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Abstract—Subhourly effects, particularly variability in solar
irradiance, can lead to underestimation of inverter clipping
losses and overestimation of energy in hourly photovoltaic system
performance models, particularly for systems with high inverter
loading ratios. Direct simulation of this error can be complicated
by factors such as the representation of spatial and temporal vari-
ability in hourly weather data and transient system conditions.
In this work we take an alternative approach using real system
power measurements to show that energy predictions from typical
industry models suffer from a bias that increases with inverter
loading ratio. We also show that this loading ratio-dependent
bias is strongly correlated with an empirical subhourly inverter
clipping bias derived from real power plant data. Finally, we
show that this bias is not necessarily specific to any one model
or weather dataset by recreating similar biases with alternatives
of each.

Index Terms—photovoltaic, inverter, clipping, modeling, high-
frequency, subhourly, irradiance, variability

I. INTRODUCTION

Utility-scale photovoltaic (PV) system design is increasingly
trending over time to larger inverter loading ratios (ILR), also
referred to as DC:AC ratios [1]. PV inverters with high loading
ratios must force their arrays into reduced-efficiency operation
in sunny conditions to prevent the total array power output
from exceeding the inverter’s maximum-rated input power.
This power-limiting behavior is called clipping because it
disrupts the linear relationship between irradiance and output
power, resulting in curtailed performance in high irradiance
conditions. An inverter might clip for several hours continu-
ously on a clear-sky day, or only intermittently on days with
highly variable irradiance when high-irradiance spikes might
last for less than one minute.

The detailed system performance models used by industry
developers and financiers to forecast project revenue usually
include adjustments for inverter clipping and many other sys-
tem performance effects. However, the conventional practice
of modeling system performance at hourly scale renders these
models incapable of directly simulating short-duration effects
like subhourly clipping. In effect, these models assume static
operating conditions over each hourly simulation interval,
causing the effects of subhourly irradiance variability to be
overlooked. This causes an otherwise accurate performance
model to overestimate production, especially for systems with
large loading ratios in climates with high irradiance variability.
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Fig. 1. Conceptual visualization of subhourly clipping. Upper subplot:
high-resolution array maximum power point (MPP) data (blue line), and
the corresponding average hourly values (orange line). Green line shows a
particular hourly interval. Dashed black line shows a hypothetical inverter
clipping point. Many MPP values lie above the clipping point at high
resolution, but the hourly averages are all below the clipping point. Lower
subplot: visualization of the 11:00–12:00 interval shown in green in upper
subplot, with high-resolution values (blue dots), the true average of the high-
resolution values (green circle), and the naive average that applies clipping at
hourly scale (orange circle). Applying clipping at hourly scale overlooks the
subhourly clipping loss at higher irradiance, leading to overestimated power
output (red arrow).

It is worth emphasizing that this subhourly clipping bias is not
a recoverable loss caused by poor system operation, but rather
a failure of conventional modeling techniques to fully capture
real-world PV system behavior.

A. What is subhourly clipping?

The mathematical foundation of subhourly clipping error
is relatively straightforward: inverter clipping is a strongly
nonlinear behavior, and the average value a nonlinear function
takes across some interval is, in general, not equal to the
value the function takes at the average of that interval. Thus,
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Fig. 2. Cumulative distributions of one year of Global Horizontal Irradiance
(GHI) values from minute-interval ground measurements and two satellite
datasets for the NIST site, along with a zoomed-in view of the upper end
of the CDFs (inset). Regardless of data source (ground measurement and
satellite), hourly values do not show the high-irradiance tail observed in 1-
minute ground measurements.

to the extent that a particular hourly interval engages with
that nonlinearity, the simulated inverter output at the average
irradiance will be different from the inverter output averaged
across all irradiance values in the interval. Note that similar
arguments apply to the other nonlinearities in PV system re-
sponse, meaning subhourly clipping is not the only contributor
to hourly modeling error [2], [3]. Fig. 1 visualizes this effect,
showing an example where subhourly irradiance spikes would
cause intermittent clipping loss but the average irradiance is
low enough for an hourly model to ignore clipping entirely.

B. What are challenges with using satellite data?

Two limitations of satellite-based irradiance datasets are
worth mentioning here. The first is that, because these datasets
are derived in part from geostationary satellite imagery, their
spatial resolution is limited by the the satellite’s imaging
optics and sensors. In particular, today’s datasets are limited
to kilometer-scale resolution, which is large compared with
individual PV arrays. The second is the limited temporal
frequency, which again is constrained by the corresponding
imaging limits of the satellite. Together, these two limitations
mean that our current satellite-based irradiance datasets are un-
able to recreate irradiance at the scale of individual PV arrays,
at least without a statistical rescaling or similar downscaling
step. Some combination of spatial resolution limitations and
steps taken to convert imagery to irradiance results in a distri-
bution of irradiance values that do not completely recreate the
distribution of ground measurements, even when the satellite
data are not time averages.

