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Abstract. Accurately and efficiently predicting wind turbine structural loading is a crucial
step in wind farm design. Without considering structural loading, wind farm optimization could
negatively impact turbine fatigue and ultimate loads, especially for waked and partially waked
turbines, which could result in higher maintenance costs and reduced turbine lifetime. However,
predicting turbine loads throughout an array is a costly step, as these quantities require time-
accurate results across long time histories, which is often intractable for large array optimization.
Therefore, surrogate models that link array spacing to load outputs are often used, but the
surrogates are then unique to the inflow conditions and array configurations in the training
library. This work develops surrogate models for many wind turbine load outputs based solely
on rotor plane velocity measurements, with no required input about array configuration or
freestream inflow parameters. Surrogate models were constructed for many turbine quantities
of interest (QoI), considering mean, standard deviation, ultimate, and fatigue loads. In general,
most QoI statistics were accurately captured, as measured by predicted vs. actual correlation
coefficient, confirming the suitability of the approach. Temporal mean values of the QoI required
only temporal mean measurements of the rotor plane inflow velocity. However, accurate
prediction of temporal standard deviation, ultimate, and fatigue values of QoI also required
temporal standard deviations of the rotor plane velocity field. Poor surrogate performance was
observed when too many correlated inputs were used, such as multiple velocity components.
If the fewest inflow parameters are used to construct the surrogates, the average correlation
coefficient value for all output QoI statistics is 0.89. Surrogates for standard deviations and
damage equivalent loads (DELs) of turbine QoIs generally had lower accuracy and tower-base
and shaft load channels posed the most difficult to capture accurately. The results suggest that
these surrogates could be easily paired with analytic wake models, which are frequently used
for pre-construction wind farm array optimization, to account for turbine loading in addition
to power production. By including the optimal inflow conditions, the surrogate accuracy can
improve to an average correlation coefficient value for all output QoI statistics of 0.92. This work
has established the ability to build accurate surrogates for mean, standard deviation, ultimate
load, and DEL turbine QoI values based on the rotor plane inflow velocity, and identified which
inflow conditions lead to greater surrogate accuracy.

1 Introduction
Designing turbine array layouts is commonly done with lower-fidelity models that can rapidly estimate
the flow field throughout the entire wind farm. While this approach has made great strides in
maximizing power production potential of new farms, waking and partial waking of wind turbines
can lead to increased turbine fatigue loads that are unevenly distributed through the array. Fully
or partially waked inflow scenarios are also not covered in turbine design standards. Additionally,
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accounting for wake-induced loading on the wind farm scale is computationally difficult with
traditional aero-servo-hydro-elastic tools and prohibitive in a layout optimization setting. This is
due to the large flow field, increased numbers of turbines, and longer time histories required to
determine farm-level effects, especially for fatigue loading.

To better enable the inclusion of turbine loading into wind farm optimization processes, a surrogate
model that links array spacing to load outputs is often used, with multiple examples found in the
literature. Réthoré et al. used a lookup table of HAWC2 simulations within layout optimizations in
TOPFARM. The lookup table assumes that a turbine’s inflow profile is determined by its nearest
upstream neighbor, so the lookup table varies downwind and crosswind distances of a two-turbine
array [17]. This approach was later updated by Riva et al. [18] who combined a single turbine load
surrogate model based on detailed inflow quantities [7] with analytical wake models to provide those
values for all turbines in an array. Clark et al. [5] also relied on interpolations of a two-turbine
simulation library and generalized to a larger array using FAST.Farm to provide the underlying
aeroelastic load simulations. Dimitrov compared two surrogate approaches, polynomial chaos
expansions and neural networks of aeroelastic simulations, for wake-induced loads of a parameterized,
arbitrary layout and later demonstrated it against measured wind farm data [6, 9]. Stanley et al. [20]
optimized array layouts that accommodated a maximum blade fatigue damage constraint that was
calculated using corrections from a steady-state model to a time-domain model using the inflow wind
speed, rotor rpm value, blade pitch angle, and wake turbulence intensity (TI).

These previous approaches are sufficient for their applications, but are bespoke in that they
are tuned to the input conditions and/or turbine model of their training set. This work strives
to generalize load surrogates by basing them on properties of the rotor plane velocity field.
Specifically, this work uses statistical moments of vertical, horizontal, and ±45◦ profiles of the velocity
components.The contributions in this work are the novel rotor plane velocity signal processing inputs
to a loads surrogate model. The concept of tying turbine loads to rotor plane velocity profiles is not
unique. Others have proposed using the rotor as a sensor of inferred inflow velocity states, averaged
over rotor plane sectors, based on real-time load and power measurements. The goal was to inform
operational control decisions to maximize power and redirect turbine wakes [1, 2, 15]. This paper
essentially flips the inputs and outputs of the prior work, as the presented process starts with array
flow models instead of real-time turbine load measurements. The objective is to provide a generic
methodology to include wind turbine structural loads into wind farm optimization studies. This
objective is accomplished by constructing surrogate models for several wind turbine load channel
statistics based on inflow velocity field properties at the rotor plane, just upstream of a wind turbine.
This will allow for the use of such surrogate loads in a wider variety of applications, including popular
analytical wind farm wake models that model the mean flow, with less dependence on array geometry
or inflow condition.

