Simulating Impacts of Extreme Events on Grids with High Penetrations of Wind Power Resources

Ignas Satkauskas*, Jonathan Maack*, Matthew Reynolds*, Devon Sigler*, Kinshuk Panda*, and Wes Jones*

*National Renewable Energy Lab

Introduction

As extreme weather events become more frequent and intense, the demand for connecting grid operation and infrastructure planning with extreme event models will increase as well. We present a methodology for creating damage contingencies and scenarios for electric transmission grids during a hurricane strike. Using WIND Toolkit meteorological data in conjunction with fragility curves for various electric grid elements, we generate stochastic damage scenarios that can be used for short- and long-term planning problems, e.g., emergency asset management. Included is an example case study: Hurricane Dolly damaging a synthetic 2000-bus test system during its landing in Southern Texas.

Scenario: Hurricane Dolly

Our working example includes the path of the Hurricane Dolly over a week in July of 2008 and synthetic TAMU 2000-bus grid (Figure 1 & 2). NREL’s WIND Toolkit data (Figure 3) is mostly over continental United States, and it contains only the last 2 days of Hurricane Dolly. However, that is what we are interested in most: landing and overland period. Most of the damages occur within the first 8 hours of landing.

Fragility curves: idea via wind plant example

Wind turbine

Mean	Std	Max	Min
53.4 | 6.5 | 95 | 34

Figure 4: Realization when max number of branches were damaged. Damaged lines (red lines) and damaged poles (black dots).

Applications

Economic dispatch over 2 days

Ripple-type voltage control

Figure 5: