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A HIGH-GRANULARITY APPROACH TO MODELING ENERGY CONSUMPTION 
AND SAVINGS POTENTIAL IN THE U.S. RESIDENTIAL BUILDING STOCK 

Eric Wilson1, Craig Christensen1, Scott Horowitz1 and Henry Horsey, Member1  
1National Renewable Energy Laboratory, Golden, CO 

ABSTRACT 
Building simulations are increasingly used in various applications related to energy efficient buildings. For individual 
buildings, applications include: design of new buildings, prediction of retrofit savings, ratings, performance path code 
compliance and qualification for incentives. Beyond individual building applications, larger scale applications (across 
the stock of buildings at various scales: national, regional and state) include: codes and standards development, utility 
program design, regional/state planning, and technology assessments. For these sorts of applications, representative 
buildings are needed for simulations to predict performance of the entire population of buildings. 
Focusing on the U.S. single-family residential building stock, this paper will describe how multiple data sources for 
building characteristics are combined into a highly-granular database that preserves the important interdependencies of 
the characteristics. We will present the sampling technique used to generate a representative set of thousands (up to 
hundreds of thousands) of building models. We will also present results of validation against building stock consumption 
data. 

INTRODUCTION 
In what Swan (2009) refers to as bottom-up, archetype, engineering models, relatively small numbers of ‘typical’ or 
‘average’ buildings have been used to represent building stocks for purposes of modeling with detailed building 
simulation tools (Huang et al 1999, Hopkins et al 2011,  Taylor et al 2012). With today’s available computing resources, 
it is useful to ask what is an appropriate number of representative buildings and how should they be defined. A large 
number of representative buildings may be appropriate, considering the possible combinations that result from the range 
of general building characteristics that influence energy consumption (location, vintage, size, number of stories, 
foundation type, heating fuel type, etc.) and specific building component characteristics (such as insulation levels, 
window types, etc.) that tend to vary with location and vintage. This paper describes a high-granularity approach using 
Latin hypercube sampling (Saltelli 2008) with building characteristic distributions to automatically generate a large 
number of statistically representative building archetypes, to provide model results with adequate sensitivity to address a 
wide range of analysis questions. 

BUILDING CHARACTERISTICS 
For residential building stock analysis, energy simulations of representative buildings require inputs based on 
characteristics of actual buildings. Table 1 shows building characteristics, dependencies, and data sources for the high-
granularity approach explored in this paper. 
Archetype Parameters and Variant Characteristics 
As observed in building characteristics data, dependencies are such that there are certain aspects of buildings (e.g., 
location, vintage, heating fuel type, etc. as the headings listed under Dependencies in Table 1) upon which other building 
characteristics (e.g., insulation levels, window type, etc.) depend. We refer to the former as archetype parameters and 
the latter as variant characteristics. The hierarchy in Figure 1 illustrates such dependencies, including the fact that 
archetype parameters can also depend on each other.1 Combinations of archetype parameter values and dependent variant 
characteristic values lead to archetype variant buildings to be simulated. 

 
1 The order of the hierarchical structure is somewhat arbitrary; for example, the same data set could be queried to 
develop location weighting factors as a function of vintage. Once weighting factors have been developed based on a 
particular hierarchical order, then that order is used for dependency-based calculations. 
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Characteristic Distributions and Current Values 
For variant characteristics, typical or predominant values may come to mind, but the data is better represented by 
probability distributions. For example, many homes built in the 1950s have uninsulated walls with a few built to higher 
standards or since retrofitted. Attic R-values, on the other hand, are more likely to have a broader range of values, as a 
result of retrofitting at different times (motivated by different utility rates and/or incentives) over past decades. 
For any given archetype, current buildings (as they exist today) include variant characteristics that depend on building 
components that are: 1) as-built, 2) retrofitted, or 3) replaced. 
Envelope component characteristics are predominantly as-built – characterized with data based on new construction 
builder surveys, building codes, and standard construction practices. For retrofits, estimates are included for the fraction 
of building components that have been retrofitted and the retrofit efficiency level. 
Equipment characteristics for older vintage buildings are predominantly based on replacements; data can be generated 
based on component lifetimes and equipment sales data. For new building vintages, as-built characteristics are still 
current; data can be derived from equipment energy standards. Retrofits (early replacements) are less common; data can 
be estimated. In all cases, efficiency levels may vary, including some consumer choice of upgrades. Diversity in 
probability distributions, however, primarily reflects the mix of as-built, replacement and retrofits. 

Table 1. Building characteristics, dependencies, and data sources 
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Figure 1. Variant characteristics probability distributions based on archetype parameter values. 
(W) indicates window air conditioners. 

