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This material is based upon work supported by the 
Department of Energy’s Office of Energy Efficiency and 
Renewable Energy (EERE) under the Building Technologies 
Office under Award Number EE0007571.

The work presented in this EERE Building America report 
does not represent performance of any product relative to 
regulated minimum efficiency requirements. 

The laboratory and/or field sites used for this work are not 
certified rating test facilities. The conditions and methods 
under which products were characterized for this work differ 
from standard rating conditions, as described. 

Because the methods and conditions differ, the reported 
results are not comparable to rated product performance 
and should only be used to estimate performance under the 
measured conditions.



In cooperation with the Building America Program, 
the Fraunhofer USA Center for Manufacturing 
Innovation CMI1 team is one of many Building 
America teams working to drive innovations that 
address the challenges identified in the program’s 
Research-to-Market Plan.

This report, Development and Validation of 
Algorithms That Analyze Communicating Thermostat 
Data to Identify Enclosure Retrofit Opportunities, 
explores ways to automatically identify residential 

1   Most project work was performed at the Fraunhofer USA Center for Sustainable Energy Systems CSE, until the Building 
Energy Systems team merged with the Fraunhofer USA Center for Manufacturing Innovation CMI in March 2019, forming a new 
Energy Systems team.

homes with enclosure retrofit opportunities; 
estimate prospective savings; and perform 
evaluation, measurement, and verification using 
interval data from communicating thermostats.

As the technical monitor of the Building America 
research, the National Renewable Energy 
Laboratory encourages feedback and dialogue 
on the research findings in this report as well as 
others. Send any comments and questions to 
building.america@ee.doe.gov.
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FOREWORD
The U.S. Department of Energy (DOE) 
Building America Program has spurred 
innovations in building efficiency, 
durability, and affordability for more 
than 25 years. Elevating a clean energy 
economy and skilled workforce, this 
world-class research program partners 
with industry to leverage cutting-edge 
science and deployment opportunities 
to reduce home energy use and help 
mitigate climate change.

https://energy.gov/eere/buildings/building-america-research-teams
https://energy.gov/eere/buildings/building-america-research-teams
https://www.energy.gov/eere/buildings/downloads/building-america-program-research-market-plan
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We developed computational algorithms 
that automatically analyze communicating 
thermostat (CT) heating data that could 
be used to increase the customer uptake 
of insulation and air sealing energy 
conservation measures (ECMs) by 
identifying homes with the most significant 
retrofit opportunities, estimating post-retrofit 
energy savings, and formulating home-
specific outreach. The algorithms are based 
on an extended second-order grey-box 
model that characterizes a building’s thermal 
response using lumped elements, coupled 
with an empirical model of infiltration that 
accounts for both wind and stack effects. The 
basic parameters of the model correspond to 
actual physical parameters of the home, i.e., 
the home’s overall R-value and the building 
envelope ACH50. 

Unlike the conventional approach, which 
estimates model parameters based on the 
best fit to the observed time-dependent 
room temperature, our approach derives 
correlations between the daily heating 
system runtime and temperature difference 
(indoor-outdoor) that are more robust to data 
quality issues in real-world applications. 
We also used HEA data for algorithm 
development and validation.

With the help of our utility partners, 
Eversource and National Grid, we obtained 
data sets for hundreds of Massachusetts 
homes. For each home, these data 
sets included three sets of information 
anonymized by the utility:

Customer acquisition occurs primarily 
through energy bill mailers, mass 
media, and online advertising that 
lack specificity about home-specific 
retrofit opportunities, expected energy 
savings, and cost-effectiveness. 
Specific retrofit opportunities 
are identified via on-site home 
energy assessments (HEAs) that 
are inconvenient to homeowners, 
expensive, and of variable accuracy.

EXECUTIVE 
SUMMARY
Annual energy savings of up to 
$4 to $5 billion could be achieved 
nationwide through basic insula-
tion and heating system retrofits of 
existing homes (Zeifman, Lazrak, 
and Roth 2020a). However, current 
utility energy efficiency programs 
are costly and challenging to scale. 
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• CT data (HVAC runtime, room temperature, and, for some vendors, 
outdoor temperature and wind speed) collected by the CT vendor (one 
of three) over a heating season

• HEA report performed by the HEA vendor (same vendor for all homes)

• Monthly utility gas bills coincident with the CT data (3 to 24 per home, 
depending on availability).

For some homes, we also obtained blower-door test results.

Initially, we applied the algorithms developed to homes with a single CT 
and then extended them to homes with two CTs by using an equivalent 
home approach. Finally, we developed algorithms for prediction of energy 
savings and a methodology of comparing our predictions with those 
generated by HEAs.

The main technical results are summarized in Figure ES-1 through Figure 
ES-3. The results indicate that we can reliably identify homes with 
insulation and/or air sealing retrofit opportunities and provide accurate 
savings predictions.

Our hypothesis is that the algorithms could be applied to utility energy 
efficiency programs to identify homes that could realize significant energy 
savings from insulation and/or air sealing retrofits. This information 
could then be used to reach out to those homes with highly customized 
outreach, thereby delivering increased program energy savings and cost-
effectiveness. This would:

1. Significantly increase the uptake rate of on-site HEAs, and 

2. Significantly increase the fraction of HEAs resulting in ECM 
implementation.

To test these hypotheses, we designed and conducted a randomized 
controlled trial (RCT). The RCT results suggest that personal messaging 
leads to a two- to five-fold increase in the HEA uptake rate. 

ix
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Figure ES-1. Overall Home R-value estimates versus data from HEAs (ground truth, or GT). The classification  
accuracy (R≤8 vs. R>8) is 89% (N = 154). Left: results by number of CTs per home; right: results by heating system type.

Figure ES-2. ACH50 estimates versus blower-door tests results from HEAs. The classification accuracy (ACH50≤8 
vs. ACH50>8) is 96% (N = 24). Left: results by number of CTs per home; right: results by heating system type.

Figure ES-3. Estimated and HEA-based predictions for percent energy savings from insulation and air sealing. 
Left: 29 out of 34 homes have estimated predictions within ±25% of HEA predictions (GT); right: 11 out of 15 homes have estimated predictions within 

±25% of HEA predictions (GT).
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1 Introduction 
Many states have aggressive energy efficiency goals. Given that space heating and cooling 
account for over 40% of residential primary energy consumption (DOE/EIA 2018) and many 
residential buildings have relatively poor thermal performance, insulation and air sealing retrofits 
of existing homes can make major contributions to reaching these goals. 

In the United States, utility energy efficiency programs subsidize and deliver a large portion of 
the retrofits implemented each year. These programs face two daunting challenges. First, due to 
their past success, many programs have growing energy savings goals. For example, in 
Massachusetts the gas savings goal increased from 1.12% of sales for 2013–2015 to 1.24% in 
2016–2018 (Mass DPU 2016). Second, they need to deliver these energy-saving retrofits cost-
effectively—i.e., the discounted value of the energy saved by a retrofit over its lifetime must 
exceed its first cost. 

Realizable retrofit opportunities vary appreciably among homes. For example, the U.S. 
Department of Energy (DOE)/U.S. Energy Information Administration (EIA) Residential Energy 
Consumption Survey (DOE/EIA 2009) and Massachusetts Residential Appliance Saturation 
Survey (Opinion Dynamics Corporation 2009) indicate that about 20% to 25% of Massachusetts 
homes have significant insulation and/or heating system retrofit opportunities. Assuming typical 
savings of approximately 10% to 30% from basic insulation and air sealing retrofits indicates an 
energy savings potential on the order of 4% of total space heating and cooling energy 
consumption. 

Delivery of insulation, air sealing, and heating system retrofits follows a multistep process that is 
often costly and challenging to scale. Customer acquisition occurs primarily through energy bill 
mailers, mass media and online advertising, and customer-initiated home energy assessment 
(HEA) requests that lack information about home-specific energy savings opportunities, 
expected energy savings, and cost-effectiveness. Once a customer requests an on-site HEA 
(which is free for ratepayers in some states, such as Massachusetts), the HEA must be scheduled 
and take place. Currently, an HEA involves a home visit by an energy service professional who 
conducts an extensive survey and a critical analysis of the household’s conditions to identify and 
characterize energy savings opportunities (S3C 2019, BPI 2012). These assessments can be 
inconvenient to many homeowners, expensive (approximately $250–$500) for the program and 
are of variable accuracy. After the HEA, the homeowner must then decide whether to implement 
the recommended energy conservation measures (ECMs), and a majority do not. For example, in 
the nation’s top-ranked residential energy efficiency programs by ACEEE (Massachusetts), only 
about 35% of HEAs ultimately result in major retrofits (Klint 2018). In other programs, the 
conversion rates can be significantly lower, e.g., typical rates in Minnesota are 7%–15% (Mark 
et al. 2016). This low closure rate increases the effective cost of program delivery. Finally, 
customers rarely get feedback on realized savings from ECMs beyond energy bills, while utility 
energy efficiency programs do not learn of potential large-scale field problems with ECMs until 
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after costly evaluation, measurement, and verification (EM&V) studies, years after ECM 
implementation. 

In some cases (Blasnik 2018), utility energy efficiency programs select candidate retrofit homes 
by identifying homes with high space heating energy use intensity (EUI, in kBtu/ft2) based on 
gas bills and the conditioned floor space. Using HEA data provided by our utility partners (see 
Section 2), we calculated the EUI and compared it with objective metrics indicating insulation 
retrofit (overall building envelope R-value) and air sealing (ACH50) opportunities. Figure 1 
shows the results: no noticeable correlations between EUI and the objective retrofit metrics. 

  

Figure 1. Energy use intensity versus physical parameters characterizing retrofit opportunity 

The results shown were calculated for CT vendor #3 homes (see Table 2). Blower-door tests were performed for 29 homes. 

In sum, the current approach makes it challenging to cost-effectively deliver the numerous 
retrofit opportunities that do exist; for example, around 1% of households in Massachusetts 
implement insulation; air sealing; or heating, ventilating, and air-conditioning (HVAC) retrofits 
each year.  

Energy efficiency programs would benefit significantly from tools that improve each step of the 
retrofit delivery process, and emerging data sources provide the opportunity to develop such 
tools. Specifically, communicating thermostats (CTs) provide insights into heating system 
operations and building thermal response that, in turn, reflect building physical parameters 
corresponding to retrofit opportunities, i.e., R-value, air leakage, and heating system efficiency. 
CTs account for a significant portion of thermostat unit sales, and one market research firm 
projects that approximately 16.6% of U.S. homes with broadband service will have at least one 
CT by the end of 2021 (Barbour 2021). Moreover, many utilities provide energy efficiency 
incentives for purchasing CTs and, as a condition for providing the incentive, some obtain access 
to the CT data.  

Therefore, there is an opportunity to significantly improve energy efficiency program 
effectiveness by using CT data combined with additional data available to utilities. What is 
necessary for this opportunity to materialize is a set of validated and scalable algorithms that 
automatically analyze CT data to accurately characterize home retrofit opportunities and predict 
expected retrofit energy savings. 
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In this project, Fraunhofer USA teamed with Eversource and National Grid to develop 
algorithms that analyze CT data combined with gas consumption data and basic home 
characteristics (floorspace, number of stories, and gas bills) available to utilities. The algorithms 
use these data to remotely and accurately identify the aforementioned energy efficiency 
opportunities to reduce residential space heating energy consumption for each individual home, 
as well as to estimate the home-specific energy savings potential. The team expects that using the 
algorithms in energy efficiency programs to provide targeted, customized, and actionable 
outreach to customers that are likely to have target retrofit opportunities will be significantly 
more compelling to customers than generic messages. In particular, the expected ultimate project 
outcomes are: 

• Increasing the number of HEAs requested in homes with the target retrofit opportunities;  

• Increasing the number of HEAs that result in implementation, thus, increasing the 
number of target retrofit measures implemented; and  

• Ensuring that the retrofits deliver the expected savings (remote quality control). 

The quantitative, measurable project objectives were to: 

1. Identify the approximately 20% homes (per Opinion Dynamics Corporation 2009, 
DOE/EIA 2009) that would most benefit from at least one of the target ECMs to reduce 
space heating energy consumption: insulation and air sealing. 