This is shown in Fig. 2, where maximum Global Horizontal
Irradiance (GHI) values are clearly higher in both full and
sub-sampled ground measurements than for averaged and
“instantaneous” satellite-based data from both PSM3 and a

commercial vendor. This means that, despite previous work
suggesting that using “instantaneous” satellite-based irradiance
data can partially avoid subhourly clipping bias [4], these
satellite-based datasets are still missing a key characteristic
needed to fully model the effect of inverter clipping, regardless
of temporal resolution.

C. This work

In the absence of an industry-wide shift to higher resolution
models and weather data, previous efforts to correct this bias
have focused on estimating post-hoc adjustments to forecasts
from conventional models. Several approaches for generat-
ing these correction factors have been explored, including
temperature-corrected insolation ratios [5], machine learning
[6]–[8], and direct simulation using ground-measured 1 minute
irradiance [9] or NSRDB PSM3 5 minute irradiance [4], [10],
[11]. However, it is not obvious how to rigorously validate
these correction methods: direct comparison of modeled and
measured clipping loss is usually only possible in small re-
search installations with different performance characteristics
from utility-scale systems, while comparisons of overall power
output are confounded by a myriad of unrelated modeling
errors and real-world plant performance issues.

Furthermore, it may be premature to even attempt to correct
a subhourly clipping bias, as there remains doubt in the com-
munity that real-world revenue projections are meaningfully
affected by this error [11]. In this work, we seek to bring
clarity to the issue by recreating typical industry modeling
procedures, comparing the model output with measured data
from real systems to investigate how the overall model bias
varies with ILR, and showing that the model bias variation
with ILR is consistent with the bias expected from sub-
hourly clipping. This is made possible by two key insights:
first, we can generate hourly production for a population
of systems spanning a range of ILRs but with otherwise
identical performance characteristics by artificially applying
inverter clipping to high-resolution power data from a low-ILR
system; and second, we can use the same high-resolution data
to calculate an empirical ILR-dependent subhourly clipping
bias to compare with the overall ILR-dependent model bias.
Together, these insights allow us to avoid the confounding
effects inherent to a more conventional multi-system analysis.

II. METHODS

A. Weather Datasets

Several satellite-based weather datasets are commonly used
for PV performance modeling. Although publicly available
satellite-based irradiance datasets exist (for example, the Phys-
ical Solar Model v3 (PSM3), part of the National Solar
Radiation Data Base (NSRDB) [12]), commercial systems
are typically financed using models based on proprietary
commercial irradiance data. Here we use hourly interval data
from a popular commercial data vendor. We choose single-
year weather datasets so that we can directly compare modeled
system output with measured system output for the same time
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periods. This is a divergence from the typical modeling proce-
dure which uses a hypothetical “typical meteorological year”
(TMY) dataset. However, because TMY datasets are simply
combinations of subsets of single-year datasets, we expect
single-year and TMY datasets to share whatever characteristics
are relevant to subhourly modeling and therefore do not expect
this difference to materially affect our conclusions.

B. PV System Datasets

We examine datasets from six PV systems in the United
States representing a range of climates and configurations,
summarized in Table I. In all cases, the high-resolution power
data are 60 second averages of higher frequency data sampled
at 1–15 s intervals depending on the system. Note that, because
we perform this analysis at the inverter level (instead of the
more typical plant level), the system metadata in Table I
reflects the configuration of the chosen inverter rather than
the plant as a whole. To add relevant geographical and climate
details for the sites, particularly for the anonymous commercial
plants, we also included Solar Forecast Arbiter Climate Zone
(SFACZ) [13] and Solar Variability Zone (SVZ) [14] for each
site.

In each case we analyze data from a single calendar year
to facilitate associating the ground-measured data with the
corresponding satellite-based weather dataset. The specific
calendar year chosen for each systems varies in order to
minimize the effect of data gaps and substantial performance
issues. However, some data were still excluded because of
abnormal operation (three days for Commercial Plant 2 for
tracking issues; 41 days for NREL for snow coverage on
the array). Additionally, any hourly intervals in the measured
power containing zero, negative, or null values were dropped
from both the measured and modeled datasets.