 
OVERALL PARAMETER SPACE 
Theoretically, a very large number of archetype variants exist, based on all possible combinations of characteristics. 
However, within this parameter space, archetype variants represent differing numbers of actual homes, depending on the 
product of the archetype probability and the variant characteristic probabilities. 
In fact, many cells in the parameter space will be essentially empty (i.e., many theoretical variants will represent zero or 
a statistically insignificant number of actual homes). For example, the combination of “built in the 2000s in the 
Southwest, with a basement and oil heat” will represent few, if any, actual homes. Obviously, modeling such variants is 
unnecessary. Nevertheless, the number of archetype variants associated with actual existing buildings can be very large, 
and approaches to limiting the number of archetype variants to be simulated will be considered (see: Modeling 
Approaches section).  

Non-Correlated Variant Characteristics 
Beyond mutual dependence on archetype parameters, we mostly lack statistical data on relationships between variant 
characteristics (e.g., insulation levels, window type); therefore, we assume no direct dependencies.2 Archetype variant 
buildings are defined based on different combinations of these characteristics.  
If further detailed data was available, additional archetype parameters could be developed where appropriate. For 
example, if relationships between insulation levels for different envelope building components (e.g., walls, attic/roof, 
foundation) beyond vintage and location dependencies were found, an archetype parameter that qualitatively describes 
the building envelope as well insulated, moderately insulated, or poorly insulated could be developed with the 
aforementioned envelope building components dependent on it. 

Visualizing the Parameter Space 
The parameter space can be visualized as a hierarchal tree structure covering all possible combinations of building 
characteristics in archetypes and variants. The tree structure branches out (based on the number of options in each 
probability distribution) through archetype parameters (in order of dependencies) and then through uncorrelated variant 

 
2 Because there are no dependencies assumed among uncorrelated characteristics, the sequential ordering in the lower 
part of Figure 1 is arbitrary. 
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characteristics. Each path from trunk to twig represents a theoretical archetype variant. Thickness at any point depends 
on cumulative product of probabilities to that point; at the end of the branch, the thickness represents the archetype variant 
direct house count. 

MODELING APPROACHES 
Alternative approaches to selecting representative buildings (archetype variants) to be simulated include:  

EPS (Entire Parameter Space) 
If granular data is used, the entire domain space includes a very large number of theoretical archetype variants (all 
possible combinations of characteristics). Even after eliminating combinations for which no actual homes exist (a 
computational challenge in itself), the domain space is too large to run detailed building energy simulations, even using 
high performance computing resources. 

TPH (Typical Prototype Houses) 
Historically, a limited number of “prototype” buildings have been used, often with each characteristic represented by a 
single typical, predominant or average option rather than a probability distribution. The limited sensitivity of such 
models may impose limitations regarding the sort of analysis questions that can be accurately addressed.  

MHC (Maximum House Count) 
Sampled archetype variants, selected to have the highest possible house-counts, maximize the number of actual houses 
directly represented. Simulations are prioritized for high house-count archetype variants, and energy results for those 
variants are multiplied by the associated house-count weighting factors. However, high-probability archetype parameters 
and characteristics end up overrepresented while low-probability archetype parameters and characteristics are 
underrepresented. 

LHS3 (Latin Hypercube Sampling) 
Simulations are distributed across a wide variety of archetype variants according to archetype and variant characteristic 
probabilities. LHS is often used for computer experiments. The approach naturally includes simulations for many 
archetype variants with high direct house-counts resulting from high probabilities for some variant characteristics and 
combinations thereof, but does not focus exclusively on such variants (as the MHC approach does). Some archetype 
variants with lower direct house-counts are included to match the overall probability distributions. Sampled archetype 
variants represent fewer actual houses directly than in the MHC approach, but are designed to statistically represent the 
entire housing stock as best as possible for a given number of simulations.  

Summary of Approaches 
The first and second approaches bound the range of possibilities: using a great many simulations to using only a limited 
number. The third and fourth approaches use an intermediate (but perhaps, large by historical standards) number of 
simulations.  For a highly dimensional space, such as the U.S. residential building stock: 
• EPS – number of simulations prohibitive.  
• TPH – granularity often insufficient for answering analysis questions accurately.  
• MHC – over-represents high probability building characteristics. 
• LHS – best balance between representing housing stock characteristics and number of simulations. 

The LHS approach is recommended for residential building stock modeling and is described in more detail in the next 
section. 

 
3 By comparison to simple random (Monte Carlo) sampling which requires large sample sizes to match each 
building characteristic probability distribution, the LHS approach procedurally ensures a good match (limited by 
sample size resolution, as illustrated in Figure 4). 

