Integrating Clean Energy into Mining Operations

Jill Engel-Cox and Travis Lowder
National Renewable Energy Laboratory
Integrating Clean Energy in Mining Operations

JISEA Technical Report, 2020

Integrating Renewable Energy in Mining Operations

Applied Energy 2021

Series on Oil and Gas, see https://www.jisea.org/clean-energy-opportunities-in-the-oil-and-gas-sector.html
Clean Energy in the Mining Industry
Clean energy deployment addresses EY’s top three business risks to the mining industry

Source: Mitchell 2021
In 2015 there were about **600 MW** of renewable energy projects serving mine sites.

In 2020, over **5 GW** cumulative of renewable energy projects serving mining operations have either been installed or are planned.
21 of 30 largest mining and metals companies have set some kind of net-zero emissions target.
Clean Energy in Mining
Mine Energy Loads and Sources

<table>
<thead>
<tr>
<th>Mining process</th>
<th>Activities and Equipment</th>
<th>Fuel Source</th>
</tr>
</thead>
</table>
| **Exploration, Extraction and Auxiliary Operations** | Ventilation: HVAC | • Electricity
| | Drilling: Loader trucks, diamond drills, rotary drills, percussion drills, drill boom jumbos | • Natural Gas |
| | Dewatering: Pumps | • Electricity
| | Digging: Hydraulic shovels, cable shovels, continuous miners, longwall mining machines, drag lines, front-end loaders | • Diesel
| | Power supply: Generators | • Compressed Air |
| **Material Handling** | Discrete transportation systems: Haul trucks, service trucks, bulldozers, pickup trucks, bulk trucks, load-haul dumps, shuttle cars, hoists | • Diesel
| | Continuous transportation systems: Conveyor belts, pumps, pipelines | • Electricity |
| **Beneficiation and Processing** | Comminution | • Electricity |
| | Crushing: Crushers | |
| | Grinding: Mills | |
| | Separations: Physical: Floating, centrifuge; and Chemical: Electrowinning | • Electricity
| | Drying, Firing, Smelting: Oven/Furnace | • Fossil Fuels |
| | Refining e.g. Electrolytic refining, fire refining | • Fossil Fuels |

Every mine operation has different requirements, but in general and across sites, **electricity** comprises the largest energy demand.

Most of that electricity is derived from **fossil fuels**.
Clean Energy Applications in Mining

- Renewable onsite electric loads
- Zero-emissions mobility
- Green hydrogen applications
- Low emission process heat and feedstocks

Technology Readiness Level

High Low
Supplying Onsite Electric Loads

- Wind, solar, and—in some cases—energy storage—are commercial technologies that can offset diesel-fired electric generation.
- Variability of generation is a challenge since mine sites often have consistent 24/7 loads.
- Long term energy storage or dispatchable modular power systems needed to enable higher levels of renewable energy.
- Breakthrough technologies include electrolytic hydrogen, flow batteries, and small modular nuclear reactors.
Zero Emissions Mobility

- Electrifying transport reduces both GHG and air emissions
- Can also facilitate deeper integration of variable renewable generation by having vehicle batteries act as storage devices, or having electrolyzers produce H₂ for use in haul trucks
- While trolley assist and other electric transport (e.g., conveyors) have a market track record, Li-ion and H₂ are still emerging technologies for heavy off-road vehicles

Hydrogen fuel cell excavator prototype
Source: JCB
Green Hydrogen

- H_2 can be used as an energy carrier for electricity generation, storage, mobility, process heat, or as a feedstock
- H_2 prices, supply chain, and technology readiness are still major barriers
- While some mining companies are investing heavily in an H_2 future, most analysts believe that low-cost green hydrogen at least a decade out from this reality

Source: Engineering News 2020
Many low- and no-carbon thermal technologies, such as concentrating solar, have not been commercially demonstrated for mining applications, but R&D is accelerating.

Electrification of process heat can be a pathway to incorporating renewable generation, both on mine sites and on the grid generally.

Alternative fuels and feedstocks for mineral processing require additional R&D to ensure process efficiency and product quality.

- E.g., H₂ reduction of iron ore
Challenges and Opportunities for Integration
Conclusion

Renewable energy technologies need mined materials, and mining operations can benefit from using renewable energy

Barriers:
• Conflicting business models between mine operators and renewable energy developers
• Lack of renewable energy expertise and demonstrations in the mining industry
• Land constraints and suitability

Enablers:
• Aligning incentives and using innovating contract structures
• Designing mine site energy management and making loads more flexible
• Capacity building and training
• Technology development and R&D
• Supply chain certification
• Policy and regulatory measures
• Collaboration!
Thank you!

www.nrel.gov
www.jisea.org
jill.engelcox@nrel.gov

NREL/PR-6A50-82537