Although most of these datasets are proprietary and com-
mercial, the underlying high-frequency power data are pub-
licly available for the National Renewable Energy Laboratory
(NREL) [15] and National Institute of Standards and Technol-
ogy (NIST) [16], [17] systems. The public names for these
two systems are “[1283] NREL Research Support Facility II”
and “NIST Ground Mount Array”, respectively.

C. Empirical Subhourly Clipping Bias

Evaluating the magnitude of subhourly clipping bias from
measured data is not straightforward. In principle it could
be modeled using a sufficiently accurate performance model
and high-resolution weather data, essentially by taking the
difference in the model’s predictions when running at hourly
and (approximately) instantaneous scales. This difference in
modeling predictions has been referred to as “clip, then
average” versus “average, then clip” to indicate the timescale
at which inverter clipping is applied to the “unclipped” array
output [18]–[20].

However, it is not clear that current modeling approaches
are sufficiently accurate at such a high resolution to generate
the “unclipped” power signal, especially for the purpose of

predicting the effects of irradiance variability: spatial nonuni-
formity of irradiance, thermal transience, and other short-
duration effects complicate modeling efforts and few model
validation studies are done at the short timescales relevant
here. Additionally, satellite-based data often represent instan-
taneous measurements over some geographic area [21], and
hourly instantaneous measurements have been demonstrated
to result in less bias than hourly averaged measurements [4],
further complicating this issue.

We propose an alternative approach: instead of attempting to
recreate an “unclipped” array output via conventional weather-
to-power modeling, we instead use real power measurements
from an inverter with low loading ratio. Because the inverter
has low ILR, it rarely if ever clips, meaning its power output
is a perfectly realistic “unclipped” signal we can then use with
the “clip, then average” and “average, then clip” approach
of estimating subhourly clipping bias at any loading ratio
of interest. Crucially, this lets us estimate an “empirical”
subhourly clipping bias that varies with ILR without fear of
model error and while holding all other system parameters
constant. This empirical bias can then be compared with the
actual bias of an hourly model, again controlling for all effects
except ILR. As mentioned above, the empirical subhourly
clipping bias is calculated using the “average, then clip” vs
“clip, then average” method:

bias =
EAtC − ECtA

ECtA
(1)

where EAtC is total energy calculated by averaging measured
data to 60 minute intervals and then artificially clipping (anal-
ogous to what a conventional hourly simulation model would
calculate) and ECtA is energy calculated by first clipping at 1
minute intervals and then averaging to 60 minutes (analogous
to what a real system would do). For each system, this bias is
evaluated at ILRs of 1.2, 1.3, 1.4, and 1.5 (with the exception
of Commercial Plant 1, which does not have low enough
nominal ILR for 1.2 to be relevant), corresponding to the
typical range of ILRs seen in new systems today [1].

Although this approach of calculating a “true” subhourly
clipping bias avoids the majority of possible model bias,
the artificial clipping is still a potential source of error. The
artificial clipping is applied using a straightforward numerical
threshold where power values are clamped to not exceed the
desired AC capacity. Although this is a reasonable approxi-
mation of the clipping behavior of many real-world inverters,
it does ignore secondary effects like thermal throttling and
dynamic plant control that cause the inverter’s clipping limit
to vary with time. We consider this approximation acceptable,
as thermal throttling is considered unusual for most inverters,
and the systems analyzed here did not have notable overbuilds
of inverter capacity relative to interconnection limits, and
therefore did not reflect impacts of dynamic plant controllers.

To eliminate the effect of other modeling biases (discussed
more in the next section), each system’s “unclipped” power
signal was rescaled to have zero bias with respect to its
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TABLE I
SUMMARY OF PV SYSTEM CONFIGURATIONS

System Size [kWdc] ILR Rack Location Year SFACZ1 SVZ2

NIST 271.0 1.04 Fixed Tilt Gaithersburg, Maryland 2018 7 Moderate (low)
Commercial Plant 1 4609.2 1.15 Single-Axis Tracking Southeast US 2018 6 Moderate (low)
Commercial Plant 2 594.4 1.19 Single-Axis Tracking Southeast US 2020 7 Low

NREL 204.1 0.82 Fixed Tilt Golden, Colorado 2020 4 Moderate (high)
SSRC 1-Axis 2.4 0.80 Single-Axis Tracking Birmingham, Alabama 2019 6 Moderate (low)

SSRC 30S 2.4 0.80 Fixed Tilt Birmingham, Alabama 2019 6 Moderate (low)
1 Solar Forecast Arbiter Climate Zone [13]
2 Solar Variability Zone [14]

nominal PVsyst model output. By doing this we can view
the rescaled “unclipped” power data as the 1 minute analog of
the hourly PVsyst model. The rescaling coefficients for each
system are as follows, where a coefficient of 1.0 indicates
no difference: 1.03 (NIST), 0.96 (Commercial Plant 1), 0.97
(Commercial Plant 2), 1.10 (NREL), 1.02 (SSRC 1-Axis), 1.03
(SSRC 30S). It is unclear why the NREL system data required
such a large rescaling to match the output of its nominal
PVsyst model.

