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Background

* As demands for high volumes of data processing, data analysis, artificial intelligence
grow, and computing systems permeate multitudinous aspects of commerce,
industry, government, and life, computing has become a burgeoning consumer of
energy and contributor of carbon emissions.

* While computational research at NREL has historically focused on applying
computing resources to energy efficiency and renewable energy research
qguestions, computing itself is now a serious energy research challenge.

* The Green Computing Catalyzer looks to establish green computing as a salient
research domain at NREL, and crucially, to begin to address the looming computing
energy crisis.
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Background

 Demands for high volumes of data processing, data analysis, and high-performance
artificial intelligence are growing rapidly. Computing systems are permeating many
aspects of life.

 Computing has become a burgeoning consumer of energy and source of carbon

emissions.
Model Hardware  Power (W) Hours kWh-PUE COse Cloud compute cost
Transformery,,. P100x8 1415.78 12 27 26 $41-$140
Transformer;,  P100x8 151543 84 201 192 $289-$981
ELMo P100x3 517.66 336 275 262 $433-$1472
BERT},.c V100x64 12,041.51 79 1507 1438  $3751-$12,571
BERT e TPUv2x16 — 96 — —  $2074-$6912
NAS P100x8 1515.43 274,120 656,347 626,155 $942,973-$3,201,722
NAS TPUv2x1 — 32,623 — —  $44,055-$146,848
GPT-2 TPUv3x32 —_ 168 — —  $12,902-$43,008

Table 3: Estimated cost of training a model in terms of CO5 emissions (1bs) and cloud compute cost (USD).” Power
and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

Strubell, E., Ganesh, A., & McCallum, A. (2019, July). Energy and Policy Considerations for Deep Learning in NLP.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 3645-3650).
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A Brief History of Green Computing at NREL

As a datacenter practitioner with demanding HPC
workloads NREL has successfully demonstrated a
decade of energy efficiency and expertise.

|| H Advanced Data Analytics
G Monitoring Framework
"?\\\ Kraken Mare
- \ .....
sy w1234 sverg powar) Srough he HP0 i
. World Class . Application of Fuel Cells & . Water Usage . Datacenter
. Energy Efficiency . Datacenter Computing Optimization
. (AlOps)

Transforming ENERGY through computational excellence
JISEA—Joint Institute for Strategic Energy Analysis 4



A Brief History of Green Computing at NREL
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Empirical Deep Learning Efficiency Study
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Empirical Deep Learning Efficiency Study
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Empirical Deep Learning Efficiency Study
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Al Efficiency Research Directions

Al is a primary driver of the looming
computing energy crisis.

However, with more research:

. Large networks contain
redundant and non-functional
components which could be
elided.

. We could interleave topological
and parameter optimization
to find efficient
networks efficiently.

. More efficient model types
beyond backpropagation based
neural networks could
yield massive efficiency gains
over deep learning approaches.
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Thank youl!

NREL/PR-6A50-82594

WWW.jisea.org

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for

g o
Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G028308. . .
Funding provided by the Joint Institute for Strategic Energy Analysis. The views expressed herein do not Joint Institute for
necessarily represent the views of the DOE, the U.S. Government, or sponsors.
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