2. Predict the household-specific energy savings of the target ECMs within ±25% as 
compared to either the predicted energy savings from the energy audits, adjusted as 
appropriate for realization rates, or the actual energy savings obtained from implemented 
ECMs. 

3. Double the participation in on-site energy audits through partner utility programs for the 
target households identified by the tool. 

This report is organized as follows. Section 2 describes the data sets we obtained along with the 
associated data issues and challenges. Section 3 explains the physics-based algorithmic 
methodology that evolved from a simple inverse problem to a more elaborate approach that is 
successfully applied to homes with a single CT. This approach is extended further to incorporate 
homes with two CTs in Section 4. In Section 5, we develop and partially validate our approach to 
estimate prospective savings from ECM implementation. To measure the effect of the developed 
algorithms on HEA requests and implementations, we designed and conducted a randomized 
controlled trial (RCT) that is discussed in Section 6. In Section 7, we consider three immediate 
use cases extending the scope of this project: (1) analysis of cooling season data, (2) evaluation, 
measurement, and verification (EM&V) of ECM performance through comparison of pre- and 
post-ECM implementation CT data, and (3) application of the algorithms to homes heated with 
delivered fuels (i.e., evaluating algorithm effectiveness without gas bills). In the final section, we 
draw overall project conclusions and provide recommendations for further work. 
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In addition, a companion Best Practices Guide provides recommendations for effectively 
integrating the CT algorithms with energy efficiency programs (Roth and Zeifman 2020). 

2 Experimental Data 
We used anonymized interval CT and HEA home characteristics data from the Eversource and 
National Grid Home Energy Services program. The Home Energy Services program is the 
residential Mass Save program that delivers free home energy assessments, heavily subsidized 
CT installations, insulation and air sealing retrofits, and incentives for high-efficiency HVAC, 
water heating, and appliance retrofits (Home Energy Services 2018). To receive a CT rebate, 
households must sign a data waiver that grants the utilities access to the CT data. 

Each data set for a home includes three pieces of information anonymized by the utility: 

• CT data collected by the CT vendor (one of three) over a heating season, in CSV format 

• HEA report in Excel spreadsheet format, performed by the HEA vendor (same vendor for 
all homes) 

• Monthly utility gas bills in Excel spreadsheet format, overlapping with the CT data in 
time (number of bills varies from 3 to 24 per home depending on availability). 

The CT data characteristics1 differ among vendors. For example, vendor #1 records all data 
fields every 5 minutes, whereas vendors #2 and #3 record all data fields as soon as there is a 
change in at least one of the fields. Table 1 describes some of the data fields in detail. Additional 
data fields that were not used in this work (e.g., indoor humidity) are not shown. Vendor #1 also 
has a data field for “stage,” to report what furnace stage(s) are running, although that field often 
remained unpopulated (i.e., for single-stage device).  

 
1 Note that due to a long chain of communications, not all our inquiries were answered by the CT/HEA vendors. The 
process of data collection and transferring took almost two years to complete. 
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Table 1. CT Data Fields Reported by Vendor 

CT Vendor/Data 
Field HVAC Status Room Temp Outdoor 

Temp Wind Speed Time Stamp 

Vendor #1 

Duration of 
“on” time over 
5-min interval, 
1-s resolution 

Average over 
5-min interval, 
0.1°F 
resolution 

Average over 
1-h interval 
(from nearest 
weather 
station), 0.1°F 
resolution 

Average over 
1-h interval 
(from nearest 
weather 
station), 1 
km/h 
resolution 

Every 5 min 

Vendor #2 

“On” or “off,” 
reported only 
when any 
data field 
changes 

Unclear if 
averaged, 1°F 
resolution, 
reported only 
when any 
data field 
changes 

Average over 
1-h interval 
(from nearest 
weather 
station), 1°F 
resolution 

N/a 

Reported for 
every change 
in any data 
field, 1-s 
resolution 

Vendor #3 

“On” or “off,” 
reported only 
when any 
data field 
changes 

Unclear if 
averaged, 1°F 
resolution, 
reported only 
when any 
data field 
changes 

Average over 
1-h interval 
(from nearest 
weather 
station), 1°F 
resolution 

N/a 

Reported for 
every change 
in any data 
field, 1-s 
resolution 

 

To be useful for this project, combined data for each home must include at least one month of 
CT data collected during a heating season along with coincident gas bills and the HEA data. 
Because of this completeness requirement, we could only use some of the obtained CT data sets.  

Table 2 lists the numbers of complete home data sets we received. In total, we obtained complete 
data sets for about 450 Massachusetts homes. 

Table 2. Numbers of Homes With Complete Data Sets 

CT Vendor  Furnace and 
1 CT 

Furnace and 2 
CTs Boiler and 1 CT Boiler and 2 

CTs 

Vendor #1 17 10 4 2 

Vendor #2, National Grid 84 42 24 15 

Vendor #3, Eversource 79 69 28 83 

Total 180 121 56 100 
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2.1 Data Challenges 
Similar to other researchers (Siemann 2013), we noticed several problems with CT data. The 
most frequent problem is missing or unreported HVAC runtime. Unlike indoor or ambient 
temperature, missing runtime cannot be interpolated. Moreover, algorithmic identification of 
missing runtime can be a daunting task; for example, rising indoor temperature may or may not 
be indicative of missing runtime (it could indicate a supplemental heating system). Another 
problem is an apparent time lag of up to 10 minutes between the HVAC status and change in 
indoor temperature reported; such a lag seems excessive for furnace-heated homes. The outdoor 
temperature data were mostly missing for vendors #2 and #3, in those cases we replaced it with 
the temperature observed at the closest weather station (same for wind). Finally, the 1°F 
resolution of temperature data from vendors #2 and #3 is too coarse to be used for a conventional 
grey-box model identification technique (see Section 3). 

HEA reports (also known as audit results) comprise numerous data fields; however, not all of 
them were populated in the anonymized digital files we received. The populated fields included 
basic home sizing information (ceiling height, conditioned floor space, number of floors, total 
volume, attic area, wall area), overall R-values for walls and attic, U-factor for windows, 
infiltration rate in CFM50, and basic HVAC information (heating system type, atmospheric or 
condensing heating system, fuel type, heating- and distribution-system efficiencies, and heating 
system capacity). The unpopulated fields in some HEA reports included, e.g., window area, and 
floor space. 

We obtained a description of HEA procedure underlying these reports and also analyzed the 
HEA data and compared them to the corresponding interval data and gas bills. These analyzes 
suggest different levels of reliability for the audit results. In particular, we are confident in home 
size information and in overall R-values for walls and attics/roofs and in U-values for windows. 
In contrast, heating system capacity is an estimated parameter that is not consistently accurate, 
because the discrepancy between the audit value and the value calculated from gas bills/runtime 
information can differ by a factor of up to 10. The infiltration rate is also estimated based on a 
qualitative on-site assessment, making it highly unreliable as well (e.g., blower-door test results 
that we obtained for some audited homes varied by a factor of up to four from the audit values). 

3 Algorithm Methodology 
3.1 Literature Survey 
Prior to this project, we reviewed the state-of-the-art for remote HEA approaches using interval 
(e.g., CT) data (Zeifman and Roth 2016). Although there are currently no widely accepted 
methods capable of characterizing the insulation, air sealing, and/or heating system retrofit 
opportunities for homes at scale, the potential approaches should be based on predictive models 
connecting the data inputs with retrofit-characterization outputs (Gaasch et al. 2014). Major 
retrofit opportunities can be characterized by physical home parameters such as the overall 
envelope R-value, ACH50, and HVAC efficiency, and models capable of predicting these 
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parameters can be loosely divided into white-box, grey-box, and black-box categories (Afram 
and Janabi-Sharifi 2015; Berthou et al. 2014).  

White-box models are very detailed and accurate physics-based simulation tools, e.g., 
EnergyPlus™. Because these models typically require hundreds of parameters to describe a 
single building, both setting up the model and estimation of its parameters from experimental 
data (i.e., calibration) to characterize the retrofit opportunities are time-consuming and, 
sometimes, ill-posed tasks, making the white-box models difficult to scale.2  

In this application, black-box models rely on large training data sets and machine learning 
techniques to estimate building physical parameters and/or classify buildings by their retrofit 
opportunities (e.g., Pathak et al. 2019). Because these models do not have a physical basis, their 
predictive ability is limited and restricted to homes whose characteristics are represented by 
those in the training data set. Thanks to their simplicity, these models can scale fairly easily, but 
only if appropriate and large training data sets exist. 

Grey-box models use relatively coarse-grained physical models (typically, lumped models) with 
just a few parameters. Although these models seem to combine the advantages of the other two 
model categories (i.e., the predictive ability of physics-based white-box models and the 
scalability of the black-box models), they are inherently coarse; consequently, the estimated 
building parameters may not precisely match the actual physical building parameters. 

We concluded that grey-box models are most suitable for remote HEAs, as they combine the 
physics-based predictive ability of white-box models and the scalability of black-box models. 

A first-order model is the simplest grey-box model, and, unsurprisingly, several research groups 
(Goldman 2014; Newsham et al. 2017; Chong and George 2018) proposed a retrofit-
characterizing measure based on a first-order grey-box model. This measure is related to cooling 
gradient (i.e., temperature slope during thermostat setback periods) and its dependence on the 
ambient temperature. 

The first-order grey-box model implies a single lumped heat balance equation for a home, e.g.,   

𝑀𝑀𝑡𝑡
𝑑𝑑𝑇𝑇𝑟𝑟
𝑑𝑑𝑡𝑡

= 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑖𝑖

+ 𝐴𝐴𝑤𝑤𝑈𝑈(𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑟𝑟)    (1) 

where variables Tr and Ta are indoor (room) and outdoor temperatures, Aw is overall area of the 
external surfaces like walls, windows, roof/attic, foundation (i.e., building envelope), U is 
integrated envelope heat loss characteristic due to conductive and infiltrative processes 
(Newsham et al. 2017), Mt is thermal mass characteristic (Newsham et al. 2017), 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is 
HVAC heat supply, and qint/ext are additional internal (e.g., from appliances and people) and 
external (e.g., solar) heat gains. 

When the heating system does not run for extended periods of time, such as during thermostat 
setbacks, QHVAC = 0 and Eq. (1) has a simple exponential decay function as a closed-form 

 
2 We are aware of efforts to “autotune” EnergyPlus (see New et al. 2012), but this technology is still at early stage. 
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solution for indoor temperature Tr, if the additional heat gains are neglected (Chong and George 
2018) and if the integral heat loss characteristic U is constant. The “time constant” of this 
solution (i.e., inverse of the decay rate) is proposed by Chong and George (2018) to serve as 
ultimate measure of “the leakiness of a building.” Although this measure seems enticing for 
HEA, Newsham et al. (2017) are cautious in their analysis, suggesting that the differences in the 
cooling rates between different buildings, as well as the variability of the cooling rates of the 
same building, could be attributed to the differences in envelope insulation, air leakage rate, 
envelope area, and/or thermal mass. 

First-order grey-box models are known to yield relatively poor accuracy in predicting building 
thermal response, whereas second- and higher-order models usually offer satisfactory accuracy 
(Mejri et al. 2011). Moreover, the meaning of some physical parameters of the first-order model 
is unclear and may be misleading (e.g., the “thermal mass characteristic” Mt in Eq. (1) lumps 
together the heat capacitances of building envelope and those of the internal space). Lastly, 
although in principle the air leakage heat loss can be separated from the heat conductance loss by 
introducing an additional air leakage heat loss term in Eq. (1), incorporating the nonlinear stack 
effect for air leakage (see next section) will make the differential equation nonlinear, thus 
invalidating the simple exponential solution along with its “time constant.” 

Accordingly, we decided to use a second-order grey-box model as a basis for development of 
remote HEA methods.  