The described LHS approach differs from classical LHS in two ways: 
a) the standard LHS implementation specifies that a variable value appears in only one sample, but here the 

mapping of probability distributions purposely leads to characteristic options appearing in multiple archetype 
variants; however, the described approach does preserve the desired LHS property of sampling ranges with 
equal probability and 

b) classical LHS does not include dependencies, and its elegant solution based on simply selecting each sample. 
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THE LHS APPROACH 
The LHS approach, using conditional probability distributions, (see Table 2) includes the following steps: 

1. Choose number of simulations, e.g., m = 100,000 
2. Construct a matrix with m rows (samples) and n columns (archetype parameters and variant characteristics—ordered 

by dependencies): 
a. Populate each column with m sample #’s in random order 
b. For each row,  

i. 7 For each column (from left to right): map sample # to characteristic option, using sample # ranges (see 
Figure 2) proportional to the applicable probability distribution (dependent on archetype characteristics 
in previous columns)  

ii. Repeat for next column [when all columns for the row have been processed, the result is an archetype 
variant to be simulated] 

c. Repeat for the next row [when all rows have been processed, the result is a complete set of archetype variants 
to be simulated] 

3. Simulate the LHS selected archetype variants  
4. Multiply each simulation result by a LHS scaling factor (=  total # of houses / # of simulations)  

For each LHS archetype variant, the scaling factor does not equal the direct house count that would calculated as the 
cumulative product of building characteristics probabilities, because each LHS archetype variant also indirectly 
represents additional (similar) archetype variants (not simulated).  For LHS, the same-scaling factor applies to each 
simulation. 

Table 2. Example LHS simulations (with dependencies  ) developed from randomly ordered sample numbers (S#) 
mapped to building characteristics (Ch) based on ranges in Figure 2. 

 

 
Figure 2. Sample number ranges for first three simulations in Table 2 (for a 100 simulation example) from probability 

distributions based on archetype dependencies. 
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How Many Simulations?  
Beyond which building designs should be prioritized for simulation as described in the previous section, there is the 
question of the total number of simulations to be performed. In general, more simulations provide better coverage of the 
domain space and better accuracy/sensitivity of the model, but at the expense of longer runtime. The LHS approach 
attempts to select buildings to be simulated such that probability distributions are preserved. Therefore, the simulation 
distributions should match the probability distributions as closely as possible for archetype parameters.  
As shown in Figure 3, simulations4 associated with an archetype are used to create simulation distributions that best 
match the variant characteristic probability distributions (Figure 1). As an archetype specification becomes further 
defined (moving from left to right in Figure 3) the number of available simulations attributed to the archetype decreases.5 
Using a finite number of simulations to match a probability distribution can lead to resolution problems, as seen in Figure 
4.  
For options with small probabilities (as can occur especially in distributions with many options), limited resolution can 
lead to some non-zero options with no simulations (see SEER 15 in Figure 4a) and other options with simulations that 
nearly double the appropriate probability (see EER 8.5 in Figure 4a). 

 
Figure 3. Number of simulations based on hierarchical conditional probability distributions. 

 
4 This example assumes 100,000 total simulations with ~20 TMYs per location (region). Therefore, ~5,000 
simulations are available at the beginning of the hierarchical conditional probability tree. 

5  Moving left to right in Figure 3, the numbers of simulations decrease, because the hierarchical tree is dividing into 
a growing number of increasingly thin branches — with one path shown. Beyond the path shown, Location 
simulations are split off to cover multiple, not-shown Vintages, and Vintage simulations are split off to cover 
multiple, not-shown Heating Fuel Types. 
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Figure 4. Air conditioner simulation distributions vs. probability distributions: 

a) 10 simulations, b) 20 simulations and c) 30 simulations. 

The risk of inadequate resolution and significant (percent) discrepancies is highest for low-probability options within 
low-probability archetypes. Such cases are typically associated with relatively low house counts. However, if key to an 
analysis (for example, part of the target for a particular retrofit), such situations can be important. As an alternative to 
increasing the total number of simulations, one possibility is to focus the analysis and simulations specifically on the 
relevant part of the domain space. 
The overall impact of the total number of simulations is difficult to accurately predict because the effects are variable 
across the domain space. An alternative to prediction is to monitor outputs of interest as additional simulations are run, 
for convergence toward a stable result (Figure 5) by tracking the minimum, maximum and average results. This approach 
has the advantage of finding the appropriate number of simulations depending on the specifics of different analyses. 

 
Figure 5. Convergence testing. 

VALIDATION/CALIBRATION  
For simulation of individual buildings, validation addresses accuracy of inputs, algorithms, and software implementation. 
For large-scale analysis, validation must also address archetype definitions, house-counts and dependencies. For large-
scale analysis, validation involves comparing aggregated EnergyPlus model predictions to reference data (e.g., RECS 
consumption values).  