D. Hourly Performance Models

In the authors’ experience, the commercial simulation soft-
ware PVsyst [22] drives the majority of utility-scale PV system
financing. In typical usage a PVsyst model describing the
system configuration is applied to an hourly weather dataset
and produces a corresponding hourly production time series.
We do the same here to mimic typical usage.

We used PVsyst version 7.1.4 to create models of each PV
system in this study. We used PAN module and OND inverter
files supplied by PVsyst when available and created PAN and
OND files from component specifications when needed. We
created a “nominal” model for each system that accurately
describes the as-built system, including layout for shading. To
simulate higher ILRs, we created new variants of the nominal
system. For most systems, we increased the ILR by increasing
the number of strings in parallel until the ILR was within 0.01
of the desired ILR. For the smaller SSRC systems with only
one string of 10 modules, we instead increased the number
of modules in series to reach an ILR close to but above the
desired ILR (e.g. 1.36 for a desired 1.30), and then adjusted
the module quality factor loss parameter to match the desired
ILR. All other losses were left at their default settings. Several
variants produced a voltage or current higher than the inverter
specifications and OND file allow for. In these cases we
increased the maximum inverter voltage or current such that
PVsyst allowed the model to run and the inverter over-current
and over-voltage losses were 0.0%. This represents a minor
deviation from the as-built system and does not jeopardize the
conclusions of this work. Finally, although these systems likely
experienced gradual performance loss in the field for several
years prior to the time period used in this analysis, we did not
explicitly include the effect of this cumulative performance
degradation in the PVsyst models. Instead, we rely on the

rescaling procedure described in Section II-C to account for
this capacity loss.

Analogous to Eq. 1, the model bias is calculated as:

bias =
EPVsyst − ECtA

ECtA
(2)

where EPVsyst is PVsyst’s modeled output using hourly satel-
lite data and the ILR corresponding to ECtA.

We also used a PVWatts-style [23] model in pvlib [24],
[25] with both vendor and PSM3 [12] weather data for a
single site, NIST. This relatively naive model, with two sets
of weather data, was selected to demonstrate that this bias
issue is not unique a specific performance model or hourly
satellite-derived weather data source.

III. RESULTS

Fig. 3 compares the PVsyst bias and empirical subhourly
clipping bias for each system and ILR. For completeness, the
biases are also listed in tabular form in Table II. The two
biases have a roughly 1:1 relationship, with root mean squared
error of 0.80% and mean bias error of 0.44%. Note that these
error statistics are in the original bias units (percent of annual
production) and reflect absolute difference of the two biases,
not relative difference.

Fig. 4 and Table III show the same results for the NIST site
from Fig. 3, with the addition of model bias values from the
PVWatts-style pvlib model using both PSM and commercial
vendor weather data. The simple pvlib model’s bias varies
similarly to the PVsyst and empirical biases, although this
pvlib model’s bias is somewhat higher, even when using the
same weather dataset as PVsyst.

IV. DISCUSSION

The strong positive correlation between model bias and
ILR in Fig. 3, as well as the rough range of model bias
(0–4%) for these ILRs, are consistent with predictions from
simulation-based studies [18]–[20]. Fig. 4 uses the NIST site
to demonstrate that this model bias is not unique to PVsyst or
the particular commercial vendor’s weather data.

Contrary to what one might expect, these results indicate
that subhourly clipping bias is not restricted to humid climates
with high variability like those of the Southeast US; even
the semi-arid climate of the NREL system (approximately
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the same general trend.

1750 meters above sea level) shows 2–3% bias at ILR=1.5.
Conceptually, the error only requires that the system operates
both below and above the clipping point for a portion of
the hour, but the error is independent of the ordering of
the points or the number of transitions i.e. the variability.
However, we have not characterized the variability at these
sites beyond listing their pre-existing zone classifications in
Table I. Future work may include a more detailed investigation
of the relationship between subhourly irradiance variability
and subhourly clipping bias.