3.2 Model Development 
Our grey-box model incorporates characteristics of building insulation and airtightness as well as 
the building thermal mass by using two capacitances (indoor space and lumped envelope) and 
three thermal resistances (two identical resistances for external and internal surfaces of the 
lumped envelope and one for convection induced by air infiltration). The lumped envelope is a 
single value representing a building’s entire envelope, including opaque walls, windows, 
roof/attic, and foundation. Note that in our earlier work (Zeifman and Roth 2016), we did not 
split the external wall into two resistances, which led to a nonphysical factor of two in matching 
the estimated and HEA-based R-values. The proposed balance equations are: 

𝐶𝐶𝑟𝑟
𝑑𝑑𝑇𝑇𝑟𝑟
𝑑𝑑𝑡𝑡

= 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 𝑞𝑞𝑖𝑖𝑖𝑖𝑡𝑡 + 𝐻𝐻𝑤𝑤
𝑅𝑅𝑤𝑤
2

(𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑟𝑟) + 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖   (2) 

𝐶𝐶𝑤𝑤
𝑑𝑑𝑇𝑇𝑤𝑤
𝑑𝑑𝑡𝑡

= (𝐴𝐴𝑤𝑤/(𝑅𝑅𝑤𝑤/2)) × (𝑇𝑇𝑟𝑟 − 𝑇𝑇𝑤𝑤) + 𝐴𝐴𝑤𝑤/(𝑅𝑅𝑤𝑤/2))(𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑤𝑤)+ 𝑞𝑞𝑒𝑒𝑒𝑒𝑡𝑡  (3) 

where variables 𝑇𝑇𝑟𝑟, 𝑇𝑇𝑤𝑤, 𝑇𝑇𝑎𝑎 are, respectively, indoor, lumped envelope, and outdoor temperatures, 
Rw and Aw are overall R-value and area of the lumped envelope, Cw is overall thermal 
capacitance of the exterior surfaces, Cr is overall heat capacitance of the internal space, 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is 
HVAC heat supply, 𝑞𝑞𝑖𝑖𝑖𝑖𝑡𝑡 is internal heat gains/losses affecting directly 𝑇𝑇𝑟𝑟,  𝑞𝑞𝑒𝑒𝑒𝑒𝑡𝑡 represents 
radiative (foremost solar) or rain/sleet/snow-related heat transfer between the outside of the 
building enclosure and the outdoor environment, and 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 is heat loss due to air infiltration. The 
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latter factor accounts for, on average, about 25–30% of U.S. single-family space-heating loads in 
heating-dominated climate zones (Huang et al. 1999). Among these variables, only Tr and 
HVAC on/off status (embedded in QHVAC) are directly sensed by a CT. 

A conventional way to calibrate the model, i.e., to estimate the model parameters, is to discretize 
the Eqs. (2) and (3) and minimize the difference between the observed and modeled state 
variable, Tr(t) (Lin et al. 2012; Bacher and Madsen 2011; Siemann 2013; Harish and Kumar 
2016). This inverse problem can be ill-posed in the sense that small variations of the observed 
variable lead to large changes of the parameter estimates. To alleviate this problem, we use the 
derived closed-form solution that does not require the discretization step (Zeifman and Roth 
2016). In a more recent work, we applied this method to CT data sets from several homes and 
compared the estimated overall R-values with qualitative self-assessments of the home insulation 
levels (Zeifman, Roth, and Urban 2017). Although that comparison showed good 
correspondence between the estimated and HEA data, several limitations make it difficult to 
scale-up this initial approach: 

1. Nighttime: To reduce the effect of non-HVAC heat gains/losses that are difficult to 
model, we restricted the CT data to nighttime only. This restriction, however, can lead to 
an overfitting problem (Lin et al. 2012) because of the lack of system excitation during a 
given night. Combining numerous nighttime data segments together could potentially 
mitigate this problem, yet the number of parameters to be identified (e.g., initial lumped 
wall temperature for each nighttime segment) grows proportionally to the number of 
nights, making the problem computationally intractable. 

2. Zone solution: Eqs. (2)-(3) are applicable to a single thermal zone in a residential 
building, but even a single-thermostat home does not necessarily comprise a single 
thermal zone. Accordingly, the second-order grey-box model, Eqs. (2)-(3), can be too 
coarse to describe the thermal response of actual homes.  

3. Nonlinear air leakage: While the wind-driven component of the air infiltration 
phenomenon is linear with (Tr – Ta), meaning its incorporation still allows for the closed-
form solution of Eqs. (2)-(3), the stack effect varies nonlinearly with (Tr – Ta) (Younes 
2012). As a result, no closed-form solution can be derived for a second-order grey-box 
model that incorporates both wind-driven and stack components of air infiltration. 

4. On/off heating: Originally, we modeled the HVAC heat supply QHVAC as a two-state 
variable that has a fixed value whenever the HVAC is called on, and is zero otherwise. 
This model is appropriate for a single-stage furnace, and in principle it can be extended to 
accommodate a multi-stage furnace. However, it is unclear if the on-off or discrete 
heating model also works for boilers, especially for condensing boilers that can modulate 
extensively. In addition, the timing of heat delivery can be delayed for boilers with more 
massive (e.g., cast-iron) radiators and for steam-based systems. 



Development and Validation of Algorithms That Analyze Communicating Thermostat Data to Identify Enclosure 
Retrofit Opportunities 

10 

Due to the air leakage nonlinearity limitation, we used a commercial software package, the 
MATLAB Grey-box toolbox (Ljung 2017), that is specifically designed for implementation and 
identification of arbitrary grey-box models. Overcoming other challenges is explained in the next 
section. 

3.3 Restricted Grey-Box Model With Infiltration and the “Static” Approach 
Accurate physics-based modeling of air infiltration requires addressing both wind and stack effects 
(see previous section), which can lead to cumbersome mathematical terms with numerous fitting 
parameters (Walker and Wilson 1990). On the other hand, given the coarseness of the second-order 
grey-box model and limited experimental data available to us (e.g., no local home-specific weather 
data available), empirical relationships can be as accurate but more practical for implementation. 
Accordingly, in this work we use Walker’s (2017) empirical model with just two fitting parameters: 

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 =  −𝜌𝜌𝑎𝑎𝑖𝑖𝑟𝑟𝑐𝑐𝑝𝑝,𝑎𝑎𝑖𝑖𝑟𝑟(𝐶𝐶1𝑊𝑊2.6 + 𝐶𝐶2|𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑟𝑟|1.3)0.5(𝑇𝑇𝑟𝑟 − 𝑇𝑇𝑎𝑎)  (4) 

where the first two terms designate air density and air heat capacitance, respectively, W the wind 
speed, and C1 and C2 are fitting parameters. 

To address the zone challenge of the initial approach (see previous section), we extended the 
conventional grey-box model by restricting its search space. The main assumption is that QHVAC 
is evenly distributed over the interior floor space of the residential single-family building and 
that zone temperature dynamics follow those of the “average” indoor temperature. We think this 
assumption mainly applies to homes controlled by a single thermostat and heated with furnaces, 
but can also correspond to boiler-heated homes with a single thermostat. The basic modeling 
idea then is that the experimental indoor temperature curve is no longer considered to be the 
“best” solution to which a grey-box model’s solution is conventionally fitted for parameter 
identification (Lazrak and Zeifman 2017). Rather, the parameters of Eqs. (2)-(4) are estimated by 
fitting the model prediction to an unknown yet “best” second-order solution, i.e., a hypothetical 
curve that may differ from the individual experimental ones. Although such a curve is unknown, 
we can assess some parameters that define this curve using overall approximated correlations. 
Such correlations can, in turn, yield confidence intervals for these parameters that we propose to 
use to restrict the search space in the conventional grey-box model identification. 

How do we obtain those correlations? First, let us integrate Eqs. (2) and (3) over a relatively long 
period of time τ, so that the initial and final values of indoor (and wall) temperatures are 
approximately the same: 

0 = 𝑄𝑄� ∑ 𝑡𝑡𝑜𝑜𝑖𝑖 + �𝑞𝑞𝚤𝚤𝑖𝑖𝑡𝑡����� + 0.5𝑞𝑞𝑒𝑒𝑒𝑒𝑡𝑡����������𝜏𝜏 − 𝐻𝐻𝑤𝑤(𝑇𝑇𝑟𝑟���−𝑇𝑇𝑎𝑎���)𝜏𝜏
𝑅𝑅𝑤𝑤

+ 𝑞𝑞𝚤𝚤𝑖𝑖𝑖𝑖�����𝜏𝜏    (5) 

where the bar designates averaging over time and Q is the HVAC heat supply at state “on” (zero 
heat supply in the “off” state). It is easy to see that this “static” Eq. (5) is an energy conservation 
equation and also is the well-known PRISM model (Fels 1986). The statistical confidence 
interval for the slope in this linear regression can be used to restrict the search space for 𝑅𝑅𝑤𝑤𝑄𝑄�. 
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Figure 2 shows an example of a correlation between the “on” time and indoor-outdoor 
temperature difference, predicted by Eq. (5), for a home. It can be seen in the figure that better 
correlations (scatter-wise) occur for τ, ranging from 24 hours to several days. 

 
Figure 2. Correlations predicted by Eq. (5) and calculated from CT data for a furnace-heated home 

We can also add a second, “dynamic” correlation by considering dependence of the room 
temperature gradient on ambient temperature. Unlike the cooling gradient discussed earlier (see 
section 3.1), this one is a heating gradient. Many U.S. residential heating systems, particularly 
furnaces, are sized to enable quick temperature recovery, meaning they have significantly more 
capacity than design loads (Brand and Rose 2012), so that the heating curves are often much 
more linear in time than the cooling curves. Accordingly, Eq. (2) can be approximated by a 
difference equation over the “on” portion of heating cycle 

∆𝑇𝑇𝑟𝑟
𝑡𝑡𝑜𝑜𝑖𝑖

≈ 𝑄𝑄
𝐻𝐻𝑟𝑟

+ 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖
𝐻𝐻𝑟𝑟

+ 𝑞𝑞𝑒𝑒𝑒𝑒𝑖𝑖
2𝐻𝐻𝑟𝑟

− 𝐻𝐻𝑤𝑤
𝑅𝑅𝑤𝑤𝐻𝐻𝑟𝑟

(𝑇𝑇𝑟𝑟 − 𝑇𝑇𝑎𝑎 + ∆𝑇𝑇𝑤𝑤) + 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖
𝐻𝐻𝑟𝑟

   (6) 

where ∆Tr is the room temperature gain during the “on” portion of the heating cycle and ∆Tw is 
the difference between the actual lumped wall temperature and the steady-state lumped wall 
temperature, obtained from Eq. 3. The latter variable (∆Tw) is a manifestation of building 
envelope’s thermal mass that cannot be explained by the first-order model, Eq. (1).  

Figure 3 shows experimental correlations of type Eq. (6), calculated for the same home used for 
Fig. 1. The significant scatter, observable in the figure, forms a characteristic parallelogram 
structure. Because the scatter does not go to zero during nighttime, we attribute it, at least in part, 
to the difference between the lumped wall temperature and the “equilibrium” lumped wall 
temperature (i.e., the thermal mass effect ∆Tw) in Eq. (6). 
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Figure 3. Correlations predicted by Eq. (6) and calculated from CT data for a furnace-heated home 

To build each plot, we used a moving time window and included in each time window all incidences of furnace at state 
“on,” each point represents the heating rate over one incidence; Tr-Ta is averaged over each time window.   

In principle, if the overall heat capacitance of the internal space Cr were available or could be 
accurately estimated for a home, the slopes of the two correlations, i.e., Aw/(RwQ) for Eq. (5) and 
Aw/(RwCr) for Eq. (6), would uniquely define the R-value (Rw) and HVAC heat supply (Q) for the 
case of negligible air leakage. Similarly, in case of the non-negligible air leakage, analogous 
estimations would be possible by nonlinear curve fitting using Eq. (4). Whereas Figure 2 
suggests relatively narrow confidence interval for Eq. (5)’s slope, Figure 3 suggests that the 
confidence interval for Eq. (6)’s slope is rather large; yet further processing by MATLAB 
toolbox would yield reasonably accurate estimates for the home physical parameters. 

However, because Cr includes the heat capacitance of the internal air as well as the furniture, 
carpets and other household contents and internal surfaces and structure,3 its calculation is not 
straightforward. Although some semi-empirical formulas are available in the literature (e.g., 
Berthou 2013), our experimental results do not support them (Zeifman, Lazrak, and Roth 2018).  