The most basic validation is comparison of results aggregated at the highest level (e.g., national level). Comparisons of 
results at lower levels of aggregation (sliced by different archetype parameters, for example, as shown in Figure 6) can 
reveal the accuracy of the model under different circumstances and provide an indication of the model’s likely usefulness 
for answering a range of analysis questions. 
Beyond the physical characteristics captured in archetype variants, various occupant and operational factors are known 
to significantly affect building energy use. Simulations rely on assumed values; actual field values are not well known, 
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nor how they vary with archetype parameters such as location and vintage. Such uncertainties may be a significant cause 
of lack of agreement between model results and reference data.  
Calibration can be applied to ‘true up’ results to better match the reference data. Calibration may, in fact, be adjusting for 
a ‘multitude of sins’ in the model, and it is not clear to what degree the resulting calibrated model correctly preserves 
sensitivities for particular analysis questions. Therefore, calibration is a last resort. One prefers a model that validates 
well and requires as little calibration as possible. 

 
Figure 6. Consumption (source energy per house: 106 Btu/yr) modeled vs. RECS consumption data: by custom region 

and vintage; natural gas (blue) and electricity (red); bubble size indicates house count. 
IMPLEMENTATION 
This residential building stock modeling approach is planned for implementation on the Department of Energy's 
OpenStudio/EnergyPlus (www.openstudio.net  and www.energyplus.net) whole-building simulation platform. The 
platform provides existing capabilities that include: 1) measures (scripts) that can quickly create/manipulate building 
models, 2) large-scale analysis using cloud computing, and 3) a framework for visualizing outputs. By leveraging these 
capabilities, implementation can be developed more quickly and be made available for other users/entities (e.g., utilities, 
local/state governments, manufacturers). 

CONCLUSIONS 
No single data source exists for the range of characteristics needed for residential building stock energy modeling. Data 
from multiple sources was used to develop a hierarchical structure of conditional probability tables that define 
components of a building depending on archetype parameters. 
Significant diversity exists in the U.S. residential building stock, and building component characteristics are best 
represented by probability distributions depending on archetype parameters such as location and vintage.  
Among alternative approaches for selecting representative buildings to be simulated, a Latin hypercube sampling (LHS) 
approach, using conditional probability distributions to capture building stock dependencies, is recommended based on 
a good balance between representativeness of the housing characteristics and number of simulations required. Depending 
on the granularity of the analysis, the total number of simulations can be scaled to achieve adequate sensitivity and avoid 
excessive uncertainty in the results. 
FUTURE WORK 
For our data set and modeling platform, we will investigate applicability of other statistical sampling approaches beyond 
LHS such as Monte Carlo sampling with low-discrepancy sequences including Sobol’ sequences (Burhenne 2011). 

ACKNOWLEDGMENT 
This work was supported by the U.S. Department of Energy, Building Technologies Office and the Bonneville Power 
Administration.  

http://www.openstudio.net/
http://www.energyplus.net/


9 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

REFERENCES 
Burhenne, S., Jacob, D., and Henze, G. 2011. “Sampling Based on Sobol’ Sequences for Monte Carlo Techniques 

Applied to Building Simulations,”  Proceedings of Building Simulation: 12th Conference of International Building 
Performance Simulation Association, Sydney.  

Hopkins, A., Lekov, A., Lutz, J., Rosenquist, G., Gu, L. 2011. “Simulating a Nationally Representative Housing 
Sample Using EnergyPlus,”  LBNL-4420E, Energy Analysis Department, Lawrence Berkeley National 
Laboratory. 

Huang, J., Hanford, J., Yang, F. 1999. “Residential Heating And Cooling Loads Component Analysis,” LBNL-44636, 
Energy Analysis Department, Lawrence Berkeley National Laboratory. 

Long, N., Ball, B., Fleming, K., Macumber, D. 2014. “Scaling Building Energy Modeling in the Cloud with 
OpenStudio,” 2014 ASHRAE/IBPSA-USA Building Simulation Conference. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S. 2008. 
Global Sensitivity Analysis. The Primer, John Wiley & Sons, Ltd.  

Swan, L., Ugursal, I. 2009, “Modeling of End-Use Energy Consumption in the Residential Sector: A Review of 
Modeling Techniques,” Renewable and Sustainable Energy Reviews. 

Taylor, T., Ferdandez, N., Lucas, R. 2012. “Methodology for Evaluating Cost-Effectiveness of Residential Energy 
Code Changes,” PNNL-21294, Pacific Northwest National Laboratory. 




