results it can be 
observed that the estimation error decreased from 4% to 1% in the 2000-hour testing period. For 
most of the time the errors are within 1%. If some other information is available, for example, 
some secondary topologies or the reactive power measurement, we can integrate them in our 
existing method to improve the estimation accuracy. This combined method has been developed 
to a tool to estimate the primary voltages by using secondary AIM measurements. 
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Table 5. Combined method validation results 

 
Estimation Mismatch 

Physics-based Combined 

Secondary 1 3.74% 0.90% 

Secondary 2 4.06% 0.59% 

Secondary 3 3.53% 0.43% 

Secondary 4 4.28% 0.79% 

Secondary 5 3.84% 1.40% 

 
Figure 12. Estimation mismatch from one example secondary model. 

Identifying Planning Model Anomalies 

The combined method was used to identify the anomalies in the distribution network i planning 
model of Feeder A first. For this, the primary voltages estimated by the combined method for a 
selected duration were compared with those obtained from the time-series simulation of the 
distribution network planning model for the same duration. The peak load and minimum load 
days in December 2018 and January 2019 (four days) were selected for this process. The average 
estimation mismatches for all primary buses are shown in Figure 13 and the histogram of all 
estimation mismatches is shown in Figure 14. The geographic plot is shown in Figure 15. 
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Figure 13. Estimation mismatch for all primary buses on Feeder A. 

 
Figure 14. Histogram of all estimation mismatches in Feeder A. 

 
Figure 15. Geographic plot with the mismatch distribution on Feeder A. 
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The combined method was also used to identify the anomalies in the distribution network 
planning model of Feeder B first. For this, the primary voltages estimated by the combined 
method for a selected duration were compared with those obtained from the time-series 
simulation of the distribution network planning model for the same duration. The peak load and 
minimum load days in August and September 2019 (four days) were selected for this process. 
The average estimation mismatches for all primary buses are shown in Figure 16 and the 
histogram of all estimation mismatches is shown in Figure 17. The geographic plot is shown in 
Figure 18. 

 
Figure 16. Estimation mismatch for all nodes on Feeder B. 

 
Figure 17. Histogram for all estimation mismatches for Feeder B. 
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Figure 18. Geographic plot with the mismatch distribution on Feeder B. 

Phase Identification Tool: 

Phase Identification in Feeder A using 2018 AMI Dataset 

Phase identification was performed on Feeder A first using the 2018 AMI dataset. This dataset 
has the average voltage magnitude time series data for 561 AMI meters for the three-month 
period between October 1, 2018, to December 31, 2018. The AMI data for two meters per 
service transformer were available in this dataset. Additionally, the field validated phasing 
information was also available for all the meters. Based on this information, the distribution of 
the phasing for the AMI meters is shown in Figure 19.  

 

Figure 19. AMI meter phasing distribution in 2018 AMI dataset of Feeder A. 

The phase identification results are shown in Figure 20. The field validated phasing information 
is considered as the ground truth. For each type of phase connectivity, the number of meters the 
algorithm identified as pertaining to that connectivity is shown against the ground truth. The 
results show the phase identification algorithm can identify all the types of phase connectivity 
accurately. 
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Figure 20. Phase identification results of Feeder A using 2018 AMI dataset. 

The detailed breakdown of the AMI meter counts in each of the training, testing, and full datasets 
of phase identification are shown in Table 6. For each type of phase connectivity, 30% of the 
meters are selected randomly along with their ground truth phase connectivity for the training 
dataset. The full dataset includes both the training and testing datasets together. With the phase 
connectivity identified accurately for 335 out of 391 meters in the testing set alone, the phase 
identification accuracy is 85.7% on the testing set. The phase identification accuracy on the 
training and full datasets are 100% and 90%, respectively. 

Table 6. Summary of phase identification results of Feeder A using 2018 AMI dataset 

Dataset  Phase Connectivity 
Total Accuracy 

A B C AB BC CA 

Full 
Ground truth 63 100 99 80 129 90 561 

90% Phase 
identification 53 96 96 60 122 78 505 

Testing 
Ground truth 43 67 70 57 92 62 391 

85.7% Phase 
identification 33 63 67 37 85 50 335 

Training 
Ground truth 20 33 29 23 37 28 170 

100% Phase 
identification 20 33 29 23 37 28 170 

The geographic distribution of the AMI meters for which the phase connectivity identified by the 
algorithm matched the ground truth is shown in Figure 21. The meters are distributed all over the 
feeder; thus, the algorithm can detect the correct phase connectivity in all the feeder 
neighborhoods. 
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Figure 21. Locations of AMI meters for which the phase connectivity is identified correctly. 

The locations of the AMI meters where the identified phase connectivity does not match the 
ground truth are shown in Figure 22. The correct phase connectivity according to the ground 
truth is shown in this figure at these locations. The mismatches are generally not clustered or 
constrained to any specific feeder neighborhoods. 

 
Figure 22. Locations of AMI meters for which the phase connectivity is identified incorrectly. 
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Phase Identification in Feeder A using 2019 AMI Dataset 

The phase identification was also performed on Feeder A using the 2019 AMI dataset. This 
dataset has the average voltage magnitude time series data for 568 AMI meters for the full 2019-
year period. The AMI data for two meters per service transformer were available in this dataset 
in addition to the field validated phasing information. The phase identification results are shown 
in Figure 23. The results are similar to those obtained using the 2018 AMI dataset and show that 
the phase identification algorithm can identify all the types of phase connectivity accurately. 

 
Figure 23. Phase identification results of Feeder A using 2019 AMI dataset. 