Accordingly, in this work, we limited the correlations to Eq. (5). We found, however, that having 
only one correlation, Eq. (5), available was not helpful for the proposed restricted grey-box 
model that used nighttime data only: The restricted grey-box model usually yielded parameter 
estimates that were very close to the starting parameter values sampled from the restricted 
parameter space and fluctuated drastically from night to night. The standard remedy to this 

 
3 Some authors refer to Cr as “internal thermal mass” (Lee and Hong 2017). 
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overfitting problem is to extend the time to larger periods, such as to several weeks to get the 
system sufficient excitation (e.g., Lin et al. 2012). Given that such extension (see above) implies 
accurate modeling of external and internal heat gains and that, among the experimental homes, 
there are relatively few equipped with “high-resolution” CTs (i.e., from vendor #1, see Table 1, 
Table 2), we decided not to pursue this approach.  

For actual home HVAC systems, the range of efficiencies is relatively small. Hallinan et al. 
(2011) suggest the efficiencies range from 70% (worst case) to 95% (best case) for residential 
furnaces and boilers. Therefore, as a practical alternative, we assumed the same HVAC 
efficiency of 80%4 for all experimental homes, which, coupled with an air infiltration estimation 
procedure, permits direct estimation of the overall R-value using an estimate for 𝑄𝑄� (from the fuel 
bills and HVAC runtime) and the value of slope from the correlation, Eq. (5). The air infiltration 
estimation procedure is based on an analysis of salient CT data points and will be discussed in 
the next section. 

Therefore, unlike the conventional grey-box model calibration methods that estimate model 
parameters using a dynamic time series of state variables, e.g., Tr (Lin et al. 2012, Bacher and 
Madsen 2011), the proposed method is static. The method is suitable for homes equipped with a 
single thermostat and a furnace. To extend this method to boiler-based HVAC systems, we note 
that boiler systems are two-stage systems (Peeters et al. 2018). That is, water is heated to a target 
temperature (controlled by an aquastat) by a burner and then is pumped to the emitters (radiators 
or convectors) when a thermostat calls for heat. This two-stage process implies two additional 
heat balance equations, one for heating water with a boiler and one for the radiator heat 
exchange. Fortunately, under simplifying assumptions, integration of these four equations—
similar to integration of Eqs. (2) and (3)—yields an equation similar to Eq. (5).  

The main simplifying assumption is that for a boiler with fixed QHVAC, the time “on” as reported 
by a CT roughly equals a constant fraction, χ, of the burner on time .5 Because 𝑄𝑄� ∑ 𝑡𝑡𝑜𝑜𝑖𝑖 is the 
only term with time “on” in Eq. (5), and because we calculate 𝑄𝑄� using the gas bills and also time 
“on,” χ will cancel out in this term, and we can use the reported by CT time “on” as a proxy for 
the burner time “on” in Eq. (5). Violations of the simplifying assumptions would result in 
nonlinearity in the time “on”—temperature difference correlations, Eq. (5). Likewise, CT data 
from a properly configured modulating boiler (usually a condensing boiler) would also have a 
significant nonlinearity in these correlations, with a higher ratio of time “on” at warmer outdoor 
temperatures due to modulation of water circulation temperatures as a function of Ta. 

 
4 In practice, estimated HVAC efficiencies reported in audits ranged from 78% to 82% for 67% of homes in this 
study. These values exclude distribution efficiency. 
5 This reflects that boilers are often oversized relative to peak loads to facilitate recover from temperature setbacks. 
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Figure 4 shows an example of correlations, Eq. (5) for a boiler-heated home. The experimental 
correlations in this figure do not practically differ from those of a furnace-heated home (see 
Figure 2). We did not observe significant nonlinearities in such correlations for other boiler-
heated homes in this project, except those caused by missing data. 

 
Figure 4. Correlations, Eq. (5) calculated by CT data for a boiler-heated home 

3.4 Air Leakage Characterization 
Our approach uses approximations and integrations to estimate the two air leakage parameters C1 
and C2 in Eq. (4) and then to calculate the ACH50 for a home. The key idea is to compare HVAC 
runtimes for time windows with essentially different wind speeds but similar otherwise (e.g., in 
terms of time of the day, inside/outside temperatures). 

Suppose we use two different time windows of same duration τ and with same average 
temperatures (Tr and Ta), same internal heat gains (usually this is approximately true if the time 
of the day is the same), but different wind speeds W1 and W2. Assume W2 ≈ 0 and W1 to be close 
to the maximum wind speed value over the heating season. From Eqs. (4) and (5), we get 

∑𝑡𝑡𝑜𝑜𝑖𝑖1−∑𝑡𝑡𝑜𝑜𝑖𝑖2
𝜏𝜏

= �𝐻𝐻1𝑊𝑊1
2.6+𝐻𝐻2|𝑇𝑇𝑎𝑎−𝑇𝑇𝑟𝑟|1.3�

0.5(𝑇𝑇𝑟𝑟−𝑇𝑇𝑎𝑎)
𝑄𝑄

− �𝐻𝐻1𝑊𝑊2
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Walker (2017) indicated that, typically, wind-based and stack effect-based infiltration have 
similar energy impacts over the course of the heating season. Therefore, because the maximum 
wind speed is much higher than the average wind speed, 𝐶𝐶1𝑊𝑊1

2.6 ≫ 𝐶𝐶2|𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑟𝑟|1.3 and Eq. (7) 
takes the following approximate form: 

∑𝑡𝑡𝑜𝑜𝑖𝑖1−∑𝑡𝑡𝑜𝑜𝑖𝑖2
𝜏𝜏

≈ �𝐻𝐻1𝑊𝑊1
2.6�

0.5(𝑇𝑇𝑟𝑟−𝑇𝑇𝑎𝑎)
𝑄𝑄

�1 − �𝑊𝑊2
𝑊𝑊1
�
2.6
�    (8) 

We can then derive the parameter C1 from Eq. (8): 

𝐶𝐶1 ≈ �(∑𝑡𝑡𝑜𝑜𝑖𝑖1−∑𝑡𝑡𝑜𝑜𝑖𝑖2)𝑄𝑄
𝜏𝜏(𝑇𝑇𝑟𝑟−𝑇𝑇𝑎𝑎) �

2 1

𝑊𝑊1
2.6�1−�𝑊𝑊2

𝑊𝑊1
�
2.6
�
2    (9) 

In this way, wind-based infiltration is fully characterized. For the stack effect, we can assume the 
approximate equality, which is expressed by 

𝐶𝐶1�𝑊𝑊2.6������� = 𝛽𝛽𝐶𝐶2�(𝑇𝑇𝑟𝑟 − 𝑇𝑇𝑎𝑎)1.3����������������    (10) 

where the bar designates averaging over entire heating season and β is a fitting parameter of the 
order of unity.  

In practice, we estimate the parameter C1 for a home using all available pairs of the similar time 
windows with high/low wind speed in a home’s CT data set.6 Once C1 is estimated, we use the 
overall daily correlations, Eq. (5), and a set of “possible” values of β = {0.5, 1.0, and 2.0} to 
calculate the corresponding set of values of parameter C2 and then to estimate the value of Rw 
and the goodness-of-fit (e.g., the sum of errors squared) by least-square curve fitting to Eq. (5). 
We then select the set {C2, R} with the best fit as our estimate for a given home. Lastly, we 
assume that the internal and external heat gains are not correlated with the indoor-outdoor 
temperature difference Tr – Ta, thus these quantities can be considered to be random noise for the 
curve fitting.  

Once the estimates of the parameters C1 and C2 are available, the “natural” air leakage flow rate 
�̇�𝑉𝑖𝑖𝑎𝑎𝑡𝑡𝑛𝑛𝑟𝑟𝑎𝑎𝑛𝑛 can be calculated by  

�̇�𝑉𝑖𝑖𝑎𝑎𝑡𝑡𝑛𝑛𝑟𝑟𝑎𝑎𝑛𝑛 = {𝐻𝐻1�𝑊𝑊2.6��������+𝐻𝐻2�(𝑇𝑇𝑟𝑟−𝑇𝑇𝑎𝑎)1.3����������������}0.5

𝜌𝜌𝑎𝑎𝑖𝑖𝑟𝑟𝑐𝑐𝑝𝑝,𝑎𝑎𝑖𝑖𝑟𝑟
      (11) 

where ρair and cp are density and heat capacitance of air. Finally, a conversion factor F ranging 
from 10 to 25 for U.S. homes (Krigger and Dorsi 2004) can be used to obtain ACH50: 

𝐴𝐴𝐶𝐶𝐴𝐴50 = 𝐹𝐹 �̇�𝐻𝑖𝑖𝑎𝑎𝑖𝑖𝑛𝑛𝑟𝑟𝑎𝑎𝑛𝑛
𝐻𝐻

3600       (12) 

where V is the home volume and 3600 is the number of seconds in hour. 

 
6 If more than five such pairs are available, we can also test statistical significance of C1. 
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3.5 Results for Homes With One CT 
3.5.1 Overall R-Value 
We had 87 homes with acceptable quality CT data (i.e., with no or minimal missing data) with a 
single thermostat and furnace/boiler as well as available audit results and gas bills, of which 13 
homes were from vendor #1, 41 from vendor #2, and 26 from vendor #3 (7 homes were excluded 
from consideration as outliers7). To get appropriate values for Aw and Rw, we complemented the 
HEA data with estimates for the heat-loss characteristics of the foundation and the window-to-
wall area ratio. For the floor R-value, we used a value of 9 (°F·h·ft2/Btu) that corresponds to a 
typical value of 7 (Hallinan 2011), taking into account the lower floor-ground temperature 
difference, and we assumed the window area equaled 15% of the wall area.  

Figure 5 and Figure 6 show a comparison between the overall R-value calculated by our method 
and the HEA R-value. We do not use a correlation coefficient to measure the goodness-of-fit as 
proposed by Goldman et al. (2018) for two reasons. First, some values from the HEAs are 
estimates that have varying degrees of uncertainty. Second, our ultimate goal is to identify homes 
with significant retrofit opportunities (i.e., classification) versus a precise estimate of R-value or 
ACH50. It can be seen that, generally, our method accurately separates homes with poor 
insulation (R-values <8 in imperial units) from homes with adequate insulation (R-values ≥ 8). 
Quantitatively, the classification accuracy for these two classes is 88% overall (70 out of 80 
classified correctly). The method tends to overpredict higher R-values; our initial assessment is 
that this overprediction is due to challenges identifying missing runtime data,8 which we found is 
more challenging to detect for vendors #2 and #3. Given the sample sizes, there is no indication 
that the classification accuracy depends on the CT vendor. 

 
Figure 5. Estimated and HEA-based (“ground truth”) overall R-values for homes with single CT and either gas 

furnace or boiler 

R-values are given in imperial units (°F·h·ft2/Btu) 

 
7 Homes with questionable reported ratios of surface area to conditioned floor space accounted for most outliers.  
8 Unaccounted runtime results in lower calculated heat supply from the heating system, making it appear that the 
building envelope has a higher R-value to maintain the indoor temperature set point. 
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Figure 6. Estimated and HEA-based (“ground truth”) overall R-values for homes with single CT and either gas 

furnace or boiler, by CT vendor 

R-values are given in imperial units (°F·h·ft2/Btu) 

3.5.2 Air Leakage 
The results of our air leakage prediction for 16 homes with blower-door test results available are 
shown in Figure 7 and Figure 8. To estimate ACH50, we used the conversion factor F of 14.8 in 
Eq. (12) for a two-story home located in Massachusetts (Krigger and Dorsi 2004). Although the 
discrepancy between the predicted and measured value can reach up to ~40%, we can effectively 
separate the homes with relatively low ACH50 from the leaky homes (with ACH50 >15). To the 
best of our knowledge, this is the first report of a successful ACH50 prediction based on CT data, 
limited home characteristics available to utilities, and weather station data only. 

 
Figure 7. Estimated and HEA-based ACH50 values for 16 single-CT homes with blower-door test results 
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Figure 8. Estimated and HEA-based ACH50 values for 16 single-CT homes with blower-door test results 

available 

3.5.3 Runtime 
Accurately predicting runtime is important for estimation and verification of energy savings (see 
Section 5). Because our model is fitted to daily runtime data by minimizing the errors over the 
entire season, theoretically the difference between actual and predicted runtime over the entire 
season should approach zero. This is because when the sum of squared errors is minimized, the 
algebraic sum of errors (its derivative) tends to zero. In our case, the seasonal total error is de 
minimus but not exactly zero, mainly due to the numeric precision of MATLAB software (of the 
order of 10-15). 