TABLE II
RESULTS: ILR-DEPENDENT BIASES (PVSYST+VENDOR)

System ILR PVsyst Bias [%] Empirical Bias [%]

NIST 1.2 0.6 0.2
NIST 1.3 0.9 0.7
NIST 1.4 1.5 1.3
NIST 1.5 2.0 1.8
Commercial Plant 1 1.2 0.3 0.0
Commercial Plant 1 1.3 1.1 0.8
Commercial Plant 1 1.4 1.9 1.8
Commercial Plant 1 1.5 3.1 2.8
Commercial Plant 2 1.3 0.1 0.2
Commercial Plant 2 1.4 0.6 0.7
Commercial Plant 2 1.5 1.9 1.5
NREL 1.2 0.1 0.9
NREL 1.3 1.4 1.5
NREL 1.4 2.5 1.9
NREL 1.5 2.9 2.2
SSRC 1-Axis 1.2 0.6 0.3
SSRC 1-Axis 1.3 1.6 1.0
SSRC 1-Axis 1.4 3.1 1.9
SSRC 1-Axis 1.5 4.5 2.8
SSRC 30S 1.2 0.9 0.3
SSRC 30S 1.3 1.8 0.9
SSRC 30S 1.4 3.2 1.7
SSRC 30S 1.5 4.4 2.4

TABLE III
ILR-DEPENDENT BIASES FOR NIST WITH DIFFERENT MODELS AND

WEATHER DATASETS.

ILR PVWatts+
PSM3 [%]

PVWatts+
Vendor [%]

PVsyst+
Vendor [%] Empirical [%]

1.2 0.4 0.5 0.6 0.2
1.3 1.0 1.2 0.9 0.7
1.4 1.8 2.1 1.5 1.3
1.5 2.5 3.1 2.0 1.8

It is noteworthy that the largest divergences from a perfect
1:1 relationship between the PVsyst and empirical biases are
from the smallest systems, SSRC 1-Axis and SSRC 30S. One
possible explanation for this is related to the spatial variability
of irradiance: the smaller the array, the less spatial averaging
and thus the more output variability it experiences [26]. This
suggests that 1 minute averaged data are not able to fully
resolve the output variability of these small arrays [26] and the
empirical bias calculated here is an underestimate of the true
value. It is also possible that the satellite-based weather dataset
used for the SSRC systems (they are co-located and covered by
the same satellite pixel) has some undiscovered characteristic
that disrupts this analysis. In any case, the agreement of the
PVsyst and empirical biases is much better for the four larger
systems.

Imperfect datasets are another source of uncertainty in
the empirical subhourly clipping bias. The two commercial
systems have higher loading ratios than the other systems and
their power datasets do include some clipping. Similarly to the
spatial averaging issue discussed above, this could cause the
empirical bias to be somewhat underestimated.

Finally, as mentioned in Section II-C, the simple clipping
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model we applied to the measured “unclipped” power is an
imperfect approximation of how real inverters behave. In
particular, the clipping point of the inverter from one of
the commercial systems is known to decrease slightly with
increasing temperature.

The PVsyst models have some untracked uncertainty as
well. Although we rescaled the “unclipped” power to have
zero bias compared with the nominal PVsyst model, varying
the model’s ILR might introduce some small bias from other
model nonlinearities. For example, inverter efficiency is gener-
ally not constant over the inverter’s power range and increasing
the ILR will tend to shift the distribution of operating points
towards a different efficiency at the higher end of the efficiency
curve.

The similar model biases shown in Fig. 4 and listed in
Table III indicate that subhourly clipping model bias is not
necessarily specific to PVsyst or the commercial weather
dataset used in the primary analysis. This is consistent with
expectations; any hourly performance model without some
kind of subhourly adjustment might be expected to suffer
from this bias, and as satellite-based datasets tend to draw
from the same underlying data sources, one might expect little
difference there as well.

Solar Variability Zones could be an intuitive reference for
subhourly clipping error, but the Commercial Plant 2 site
serves as a notable counterexample: its solar variability zone
classification [14] is “low” variability (the scale includes one
lower classification, “very low”) but still exhibits a PVsyst
bias of 1.9% at an ILR of 1.5. It is also worth noting that the
Solar Variability Zones were developed based on hourly, 10
km gridded NSRDB data and only seven sites in the Western
continental US (plus two in Hawaii). Regions with different
climates (e.g., higher frequencies of clouds that are smaller
than 10 km) may not be as well represented in this dataset.

V. CONCLUSION

We have shown that energy models using the approach that
industry developers and financiers use for financing systems
suffer from a material positive bias that grows with increasing
inverter loading ratio. Especially for large systems, this bias
is a close match to an empirical subhourly clipping bias
determined from real-world system data, as well as what
previous model-based studies have predicted. We also show
that a similar bias is recreated using an alternative hourly
simulation tool and weather dataset, indicating that this bias
is not unique to a specific model or dataset.
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