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Introduction and objectives
Detonation based engines

Standing 
Detonation 

Engines

Pulse 
Detonation 

Engines

Rotating Detonation 
Engines/

Continuous Rotating 
Detonation Engines

Objective: Study effect of fuel composition on RDE 
performance using

o Simplified, periodic 2-D geometry
o Automatic mesh refinement (AMR) + High 

accurate numerical schemes
o Detailed chemistry+ Realistic Transport 
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PeleC- solver structure

AMReX Framework

PeleC

PelePhysics-
(For transport & 

Chemistry)

Sundials 
(Chemistry 
integration)

Governing Equations

Equations of state: Ideal gas, Suave Redlich-Kwong model
Transport Model: Mixture averaged transport
Second order FVM in space (Piecewise periodic method
, Method of Lines) and time (Runge-Kutta 2-step method) 

Direct fuel injection in supersonic cavity flame-holder1.
Piston Bowl geometry Supercritical CO2 power cycle2
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Computational Domain and Boundary Conditions

3D Cylindrical geometry “unrolled” to form 2D, periodic geometry

Outflow

Multiple (x 75) jet inlets boundary

Periodic boundaries

30 cm

7.2 cm

1.0 cm

0.2 cm
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Mesh sensitivity study using 1D detonation wave

Computational domain (not to scale) and boundary conditions

2 m

0.003 m
Inlet: 
u =0
T = 300 K
Fuel-Air = H2-Air (DRM19 Mech)

outlet
Slip walls

Grid 1 Grid 2 Grid 3

No of AMR levels 0 (uniform 
single grid)

1 2

Refinement 
ratio(RR)

2 2 2

∆𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
(micrometers)

384 192 96

Computed 
Detonation Speed 
(m/s)/ CJ-Speed 

(m/s) 

1970/1976 1973/1976 1974/1976

Grid 2 with 2 levels and 
RR of 2 selected for study
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Simulation Setup

Boundary condition implementation (P= interior pressure):
If P>P0  Treat inlet as wall

P0>P>Pcr  Gas dynamics based relations for T, V
P<Pcr  Chocked flow relations

Numerical Scheme: MoL with Godunov Scheme
Time Integration: Second-order Runge Kutta
Max. AMR Level: 2
Chemistry: DRM19 / LeDryer
Transport: Ideal gas

Simulations
(P0=10 Atm, 
T0=500K)

Fuel Composition 
(mole fraction)

Case 1 H2: 1.0, CH4: 0.0
Case 2 H2: 0.9, CH4: 0.1
Case 3 H2: 0.8, CH4: 0.2
Case 4 H2: 0.5, CH4: 0.5

High Temperature~3000K, 
High Pressure ~ 20 Atm zone
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Automatic mesh refinement using PeleC (Case:3)

Numerical schlieren

AMR boxes generated
during simulation



NREL    |    8

Instantaneous fuel injection and pressure profile

Y=1 cm
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Sequence leading to micro-detonations

Fuel-air+product mixing

Deflagration

Transition to detonation
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Ignition and transients before stable waves 
formation (Case 1: H2=100%)

fuel-air -products Quicker autoiginition Micro-detonations
Counter moving wave collision Reduction of strength

YOH Pressure(dyne/cm^2)

Unidirectional waveset generation
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Flow structures and waves
Case 1: (H2:100%) 

# of waves=5
T= 4.5 ms

Mass flow rate: 1.43 kg/s

Case 2: (H2:90%) 
# of waves=5

T= 4 ms
Mass flow rate: 1.33 kg/s

Case 3: (H2:80%) 
# of waves=2

T = 3.5 ms
Mass flow rate: 0.90 kg/s

Oblique shock wave Slip line

Detonation front

X- and Y- velocities, time=4.5 ms, CASE1
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Detonation wave speeds and frequencies

Case 1 Case 2 Case 3

Frequency (kHz) 5.94 5.76 5.60

Detonation speed (m/s) 1781.8 1728.4 1674.4

CJ-Speed (m/s) 1952 1904 1874

5 detonation waves

Pressure time series, CASE 1
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Reactions and detonation ratio

Case 1: (H2:100%) 
# of waves=5

Case 2: (H2:90%) 
# of waves=5

Case 3: (H2:80%) 
# of waves=2

Heat release rate PressureDetonation zone

Deflagration zonesNegative HR zones
𝜂𝜂𝐷𝐷𝐷𝐷𝐷𝐷−𝐷𝐷𝐷𝐷𝐷𝐷.𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Case 1 Case 2 Case 3

𝜂𝜂𝐷𝐷𝐷𝐷𝐷𝐷−𝐷𝐷𝐷𝐷𝐷𝐷.𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 72.3% 71.2% 58.85%
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Axial heat release and dynamic pressure 
distribution

CASE 1 CASE 2 CASE 3

Heat Release 
Distribution

Dynamic Pressure 
Distribution
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Ignition and transients: unsustainable waves (Case 4: 
H2=50%)

Temperature (K) YOH

Ignition source near left boundary

Deflagration wave front

Deflagration wave front washed out
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Conclusions

 AMR based compressible, reactive solver used to simulate 2D flow in a simplified 
RDE geometry

 Initial transients of RDEs showed multiple and micro detonations, constantly 
interacting, colliding, coalescing and dissipating but finally forming unidirectional 
waves

 Effect of CH4 addition changes reactivity: Stable detonation fronts not found for 
CH4 composition >20%

 For specified P0, T0, CH4:20% case showed 2 detonation fronts while lower CH4 
composition showed 5 waves

 The calculated detonation speeds decreased with increasing CH4 concentration 
and matched well with C-J speeds

 Combustion efficiency also reduced for CH4 concentration of 20% due to more 
burning occurring from deflagration
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