It is still useful to look into daily runtime prediction errors as those essentially indicate the level 
of scatter in the correlation plots (see, e.g., Figure 2). Figure 9 shows an example of such average 
daily errors calculated over the entire heating season for the single-CT homes with furnaces. 
Although there are few homes with relatively large errors (primarily, these are homes with low 
furnace runtime and correspondingly high overall R-values), the average error among all these 
homes is 17% (absolute value). 
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Figure 9. Averaged daily runtime prediction errors (absolute values shown) over the entire heating system for 

25 homes with a single CT and furnace 

Data for vendor #2 is shown. Average prediction error among all homes is 17%. 

3.5.4 Comparison With State of the Art 
For the sake of comparison, we also calculated the conventional “time constant” (Chong and 
George 2018) values for homes with significant nighttime thermostat setbacks. Because of the 
coarse resolution of temperature data from vendors #2 and #3, we used data from vendor #1 for 
single-CT homes with a furnace (see Table 1). For these calculations, we did not need gas bill 
data; therefore, we were able to process data for more homes (40) than reported in Table 2 (17). 
Figure 10 shows the average calculated decay rate (i.e., inverse “time constant”) for each home 
versus the HEA-based R-value.  
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Figure 10. Calculated average decay rate for single-CT homes with furnace from vendor #1, versus their 

overall R-value 

Chong and George (2018) suggest that the decay rate of 0.0167 h-1 corresponds to a thermally 
“tight” home, 0.025 corresponds to an average home, and 0.05 corresponds to a thermally 
“leaky” home. Whereas the homes with higher HEA-based R-value (≥ 8) may have significant 
air leakage and thus do not necessarily exhibit good thermal performance, the homes with low R-
value (i.e., <8) certainly should exhibit below-average thermal performance. However, Figure 8 
indicates that 9 out of 16 homes with low R-value (i.e., 56%) have decay rates below 0.025 
which, according to Chong and George (2018), corresponds to above-average thermal 
performance. This observed inability of the “time constant” to serve as a reliable indicator of 
home thermal performance is consistent with our previous observation that the time constant 
depends on both thermal resistance and capacitance, and that effective thermal capacitance can 
vary appreciably among homes (see our discussion on first-order grey-box models in Section 
3.1). 

4 Homes With Two CTs 
Homes with two CTs have more model uncertainties than one-CT homes. Although it is natural 
to assume that homes with two CTs have two major thermal zones (one CT per zone), the zone 
characteristics are usually not explicitly available in the CT/home data. Ideally, we would want 
the following information for modeling homes with two CTs: 

• Zone/CT location and geometry (e.g., each per floor) 

o What CT corresponds to the upper/lower floor? 

o What is the zone external area? 

• Heating system capacity per zone.   
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Because this information is not available, we decided to implement a whole-building equivalent 
approach for modeling the homes with two CTs. In this approach, we assume that the home is 
heated by an equivalent gas-fired system whose equivalent power and runtime can be calculated 
using the actual data. This approach overcomes the problem of matching the zone-specific 
estimates of R-value/ACH50 with the whole-home HEA-based values as well as the potential 
need to model interzone heat transfer. At the same time, the whole-home approach cannot isolate 
a retrofit opportunity to a specific zone.  

Homes with two CTs can have either a single heating system (furnace or boiler) or two 
independent heating system (usually two furnaces or two boilers); in practice, we did not have 
that information available. Figure 11 shows how the equivalent power and runtime is proposed to 
be calculated in either case. For a single furnace, we assume that the full device’s power is 
exercised if either CT calls for “on.” Therefore, the equivalent power is the same as the device 
power (assumed to be constant), whereas the equivalent runtime is the union of the individual CT 
runtimes. For two separate devices (two furnaces or a boiler modeled as serving two separate 
zones), we assume that the devices have (generally different) powers q1 and q2, and that the 
equivalent power is either q1, q2 or q1+q2 depending on the “on” status as reported by the two CTs. 

 
Figure 11. Calculation of equivalent whole-building power and runtime under two alternative assumptions 

q = per/system, Q = per/home 

To make this approach practical, we tested its sensitivity to a variety of potential heating 
configurations. In particular, we calculated the equivalent power and runtime by making 
empirical assumptions about a home heating system and tested the sensitivity of the end results 
(i.e., overall R-value and ACH50) to these assumptions. Low sensitivity would imply high 
robustness of the proposed whole-building method, whereas high sensitivity would require 
modification of the approach. 

To assess the sensitivity of the results to these assumptions, we used various ratios between q1 
and q2 (ranging from 50:50 to 30:70 to 70:30) as well as those between the areas A1 and A2 (also 
ranging from 50:50 to 30:70 to 70:30) and calculated, for each combination of q1, q2, A1 and A2, 
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the overall building parameters (R-value and ACH50) for all the two-CT homes with complete 
quality data sets. We found that the estimated overall building parameters only fluctuated within 
±5% for 90+% of the homes, under the two assumptions and the aforementioned ranges.  

Therefore, for homes with two CTs we implemented the single-device model that requires fewer 
underlying assumptions. In this model, we assume that the equivalent runtime is the union of 
zone runtimes (Assumption 1) and that the equivalent room temperature is the arithmetic average 
of the two zonal temperatures. Our reference (Zeifman, Lazrak, and Roth 2020b) provides 
additional theoretical framework to justify the above assumptions. 

4.1 Results for Homes With Two CTs 
We introduced additional heuristic data processing rules to address specific data issues we 
encountered. We found that chunks of missing runtime data often show up as outliers in the 
runtime-temperature delta correlations. Therefore, we removed such outliers using a statistical 
technique, “patched” these now missing data points with their estimates using regressions 
developed from the other, valid data applied to weather data for the outlier periods, and 
recalculated the heating power from gas bills using the updated runtime.  

For homes with reported integer number of floors, we implemented consistency checks to correct 
potential audit-reported geometrical values. For homes with a fractional number of floors, e.g., 
2.5 floors, we always used the audit-reported geometrical values because consistency checks can 
be more difficult for such homes. Finally, we observed several homes with unusual gas bills 
(e.g., homes with very high summer gas bills) and excluded those high bills in the gas baseline 
usage calculations. Some other homes had highly variable winter gas bills, even though the CT 
runtime and outside temperature did not show any anomalies. For these homes, we excluded 
periods with unusually low bills. 

Figure 12 compares the HEA data and estimated overall R-value for 74 homes with two CTs and 
complete sets of CT interval data (i.e., data sets with missing data repaired or with no missing 
data). Using a threshold of R-value = 8 to separate homes with a significant insulation retrofit 
opportunity from those with no insulation opportunity, we obtain 87% for the overall 
classification accuracy. These results are comparable to those we obtained for homes with one 
CT (see Section 3.5.1). 
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Figure 12. R-values estimated from CT data versus HEA data for homes with two CTs 

Overall results for all homes with complete data sets 

Figure 13 plots the ACH50 values for the model versus the HEA data calculated from the blower-
door tests. Unfortunately, there were only eight homes with available HEA data ACH50 and 
complete sets of quality data, and none were leaky according to our threshold of ACH50 ≥ 15. 
Yet, all these homes were correctly classified as homes with no air sealing opportunity. Note that 
our method appears to systematically underestimate ACH50, which is consistent with Hales 
(2014). For a more stringent threshold of 7 ACH50, the classification accuracy is 6/8 = 75%. 

Although this technically meets the project objectives (see Section 1), we acknowledge that this 
finding has high uncertainty due to the very small sample size. 

 
Figure 13. ACH50 values calculated from CT data versus blower-door test results for eight homes with two CTs 
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Finally, for homes with two CTs, we calculated the runtime prediction error over the season. 
Following our discussion in Section 3.5.3, the calculated overall runtime errors are small because 
of the way we perform our estimations.  

  

Figure 14. Runtime prediction errors over entire heating season for all homes with two CTs (boiler or furnace) 

Left – all homes, right – outliers excluded 

5 Energy Saving Predictions 
The project’s objective related to energy saving predictions (see Section 1) indicates that we can 
use either the predicted energy savings from the energy audits, or the actual energy savings 
obtained from implemented ECMs as a comparison value. Because we identified only a few 
homes that had implemented significant ECMs during the data collection period (see also 
Section 7.2), we used the HEA energy saving predictions as the comparison value.  

HEA companies use proprietary software for energy saving prediction, and we reviewed a 
proprietary document describing the energy saving prediction algorithms for an energy audit 
company (Harley 2011). This document suggests that the state of the art uses a PRISM-like 
equation (Fels 1986, Hallinan et al. 2011) to calculate energy savings based on area-weighted 
pre-retrofit values of component R-values and average CFM along with their post-retrofit 
projections. However, this document did not disclose a methodology for prediction post-retrofit 
building characteristics.  

Accordingly, we analyzed the data and verbose descriptions of energy audits and ECM 
implementations, part of the anonymized data sets transferred to us by our utility partners, to 
model post-retrofit building physical parameters (i.e., overall R-value and ACH50).  

5.1 Overall Post-Retrofit R-Value 
We calculate the overall building R-value using the building geometry (external wall area, 
attic/roof area, window-wall area ratio) and the R-values for building major components 
(external walls, attic, basement/foundation and windows). Because the building geometry does 
not change in retrofits, we need to characterize the post-retrofit R-values for external walls and 
for attic (i.e., corresponding to the retrofits we consider in this project) to calculate the overall 
post-retrofit R-value. 
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5.1.1 External Walls’ Post-Retrofit R-Value 
The R-value of wall cavities filled with blown-in cellulose can vary due to differences in wall 
cavity thickness, exterior cladding properties, etc. Thus, we took two complementary approaches 
to estimate and model the post-retrofit R-value of walls that are “drilled and filled.” First, we 
used building physics to estimate a typical wall R-values using area-weighted parallel heat 
transfer paths through wood framing and a 3.5-inch wall cavity filled with cellulose. Assuming a 
25% framing factor (Lstiburek 2010) and a cellulose insulation R-value of 3.5 (Fisette 2005) 
yields a whole-wall R-value of around 11.9. Second, we reviewed the whole-wall R-values 
estimated for audited homes to understand how the audit software assessed the wall R-value of 
walls with cavity insulation. We considered all the homes with audit information available that 
did not have a wall-insulation retrofit implemented (i.e., these homes do not appear in the 
measures file). We found that of approximately 800 homes with external wall R-value greater 
than 6, more than 50% had the R-value in the range between 11 and 12 and only 10% had an R-
value higher than 12. Based on these two approaches, we decided to use the midpoint, R-value of 
11.5, as a practically achievable post-retrofit whole-wall R-value. 

5.1.2 Attic Post-Retrofit R-Value 
For the attic retrofits, there is less uncertainty in converting the verbose ECM description into R-
value as compared to the wall retrofits. Accordingly, we calculated the post-retrofit R-value 
following energy audit standards (Energy Assessment Standards 2012) and the retrofit verbose 
descriptions for approximately 350 homes with significant (i.e., more than 25% R-value 
increase) attic retrofits. Table 3 shows the distribution of post-retrofit attic R-values in these 
homes. Although a majority (60%+) of retrofits achieve around R-40, the overall distribution is 
very broad. Hence, we believe an assumption of a single post-retrofit R-value of 40 is not 
adequate for all homes. 

Table 3. Distribution of Post-Retrofit Attic R-Values as Reported in ~350 HEAs 

Post-
retrofit 
attic R-
value 

<10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 

Fraction 
of homes, 
% 

3 4 7 5 10 7 35 27 4 

 

As a working alternative, we calculated the difference between the post- and pre-retrofit attic R-
value. We found an average difference of 15.6, a median of 14.8, and the three modes of a multi-
modal distribution of 6.6, 15.3, and 22.0. Based on this, we use the average increase in R-value 
(15.6) corresponding to the statistical expectation to model the post-retrofit attic R-value. 
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5.1.3 Overall Post-Retrofit R-Value Prediction 
With the developed models for post-retrofit wall and attic R-values, we can calculate the post-
retrofit overall R-value as would be predicted for homes in HEAs. However, the prediction of 
the post-retrofit overall R-value for the proposed method, which is conditional on the estimated 
pre-retrofit R-value, is not straightforward. Although our R-value prediction is generally in line 
with the R-value based on the HEA data for binary classification of homes, there are notable 
discrepancies between our estimates and the HEA-based data (see Figure 5 and Figure 12). 
These discrepancies could be attributed to the assumptions underlying the HEA calculation (e.g., 
the assumed values of window-to-wall ratio and basement R-value) and/or to errors in CT data, 
gas bills and audit results, variability in HVAC system efficiency (particularly when considering 
duct losses), as well as to the coarseness of the underlying physics-based model.  