The detailed breakdown of the AMI meter counts in each of the training, testing, and full datasets 
of phase identification are shown in Table 7. For each type of phase connectivity, 30% of the 
meters were selected randomly along with their ground truth phase connectivity for the training 
dataset. The phase identification accuracies on the testing, training, and full datasets are 86.5%, 
100%, and 90.5%, respectively. 

Table 7. Summary of phase identification results of Feeder A using 2019 AMI dataset. 

Dataset   
Phase Connectivity 

Total Accuracy 
A B C AB BC CA 

Full 
Ground truth 63 102 99 77 136 91 568 

90.5% Phase 
identification 55 98 98 56 126 81 514 

Testing 
Ground truth 45 72 70 54 96 64 401 

86.5% Phase 
identification 37 68 69 33 86 54 347 

Training 
Ground truth 18 30 29 23 40 27 167 

100% Phase 
identification 18 30 29 23 40 27 167 



31 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

The geographic distribution of the AMI meters for which the phase connectivity identified by the 
algorithm match the ground truth is shown in Figure 24. The meters are distributed all over the 
feeder; thus, the algorithm can detect the correct phase connectivity in all the feeder 
neighborhoods. 

 
Figure 24. Locations of AMI meters for which the phase connectivity is identified correctly. 

The locations of the AMI meters where the identified phase connectivity does not match the 
ground truth are shown in Figure 25. The correct phase connectivity according to the ground 
truth is shown in this figure at these locations. 

 
Figure 25. Locations of AMI meters for which the phase connectivity is identified incorrectly. 
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Phase Identification in Feeder B using 2019 AMI Dataset 

The phase identification algorithm was applied to the 2019 AMI dataset of Feeder B. This 
dataset has the average voltage magnitude time series data for 857 AMI meters for the full 2019-
year period. The AMI data for two meters per service transformer were available in this dataset 
in addition to the field validated phasing information for these meters. The field validated 
phasing information was considered the ground truth. The phase identification results are shown 
in Figure 26. The ground truth phasing distribution in this figure indicates this feeder primarily 
has phase-to-neutral AMI phase connectivity. A small number of meters are connected to phase-
to-phase. 

 
Figure 26. Phase identification results of Feeder B using 2019 AMI dataset. 

The detailed breakdown of the AMI meter counts in each of the training, testing, and full datasets 
of phase identification are shown in Table 8. For each type of phase connectivity, 30% of the 
meters are selected randomly along with their ground truth phase connectivity for the training 
dataset. With the phase connectivity identified accurately for 809 out of 857 meters in the testing 
set alone, the phase identification accuracy is 94.4% on the testing set. The phase identification 
accuracy on the training and full datasets are 100% and 92%, respectively. 

Table 8. Summary of phase identification results of Feeder B using 2019 AMI dataset 

Dataset   
Phase Connectivity 

Total Accuracy 
A B C AB BC CA 

Full 
Ground truth 268 310 251 17 1 10 857 

94.4% Phase 
identification 260 293 241 12 0 3 809 

Testing 
Ground truth 188 217 176 12 1 7 601 

92% Phase 
identification 180 200 166 7 0 0 553 

Training 
Ground truth 80 93 75 5 0 3 256 

100% Phase 
identification 80 93 75 5 0 3 256 
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The geographic distribution of the AMI meters for which the predicted phase connectivity 
matches the ground truth is shown in Figure 27. The meters whose phase connectivity is 
identified correctly are distributed all over the feeder. This indicates the algorithm can detect the 
correct phase connectivity in all the feeder neighborhoods. 

 
Figure 27. Locations of AMI meters for which the phase connectivity is identified correctly. 

The locations of the AMI meters where the identified phase connectivity does not match the 
ground truth are shown in Figure 28. The correct phase connectivity according to the ground 
truth is shown in this figure at these locations. The mismatches are generally not clustered or 
constrained to any specific feeder neighborhoods. 

 
Figure 28. Locations of AMI meters for which the phase connectivity is identified incorrectly. 
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Meter-to-Transformer Mapping Results: 

Tables 9, 10, and 11 below, show the results of the methodology with three different correlation 
coefficient calculation methods. Table 12 summarizes the overall comparison results. The 
category, “# of swap” means the total number of incorrect records which are randomly created to 
test the methodology. 

Table 9. Pearson correlation coefficient 

Test # of Swap Detection Correction Right Correction 

1 10 10 7 5 

2 15 15 8 8 

3 20 20 11 10 

4 25 24 15 12 

5 30 28 22 16 

Summary 100 97% 63% 51% 

Table 10. Spearman correlation coefficient 

Test # of Swap Detection Correction Right Correction 

1 10 10 7 5 

2 15 15 10 9 

3 20 20 12 10 

4 25 24 15 13 

5 30 28 23 17 

Summary 100 97% 67% 54% 

Table 11. Kendall correlation coefficient 

Test # of Swap Detection Correction Right Correction 

1 10 10 7 5 

2 15 15 11 10 

3 20 20 12 10 

4 25 24 16 13 

5 30 28 23 18 

Summary 100 97% 69% 56% 

Table 12 indicates that the Spearman correlation coefficient has the highest score in both recall 
and precision, and therefore fits the methodology best. All methods detect 97% of the incorrect 
records. 
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Table 12. Method comparison 

Method Recall Precision 

Pearson 63% 80.95% 

Kendall 67% 80.60% 

Spearman 69% 81.16% 

Task 5: Project Management: 

Final Task: CRADA Final Report: Preparation and submission in accordance with Article X.  

The EPIC report is prepared to summarize all studies in this project [12].  

Subject Inventions Listing: 

None 

ROI #: 

None 
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