Therefore, we need to calculate post-retrofit R-value in a way that minimizes the expected errors 
from the HEA-based values. To this end, we developed the following mapping procedure: 

1. Divide the range of the overall pre-retrofit whole-home R-values for homes worthy of 
insulation upgrade (R ≤ 8) into four intervals: R<5; 5≤R<6; 6≤R<7; and 7≤R≤8. 

2. For each interval i, {i = 1, 2, 3, 4} select homes with the estimated from CT data (pre-
retrofit) R-value falling within the interval. For each selected home j from interval i, 
calculate the post-retrofit overall R-value Rij_GT_Post assuming the wall post-retrofit R-value 
of 11.5 and the attic’s R-value increase of 15.6. Because of the complex nonlinear 
relationship between the estimated and R-values based on the HEA data, the obtained 
values cannot be used directly to predict the estimated post-retrofit R-values. 

3. Instead, for each interval i, find the post-retrofit value Xi for the estimated R-value that 
minimizes the difference between  

∑ (1 − 𝑅𝑅𝑖𝑖𝑖𝑖
𝑋𝑋𝑖𝑖

)𝑗𝑗           (13) 

and 

∑ (1 − 𝑅𝑅𝑖𝑖𝑖𝑖_𝐺𝐺𝐺𝐺

𝑅𝑅𝑖𝑖𝑖𝑖_𝐺𝐺𝐺𝐺_𝑃𝑃𝑜𝑜𝑃𝑃𝑖𝑖
)𝑗𝑗        (14) 

4. The physical meaning of each summand is a relative change of insulation heat loss in a 
building. Build a table mapping each interval onto the average R-value increase ∆Ri = Xi – 
𝑅𝑅�𝑖𝑖𝑗𝑗, where bar designates the average over j value. 

We built the mapping table using 34 homes with estimated R-values lower than 8 (with one or two 
CTs). Table 4 lists the details of the mapping table for R-value prediction. To calculate the post-
retrofit prediction for an arbitrary pre-retrofit R-value, we need to find the proper interval and the 
corresponding ∆R. The post retrofit prediction equals the sum of R and ∆R. Using the proposed 
mapping methodology, we can extend this table for higher R-values should the need arise.  
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Table 4. Prediction of Estimated Post-Retrofit Overall R-Value Increase 

Estimated R-value, pre-retrofit 
interval Post-retrofit ∆R for estimated 

R<5 2.4 

5≤R<6 2.5 

6≤R<7 2.2 

7≤R≤8 2.1 

 

5.2 Post-Retrofit ACH50 
Unlike the overall R-value, ACH50 is directly measured in a blower-door test.9 Accordingly, we 
can directly project post-retrofit ACH50 based on the measured change in ACH50 from actual air 
sealing projects. However, we need to reduce the scatter in the HEA data to make meaningful 
predictions. An analysis of the blower-door test results suggests that the reduction in air leakage 
(i.e., ∆ ACH50) can be modeled as a linear function of the pre-retrofit ACH50 value. Figure 15 
illustrates the analysis with experimental data on 85 homes with blower-door test results 
available. The following stepwise linear fit can be used to model the data: 

 
Figure 15. Experimental data on pre/post-retrofit ACH50 as measured in blower-door tests 

 
9 However, Hales (2014) suggests that the blower-door test systematically overestimates ACH50 relative to tracer-
gas tests. 
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∆𝐴𝐴𝐶𝐶𝐴𝐴50 = 0.26 × 𝐴𝐴𝐶𝐶𝐴𝐴50 − 0.73, 𝑖𝑖𝑖𝑖𝐴𝐴𝐶𝐶𝐴𝐴50 < 20
6.3, 𝑖𝑖𝑖𝑖 𝐴𝐴𝐶𝐶𝐴𝐴50 ≥ 20    (15) 

Eq. (15) can be used to predict the expected reduction air leakage for homes. With this model, 
we mapped the estimated ACH50 to that predicted by Eq. (15) ∆ACH50 for the 24 homes for 
which we have both estimated and HEA-based infiltration rates (ACH50) available (see Figure 7 
and Figure 13). Figure 16 shows the results.  

 
Figure 16. Predictions of ∆ACH50 modeled by Eq. (3) versus estimated ACH50 for 24 homes that have both 

estimated and blower-door ACH50 available 

The final equation for prediction of ∆ACH50 given the estimated ACH50 value is  

∆𝐴𝐴𝐶𝐶𝐴𝐴50 = 0.18 × 𝐴𝐴𝐶𝐶𝐴𝐴50 + 0.6     (16) 

We use this equation to predict the post-retrofit parameter ∆ACH50 values. Ultimately, we use 
this combined with the change in whole-home R-value (calculated using Table 4) to assess the 
combined energy impact of the two potential measures. 

5.3 Energy Saving Calculations 
Because our modeling approach can be considered as an extended version of PRISM (Fels 1986, 
Hallinan et al. 2011), we can apply the same methodology to calculate predicted savings for both 
the HEA-based values and our proposed method. In particular, for a given home, we can 
calculate the change in runtime caused by either a higher overall R-value or lower air leakage 
over the entire heating season. By using separate sets of HEA-based pre/post values and those 
estimated, we obtain runtime reductions for the HEA prediction and for the proposed method. 
We can also predict relative (i.e., %) savings by normalizing the runtime reduction over the 
overall season by the pre-retrofit runtime for a home. 

We used this methodology to calculate HEA-based energy savings and those for the proposed 
method. For insulation savings, we calculated the savings for 34 homes with insulation retrofit 
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opportunities (i.e., R <8). Figure 17 shows a comparison between the HEA prediction and our 
predicted savings. Note that the average energy saving for such homes is substantial, of the order 
of 30%. Out of 34 predictions, 29 (85%) are within ±25% from the HEA values, which suggests 
that we have exceeded the Project Objective #2 (see Section 1). 

 
Figure 17. Estimated and HEA-based (GT) predictions for percent energy savings 

The results are calculated for homes with one/two CTs, complete sets of quality data and insulation retrofit opportunity. 
Out of 34 homes, 29 have estimated predictions within ±25% of HEA predictions. 

For the air sealing opportunities, we have 24 homes for which we have both ACH50 estimates 
and HEA data (i.e., blower-door tests). Out of these, we have only four homes with ACH50 >15, 
i.e., homes with significant retrofit opportunities. To increase the sample size and in accordance 
with the classification results discussed earlier, we consider homes with blower-door test results 
ACH50 exceeding 7,10 i.e., 15 homes.  

Figure 18 shows the results for these 15 homes. Even though the air sealing retrofits yield less 
savings than the insulation retrofits (see Figure 17), the savings are still significant. The 
predictions are within ±25% for 11 homes, i.e., for 73%. That said, this finding has high 
uncertainty due to the very small sample size.   

 
10 Looking at the pre-retrofit ACH50 blower-door test values, we could not identify a clear value (or even range) 
when air sealing is recommended (see Figure 15). We believe this likely reflects that air sealing recommendations 
are based on qualitative assessments of the expected benefit and ease of accessing potential leakage paths for air 
sealing. 
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Figure 18. Estimated and HEA-based (GT) predictions for percent energy savings from air sealing  

The results are calculated for homes with one/two CTs, complete sets of quality data and measured in blower-door tests 
ACH50 >7. Out of 15 of homes, 11 have estimated predictions within ±25% of HEA-based predictions 

6 Randomized Controlled Trial 
Successful development of algorithms to conduct remote HEA/predict energy savings provides 
an opportunity to test whether customized retrofit recommendations and savings potentials for 
individual homes ultimately can:  

1. Significantly increase the uptake rate of on-site HEAs, and  

2. Significantly increase the fraction of HEAs resulting in ECM implementation. 

6.1 RCT Design 
We designed and conducted a randomized controlled trial (RCT) to answer these two research 
questions. In an RCT, households meeting the test criteria are randomly assigned to the treatment 
and control groups. The criteria for homes to qualify for the treatment and control groups in the 
RCT are: 

• Located in Eversource or National Grid’s (also known as the program administrators) gas 
service territory in Massachusetts  

• Gas is the primary space-heating fuel 

• Detached single-family home 

• Customer has received a rebate from Mass Save for a CT 

• The program administrator has access to customer CT data for at least half of one heating 
season 

• The program administrator has access to customer gas billing data for at least one year 
coincident with the period of the CT data  

• Customer has not had a Mass Save HEA. 
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Later in the project, our utility partners found that the last criterion was violated for a majority of 
customers in some groups (see Section 6.1.1 for details). 

In the RCT, the treatment group receives targeted outreach informed by the algorithms. That is, 
Fraunhofer applied the algorithms to the CT data from the treatment group customers to identify 
homes that are likely to have an insulation (attic or wall) or air sealing opportunity. For these 
homes, the algorithms identified the expected retrofit opportunity(ies) and calculated their 
expected post-retrofit energy savings (by updating the physical parameters in the algorithms to 
reflect the retrofit targets), and Fraunhofer provided those data to the program administrators. In 
turn, the program administrators incorporated the customer-specific offerings and energy savings 
into customer outreach and sent them to the appropriate treatment group customers.  

Based on the data sets we received from our utility partners, we designed one treatment and four 
control groups. The control groups serve distinct purposes. Control groups 1 and 1A comprise 
customers who took a CT incentive and for whom we have CT data that are taken from the same 
population as the treatment group. Group 1 includes customers with low CT data quality that 
precluded identification retrofit opportunities. That said, we expect them to have the same rate of 
retrofit opportunities as the population of customers that we analyzed with acceptable CT data 
quality, i.e., control group 1A and the treatment group combined. In contrast, control group 1A 
comprises customers for whom the algorithms found no retrofit opportunities. Because both 
control groups will receive generic outreach, this should reveal if the customized feedback has a 
significant impact on HEA and/or retrofit uptake for people purchasing and requesting a rebate 
for a CT. This should enable us to quantify the impact of the customized outreach.  

Control group 2 represents customers who received an incentive for installing a CT from another 
manufacturer, foremost Nest, that did not provide CT data to the PAs. Consequently, it will 
provide insight into if the frequency of customer outreach affects enrollment. Finally, we surmise 
that customers who install a CT and take an incentive may differ meaningfully from the large 
majority of customers who do not have a CT installed. Thus, control group 3 compares 
participation relative to customers who did not take a CT incentive. Because any outreach has the 
potential to increase program participation, the first control group will also receive generic Mass 
Save marketing outreach whenever the treatment group receives customized outreach. 

Table 5 summarizes the RCT design. We calculated the statistical test power given the expected 
participation rates of 2%–3% and 10% and implementation rates of 30% and 60% for the control 
and treatment groups, respectively. We concluded that these characteristics exceed those 
commonly acceptable in experimental design (typically, test power of 0.8 at significance level of 
0.1). 
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Table 5. Randomized Controlled Trial Design 

Group Type Description Supplemental 
Outreach? 

Sample Size, N 
(actual) 

Control Groups 

1. Took CT incentive, 
have CT data – Low 
CT data quality 

Receive generic 
outreach four times, i.e., 
same as treatment 
group 

902 

1A. Took CT incentive 
– Algorithm Identified 
NO retrofit opportunity 

None 212 

2. Took CT incentive, 
other CT type None 1,000 

3. Did not take CT 
incentive None 1,000 

Treatment Group 1. Took CT incentive, 
have CT data 

Receive customized 
outreach four times 216 

 

Table 5 shows a fraction of homes with high-quality CT data that is similar to that in the 
previous data sets in this project. Initially, we received CT data from vendors #1 and #2 (see 
Table 1), along with gas bills and publicly available home information (conditioned area and 
number of floors) for 1,332 homes. Of those, 430 homes or 32% had good-quality CT data. At 
the same time, Table 2 suggests that for algorithm development, we had 457 homes with one/two 
CTs with complete sets of data overall. Of these, we were able to process 87 homes with one CT 
(see Section 3.5.1) and 74 homes with two CTs (see Section 4.1), i.e., 161 homes or 35% overall. 
We also had to extend Table 4 to incorporate higher estimated overall R-values (up to 11) to 
boost the treatment group size; as expected, those homes with the higher estimated R-value 
commanded relatively small saving percentage that nonetheless often exceeded our targeted 
value of $50 per season. 

6.1.1 The Repeat Customer Problem 
Initially, we identified 216 customers for the treatment group ($50+ projected savings) and 
provided their anonymized customer IDs along with their projected seasonal savings (in therms 
and dollars) for insulation and air sealing opportunities to National Grid and Eversource. 

However, subsequent communications with National Grid in June 2019 found that: 

• A significant number of customers (up to 75%) had a previous home energy assessment 
(as long as the program administrator data goes back in time), and 

• 49 out of the 216 customers initially selected for the treatment group and two customers 
of control group 1A had air sealing/insulation measures installed (note: the depth of those 
measures was not disclosed).  
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Consequently, eliminating customers with any prior home energy assessment from the RCT 
would shrink the treatment group and control groups 1 and 1A approximately fourfold, rendering 
these groups too small for a statistically meaningful inference. Accordingly, we decided to not 
remove such homes from participation, but have their (anonymized) IDs available for future 
study.  

On the other hand, prior ECM implementation does preclude selecting customers for the other 
control groups. Table 6 lists the updated group sizes. For control groups 1 and 1A, we only 
received information on prior HEAs from National Grid.  

Table 6. Updated RCT Design 

Group Type N, Original RCT 
design 

Number of customers 
that had HEA in the 
past 

Number of qualifying 
customers (N) 

Treatment Group 
(opportunity found) 216 163 (75%) 53 (25%) 

Control Group 1A, 
National Grid part (no 
opportunity found) 

130 53 (41%) 77 (59%) 

Control Group 1, 
National Grid part (poor 
quality CT data) 

604 325 (54%) 279 (46%) 

Control Group 2 
(another CT vendor) 1000 0 99911 (100%) 

Control Group 3 (no CT 
incentive) 1000 0 999 (100%) 

 

Another potential problem that our utility partners have discovered was that some of the homes 
were multifamily. The majority of such multifamily homes were detected during the initial 
screening and disqualified from RCT, yet some homes could be identified as multifamily only by 
a manual search using their physical address. 

Note that the fraction of homes with previous HEAs is highest in the treatment group (75%), 
lowest in control group 1A (41%), and at a midpoint in control group 1 (54%). Given the group 
sizes, these differences are statistically significant. We believe that these differences can be 
attributed to the way we selected the homes with retrofit opportunities: Homes with the identified 
retrofit opportunities are likelier to have requested HEAs in the past than the homes with no 
found retrofit opportunity. 

 
11 We do not know why the numbers of customers in control groups 2 and 3 were 999 and not 1,000. 
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6.2 RCT Results 
The printed materials were sent to the treatment group and to control group 1 as follows: 

• 1st round: Sent on July 26 

• 2nd round: Sent on week of September 27 

• 3rd round: Sent on week of November 4 

• 4th round: Sent on December 6. 

For the treatment group, the results for the qualified customers (N = 53, see Table 6) are as 
follows. Five homes had requested an HEA as of June 30, 2020—on August 29, September 14, 
September 24, September 30, and January 15. Two of these homes also had insulation and air 
sealing measures installed a month and three months after the HEA (HEA on September 30, 
ECMs installed on November 1 for the first home, HEA on September 24, retrofits implemented 
on January 2 for the second home). The savings predicted by our algorithms for these homes 
ranged from 11%–22%; interestingly, the homes with the highest predicted savings among these 
homes (21% and 22%) were the homes that decided to implement ECMs. No customer who had 
had an HEA within the past six years has requested an HEA. 

For control group 1, which received four waves of generic mailers, the results were somewhat 
similar in terms of timing. For the pool of qualified customers (N = 279, see Table 6), 11 homes 
requested HEAs on the following dates: October 18, October 26, November 16, November 22, 
November 26, December 9, December 11, December 12, January 11, February 11, and February 
26. One of these homes also had insulation and air sealing retrofits implemented (HEA on 
October 18, retrofits implemented on January 3).   

That said, nine unqualified homes (i.e., those that requested HEAs in the past) also requested 
HEAs on the following dates: August 16, October 2, October 25, November 26, December 23, 
January 22, February 19, April 4, and April 18, and the homes that requested an HEA on October 
2, December 23, and February 7, then installed ECMs (both insulation and air sealing) on 
December 12, February 27, and March 20, respectively. We are not clear why a significant 
number of homes that requested an HEA (9 out of 20) were the homes that already had an HEA 
in the past in control group 1. Our utility partner suggests that potentially, some homes could 
have changed an owner recently and/or were from a multifamily building.  

For control group 1A (N = 77, see Table 6), one home requested an HEA on July 31 and then 
installed insulation and air sealing ECMs on October 29. 

For control group 2 (N = 999), 28 homes requested HEAs, while 10 homes had implemented 
insulation and air sealing ECMs as of June 30, 2020. Notably, the time lag between the HEA and 
ECM was as long as five months for some homes. 

Finally, for control group 3 (N = 999), 24 homes requested HEAs, and three homes had 
implemented insulation or air sealing ECMs as of June 30, 2020.  
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These results are summarized in Table 7. For control group 1, the numbers in parentheses show 
the results assuming that the nine homes with prior HEAs had new owners and thus were 
qualified to participate. Crucially, the treatment group has an HEA rate approximately two 
to five times greater than the control group that received generic mailers, supporting the 
hypothesis that targeted, customized outreach can realize significant increases in energy 
efficiency program participation. 

Table 7. RCT Results 

Group Type N 
Number of 
homes with 

HEAs 

Number of 
homes that 

installed ECMs 

HEA Rate: # 
HEAs/N, ±1σ 

HEA 
Conversion 

Rate: 
HEAs/ECMs 

Treatment Group  53 5 2 9±4% 2 out of 5 

Control Group 1 279 
(604) 11 (20) 1(4) 4±1% (3±0.5%) 1 out of 11 / 4 

out of 20 

Control Group 1A 77 1 1 1±1% 1 out of 1 

Control Group 2 999 28 10 2.8±0.5% 36% (10 out of 
28) 

Control Group 3  999 24 3 2.4±0.5% 3 of 24 

 

Generally, the RCT results follow our expectations. Control group 1A (no opportunity found, no 
messaging) was the poorest performing group, closely followed by control groups 3 (no CT 
incentive, no messaging) and 2 (CT incentive, no messaging). Control group 1 (CT incentive, 
generic messaging) performed better than those. Finally, the treatment group shows the highest 
HEA request rate (about six time higher than the no-messaging background, meaning control 
groups 1A, 2, and 3, and three times higher than control group 1). Given the time lag between an 
HEA and ECM installation, we expect additional ECM installs in all RCT groups over the next 
several months. 

7 Use Cases 
In this section, we consider three use cases that are potential extensions of the proposed technical 
approach, yet are somewhat beyond the scope of the original project. 

7.1 Cooling Season Considerations 
The technical approach developed is applicable to CT data collected from individual homes over 
the heating season. Discussions with other utilities revealed appreciable interest in using CT data 
collected over the cooling season, potentially combined with electric interval data. This would 
significantly enlarge the pool of candidate homes with retrofit opportunities. 
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The grey-box models, Eqs. (2)-(5) that provide a foundation of our approach, were derived for 
the heating season. In principle, they could be extended to a cooling season provided that the 
following two factors are incorporated: 

• Air conditioner (AC) performance curve 

• Moisture transport. 

In addition, we expect that solar heat gains will play a larger role in AC loads than during the 
space heating season. 

Unlike a fuel-burning heating system modeled by just two values (Q at state “on” and 0 
otherwise) in Eqs. (2)-(5), the cooling supply of an AC system is not constant at state “on”; 
instead, the corresponding performance curve (e.g., Cutler et al. 2013) that models the 
dependence of AC cooling capacity and power as a function of outdoor and indoor temperatures 
will need to be incorporated in the grey-box equations. Latent heat removal, i.e., 
dehumidification, necessitates additional equations for moisture transport (Yang et al. 2018) that 
further complicate derivation of daily correlations of the type of Eq. (5).  

Although extension of our method to a cooling season is not straightforward, the way we 
estimate the wind-driven air leakage—i.e., the coefficient C1 in Eq. (9)—remains valid in the 
cooling season12 because it compares system runtimes over similar time windows with high 
versus low wind, and a proper matching of the time window pairs cancels the unknown latent 
heat and also solar heat gains from the difference. If interval electricity consumption data for 
home’s AC system were available, we could then estimate the value of coefficient C1 and 
compare this estimate to its heating-season counterpart. The equality of the two estimates would 
imply potential applicability of our method to the cooling season data. 

Because electric interval data are not available to us in this project, we cannot directly compare 
the cooling- and heating-based C1 estimates. Nonetheless, we can calculate the ratio between the 
estimates of Qheat in the heating season to the average value of Qcool in the cooling season by 
using Eq. (9). Assuming that the average value of Qcool is of the order of a nominal (i.e., 
nameplate) cooling capacity of the home AC system, we estimate that the calculated Qheat/Qcool 
ratio in a Massachusetts climate should be in the range of 1 to 3.13 

The CT data we obtained from vendor #3 included data from a central AC system for some 
homes. In all, we identified 71 homes with good-quality CT data for both heating and cooling 
seasons, of which 52 had cooling data from a single zone (i.e., a single CT in the cooling season, 
whose ID may or may not be the same as those in the heating season). We modified our air-
leakage algorithms for the cooling season and then applied them, together with their heating-
season counterparts, to the data from these 71 homes.   

 
12 Assuming that wind predominantly comes from similar directions during the cooling and heating seasons. 
13 This is based on a 2,000 ft2 home with a 50 to 150 kBtu space-heating system and assuming 500 ft2/ton of cooling 
(= 4 tons * 12,000 Btu/ton = 48 kBtu). 
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Figure 19 shows the results. As expected, the ratio is always greater than unity, but many ratios 
are appreciably larger than anticipated. To a significant extent, this may reflect the relatively 
short cooling season duration and modest summertime outdoor temperatures in Massachusetts. 
This results in fewer days with appreciable cooling, making it challenging to find well-matched 
periods of time and decreasing the number of data points in regressions (compromising 
regression quality).  

More work and data, specifically interval electricity consumption data, are needed to fully 
explore the algorithmic capabilities during the cooling season. 

  

Figure 19. Estimated heating to cooling capacity ratio for homes with both heating and cooling data available 

Left – all homes with heating and cooling data (71), right – only homes with one cooling zone and heating data (52) 

7.2 EM&V for Retrofits  
It is well known that conventional methodology for evaluation, measurement, and verification 
(EM&V) of post-retrofit savings requires several years of post-retrofit fuel bills. In addition, 
significant uncertainty remains whether household maintain the same level of thermal comfort 
post-retrofit—in other words, increasing thermostat setpoint reduces the potential savings.  

Our approach may provide a quicker and more reliable opportunity for EM&V if sufficient CT 
data are available pre- and post- ECM implementation. This, in turn, depends on the data scatter 
in the daily correlation plots (see, for example, Figure 214). As a rough estimate,15 we can use the 
results from linear regression theory for the standard deviation of the slope and then compare the 
difference in slope pre/post-retrofit with this standard deviation. The standard deviation of the 
slope is inversely proportional to the square root of data point number (i.e., the number of days 
with CT runtime data in our case) so that the minimum number of days with CT data required to 
statistically discern pre/post data and estimate savings can be calculated.  

 
14 Note that the scatter in Figure 2 can be attributed in part to wind-driven air leakage. 
15 Because the infiltration model in Eq. (4) incorporates the nonlinear stack effect, the overall dependence of the 
runtime on temperature difference is slightly nonlinear. 
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In addition, because ECM implementation should not change the thermal mass of a home, the 
conventional first-order lumped resistance-capacitance “cooling curve” approach (see Figure 10 
and corresponding text) can be used to check if the decay rate has changed post-ECM 
implementation. However, because of the coarseness of the temperature data from vendors #2 
and #3 (see Table 1; temperatures reported in 1oF increments), the calculated decay rates can be 
too coarse for a meaningful comparison. 

In our data sets, we identified 17 homes with ECMs implemented during the data collection 
process; of those, six had data at least two weeks both before and after ECM implementation. 
Two examples of these homes are detailed below. 

7.2.1 Example 1 
The first example is a home heated by an atmospheric (i.e., non-condensing) furnace. The home 
was built in 1989, and the HEA values for wall R-value is 8.1 and for attic R-value is 12. The 
following ECMs were installed:   

• Air sealing, door stripping 

• No wall insulation 

• Attic: (1) attic floor open blow cellulose 5”, (2) Propavent 2’ or 4’, (3) attic stair cover 
thermal barrier with carpentry. 

Figure 20 and Figure 21 show the computed correlations for the CT data obtained by the home’s 
two thermostats. Whereas Figure 20 suggests no noticeable pre-post difference for the 
correlations computed by the “downstairs” CT, dramatic difference is evident for both types of 
correlations in Figure 21. This is in line with the performed retrofits that are mainly upgrading 
the attic. 

  

Figure 20. Correlations for pre/post ECM implementation for a home from vendor #3, downstairs CT 

Left – runtime correlations, Eq. (5), right – cooling decay rates over thermostat setbacks 
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Figure 21. Correlations for pre/post ECM implementation for a home from vendor #3, upstairs CT 

Left – runtime correlations, Eq. (5), right – cooling decay rates over thermostat setbacks 

Quantitatively, we calculated the pre-post slopes of the regression lines using the whole-home 
equivalent approach (see Section 4), as well as their standard deviations. The pre-retrofit slope 
value is 0.0151 with a standard deviation of 0.0012. The post-retrofit value is 0.0120 with a 
standard deviation of 0.0008. The savings can be roughly estimated as (0.0151 – 0.0120)/.0151 = 
20.5%. The difference in slopes is 0.0031 and its standard deviation is 0.0014, i.e., the slope 
difference is about 2.2σ. This difference is statistically significant at a significance level of 0.014 
for a normal distribution. Encouragingly, this change in the second-floor thermal performance is 
consistent with the major upgrade in attic insulation, i.e., adding ~R-18 of insulation to an R-12 
attic.  

7.2.2 Example 2 
The second example is a home heated by a condensing furnace. The home was built in 2000, and 
the HEA values for wall R-value is 11.4 and for attic R-value is 17.8. The following ECMs were 
installed on or about February 21, 2017: 

• Air sealing, door stripping 

• No wall insulation 

• Attic: (1) Propavent 2’ or 4’, (2) attic stair cover thermal barrier with carpentry, (3) attic 
floor open blow cellulose 4”. 

Figure 22 shows the computed correlations for the CT data obtained by the home’s thermostat. 
Although the installation date is more than a month later than that in the first example, there are 
relatively few pre-ECM data points because the CT was connected on February 2, 2017—less 
than three weeks prior to ECM implementation. Yet, some pre/post difference is visible in the 
runtime correlations. The calculated decay rates are not very meaningful, mainly because the 
temperature data from vendor #2 are too coarse (see Table 1). 
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Figure 22. Correlations for pre/post ECM implementation for a home from vendor #2 

Left – runtime correlations from Eq. (5), right – cooling decay rates over thermostat setbacks 

Quantitatively, the calculated pre-retrofit slope value is 0.0118 with a standard deviation of 
0.0025. The post-retrofit value is 0.0089 with a standard deviation of 0.0011. The savings can be 
roughly estimated as (0.0118 – 0.0089)/.0118 = 24.6%. The difference in slopes is 0.0029 and its 
standard deviation is 0.0027, so the slope difference is about 1.1σ. This difference, though close 
to the slope difference in the previous example (0.0031) is not statistically significant because 
the standard deviation of the pre-retrofit slope is too large due to relatively few data points. Our 
calculations suggest that increasing the number of good-quality pre-retrofit data points by a 
factor of about two would make the slope difference statistically significant at significance level 
of 0.08. 

These examples are promising, yet large pre-post data samples and additional work are required 
to establish an EM&V method on the basis of the proposed approach. 

7.3 Cases Without Fuel Bills 
The requirement to have gas bills available can limit the applicability of the project’s results 
because (1) a CT reward program may not be controlled by a gas utility, and (2) many homes, 
especially in the Northeast, are heated by delivered fuels, i.e., heating oil or propane.  

Gas bills enable us to estimate the heat supply Q in Eqs. (2)-(5); this means that without bills, we 
need an alternate approach to estimate Q. All other things being equal, Q should scale 
approximately linearly with the home’s conditioned area. Indeed, the estimated Q values 
reported in the HEAs show this dependence. Such a correlation implies a relatively narrow 
distribution of heat supply for a given conditioned area in a home which could ultimately result 
in a more definitive answer to the question of whether a given home with no gas bills is a good 
candidate for insulation and/or air sealing retrofit. 

Suppose the probability density function of Q for a given home is known. Our approach so far 
uses a single value or a point estimate of Q to estimate the most important physical parameters 
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characterizing retrofit opportunities, the overall home R-value and ACH50. Both parameters have 
a functional relationship with Q: the R-value is inversely proportional to Q (see Eq. (5)) and 
ACH50 is linearly proportional to Q (see Eqs. (9)-(12)). Thus, it is possible to derive a confidence 
interval for the estimated R-value or estimate the probability that the R-value is less than the 
threshold value (assumed to be 8 in our work). In this way, we could potentially overcome the 
need for fuel bills. Additional sources of uncertainty (e.g., those related to home measurements 
and model simplifications) can be accounted for as well, although our previous analysis related 
to the modeling of a home with two CTs shows very small variability related to these factors (see 
Section 4). 

The statistical distribution of Q for a home can be characterized using a sample of similar homes 
with known Q values. As an example, we calculated values of Q for 628 homes from vendor #1, 
part of the RCT data set (see Section 6.1). With the limited information provided to us, we can 
only characterize “similarity” of homes by their floor space and the number of floors. Figure 23 
shows the calculated values of Q for two-story homes. 

 
Figure 23. Calculated heat supply, Q, for a sample of two-story homes  

The RCT data set from vendor #1 was used. Results for 230 homes are shown. 

Suppose now we have a two-story home with an unknown heat supply from the same population, 
and its conditioned area is 2,000 ft2. Ideally, to characterize the statistical distribution of this 
home’s heat supply, we would down-select homes with the same conditioned area from our 
sample. Because the sample is not large, we allow an arbitrary tolerance of ±300 ft2 for a home 
to be “similar.” A histogram of the calculated heat supply for such homes is shown in Figure 24.  
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Figure 24. Distribution of calculated heat supply for a sample of two-story homes with conditioned area of 

about 2,000 ft2  

The histogram is built from homes used in Figure 23 that have conditioned area of 2,000±300 ft2 (101 in total). 

It is seen in the figure that the distribution mode (i.e., the most frequent value) is about 100 
kBTU/h. Suppose we used this value as a point estimate of Q and derived, using our approach 
and available CT data, the corresponding estimates for the overall R-value of 7.5 and ACH50 of 
17.2 for this home. Using the empirical distribution (plotted in Figure 24), we can obtain the 
distribution of R-values and ACH50 corresponding to these two estimates. 

These distributions (which can be considered to be statistical distributions of actually estimated 
values with the value of Q being known), are shown in Figure 25. As expected, Figure 25 
suggests that there is a wide range of possible “actual” parameter estimates. Quantitatively, we 
can estimate the probability that this home is a candidate for insulation retrofit, meaning that the 
“actual” R-value <8. This probability equals the number of R-values <8 (58) divided by the total 
sample size (101), i.e., 57.4%. Analogously, the probability that the home is an air sealing 
candidate equals the number of ACH50 >10 (85) divided by the total sample size (101), i.e., 
84.1%. Whether these probabilities are high enough to justify approaching this home with a 
retrofit offer would depend on the program design and could be decided, e.g., by calculating the 
chance that the expected savings exceed a threshold or by comparing the saving expectation with 
HEA cost. Such calculations could be performed along the lines of the proposed approach. 

In practice, actual (i.e., nameplate) installed furnace and boiler capacities come in discrete 
capacities and depend on several factors, foremost contractor system sizing decisions. 
Consequently, using distributions of actual Q values derived from field data (e.g., from 
completed retrofit projects) as a function of relevant variables (e.g., vintage)16 would likely yield 
more accurate distributions. 

 
16 We presume that the Q estimates reported from the HEAs reflect algorithms based on these kinds of underlying 
data. 
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Figure 25. Distributions of potential values of R-values and ACH50 for a home with unknown heat supply 

The distributions are obtained for a two-story home with 2,000 conditioned area and point estimates of 7.5 for R-value and 
17.2 for ACH50. 

8 Conclusions 
In this work, we successfully developed and validated a set of scalable algorithms that 
automatically analyze CT data to accurately characterize home retrofit opportunities and predict 
expected energy savings for homes with one or two CTs. Unlike other research groups, we use 
home energy assessment reports as the source of comparison and verification and a “static” (i.e., 
averaged over time) approach for estimation of physical home parameters that characterize the 
retrofit opportunity. Importantly, our physics-based approach is based on first principles, so it 
does not require “training” that would limit its applicability.  

The results for the building envelope R-values and for air leakage characteristic ACH50 suggest 
that we can accurately identify low-performing homes that are prime candidates for insulation 
and air sealing retrofits, achieving classification accuracies of 89% and 96% for insulation and 
air sealing retrofits, respectively. Among scalable and computationally efficient approaches, ours 
can uniquely separate conduction heat losses from infiltration losses. Initially, we developed our 
algorithms for homes with a single CT and then subsequently successfully extended the approach 
to homes with two CTs. Thus, our method is generally applicable to homes using gas-fired 
furnaces and boilers controlled by CTs located in heating-dominant climates. We have not, 
however, evaluated the effectiveness of the algorithms for combi-systems, i.e., boilers that meet 
both space and water heating loads. Neither we were able to quantitatively characterize the 
heating system efficiency of a home. 

That said, we found several challenges related to the quality of CT data and precision of on-site 
home energy assessments. In particular, obtaining high-quality CT data proved to be a major 
challenge, with two of the three vendors providing lower resolution data that negatively impacted 
algorithm effectiveness, particularly for EM&V. In addition, missing CT runtime data also 
appears to be a significant challenge. Consequently, utilities and energy efficiency programs 
need to carefully consider what data fields and resolution/precision they expect CT providers to 

0 10 20 30 40

R-value

0

5

10

15

20

25

30
Fr

eq
ue

nc
y

0 20 40 60 80 100

ACH
5 0

0

10

20

30

40

50

Fr
eq

ue
nc

y



Development and Validation of Algorithms That Analyze Communicating Thermostat Data to Identify Enclosure 
Retrofit Opportunities 

44 

report when developing CT procurement specifications to take advantage of emerging use cases 
such as remote home energy assessments. 

Ultimately, the targeted and customized outreach enabled by the algorithms has the potential to 
increase the energy savings and cost-effectiveness of energy efficiency programs in multiple 
ways. First, we expect this will appreciably increase the number of HEAs requested by homes 
with significant (10%+ savings) insulation and air sealing opportunities, as well as the number of 
insulation and air sealing projects completed. Not only does this increase the quantify of savings 
realized, it also increases the cost-effectiveness of the HEAs because the savings per HEA 
increase. Second, the information provided by the algorithms can be used to focus the HEAs and, 
therefore, decrease their cost. Third, the algorithms can also be used by the programs to perform 
automated home-specific post-retrofit EM&V of retrofits performed by comparing actual post-
retrofit thermal performance with expected performance. This will reduce program quality 
control and evaluation costs and should increase the ratio of actual to expected energy savings.  

To better understand how targeted, customized outreach affects HEA and ECM uptake, we 
conducted an RCT field pilot with our utility partners. The RCT results suggest that personal 
messaging leads to a significant increase in the HEA uptake rate. Because of a time lag of up to a 
year between an HEA and ECM implementation in a home, it is too early to conclude whether 
the ECM realization rate also increased for such homes. Potential future work could involve 
gathering precise pre-retrofit field data measurements (insulation levels, air infiltration, and other 
characteristics) to further refine/validate the algorithm. 
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