2 Approach
2.1 FAST.Farm Model
FAST.Farm is a multiphysics engineering tool that accounts for wake interaction effects on turbine
performance and structural loading within wind farms [14]. FAST.Farm extends the National
Renewable Energy Laboratory’s OpenFAST tool, which solves the aero-hydro-servo-elasto dynamics
of individual turbines, to include wake deficits, advection, deflection, meandering, and merging for
wind farms. Ambient wind inflow is generated synthetically using TurbSim [13], which creates
two-dimensional turbulent flow planes that are convected through the domain with the freestream
velocity. Turbulence is simulated using the Kaimal spectrum and exponential coherence model.
Turbulent inflows were generated for all of the parametric inflow conditions, including six turbulent
seeds. To first focus on common turbine load channels and surrogate methodology development,
monopile degrees of freedom and hydrodynamic loads were not simulated.
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2.2 Surrogate Models
The most basic surrogate models are linear regression or piecewise linear interpolation, but these rarely
capture nonlinear physical trends well. Instead, nonlinear surrogate models were constructed using
different state-of-the-art methods implemented in the open-source Surrogate Modeling Toolbox [4].
Each of these methods supplies gradients of the outputs with respect to both the inputs and training
data, which makes these models well-suited for later use in gradient-based optimization.

Multiple different surrogate models are studied in this paper, including inverse distance weighting
(IDW) [19], radial basis functions (RBF) [16], Kriging with a partial least squares dimension reduction
(KPLS) [3], simple neural network (NN) [10], and regularized minimal-energy tensor-product b-splines
(RMTB) [12]. These methods were selected because they span the spectrum of training requirements
and relative accuracy, with each having individual strengths and weaknesses as detailed in Table 1.
The best surrogate method varies on a problem-by-problem basis, with the focus in this paper being
to find the best methods for loads surrogate models.

Table 1. Considered surrogate models and associated strengths and weaknesses.
Surrogate
model

Strengths Weaknesses

IDW Requires no training, has a low prediction cost,
and generally has accurate surrogate prediction for
loads

Derivatives at the training points are 0, which is
problematic for later use in optimization

RBF Simple surrogate that only has one tuning
parameter

Prone to overfitting and producing undesired
oscillations in the output model

KPLS Well-suited for high-dimensional input spaces Has accuracy issues when training points are too
close to each other

NN Good blend of accuracy and computational cost Many tuning parameters
RMTB Training cost scales well with the number of

training points
Limited to approximately four input dimensions—
could not be used for all input combinations
considered in this work

Figure 1. Flow visualization of the 12-turbine array in
a turbulent FAST.Farm simulation (contours of velocity
magnitude at hub height).

All of these surrogate models have
a different set of tuning parameters
that affect how well the trained
surrogate captures the truth data
set. For example, the optimal
distance order norm tuning parameter
in IDW can be determined using a
numerical optimizer that minimizes
the percent error of a testing data
set. These parameters were not
exhaustively tuned for the comparison
studies. Once the best-performing
surrogate model was selected, its
tuning parameters were optimized.
The surrogate models studied here
capture the state-of-the-art methods
for nonlinear model prediction. The
efficacy of these surrogate models to predict turbine loads are detailed in Section 3.

2.3 Surrogate Training Data Set, Inputs, and Outputs
Turbine load surrogate data were generated using a 12-turbine array with a different number of
turbines per row to create varying wake overlap arrangements. The array, shown in Figure 1, featured



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 032095

IOP Publishing
doi:10.1088/1742-6596/2265/3/032095

4

the International Energy Agency Wind Technology Collaboration Programme (IEA Wind) 15-MW
turbine [8] with 7.72 D spacing in both the row and column directions. A parametric, design-of-
experiments sweep was used across inflow hub-height velocity (V ), inflow angle (Θ), shear exponent
(α), turbulence intensity (TI), and turbulence seeds (S). The velocity values were selected to be
centered around the rated conditions of 10.6 m/s. The inflow angle values include both positive
and negative values to capture the non-symmetric effects on wake deflection, and thus the effect on
downstream turbines. The total number of simulations performed in this work is V ×Θ×α×TI×S =
5 × 21 × 3 × 3 × 6 = 5, 670 different FAST.Farm simulations for the ranges shown in Table 2.

Table 2. Surrogate training data parameter space.
Parameter Values

Hub-Ht. Velocity [m/s] 6.6, 8.6, 10.6, 12.6, 16.6
Inflow angle [deg] -20:2:20
Shear Exponent [-] 0.1, 0.2, 0.3

Turbulence Intensity [-] Class B, C, D

The resulting temporal statistics were averaged
across the seeds. Data were excluded if a
FAST.Farm simulation failed to converge or
became numerically unstable. With 12 turbines
in each simulation, this yielded 5, 670/6 × 12 =
11, 340 unique rotor plane input fields and
output time histories for all load channel inputs.
From these simulations, load surrogate models
were created for multiple load channels using time histories from all turbines and inflow cases. The
load channels, or quantities of interest (QoI), used are listed in Table 3. The time histories were

Table 3. Surrogate output quantities of interest (QoI) and their vector components.
Quantity of Interest Components

Rotor power (RotPwr)
Rotor speed (RotSpeed)
Rotor torque (RotTorq)

Rotor thrust (RotThrust)
Blade-root moments total bending (RootMXY ) pitching (RootMzc1)

Low-speed shaft moment total bending (LSSGagMXY )
Tower-top moments total bending (YawBrMXY ) yaw (YawBrMZp)
Tower-base moment total bending (TwrBsMXY ) yaw (TwrBsMzt)

summarized by their mean, standard deviation, ultimate load (maximum absolute value), and short-
term fatigue DELs, though DELs and ultimate loads were not computed for the rotor quantities.
These QoI statistics give 40 output dimensions for which surrogate models could be constructed.

Mean time-averaged and standard deviation statistics were calculated using standard methods for
each time history and then averaged across all seeds. Ultimate loads were computed by averaging the
sum of the maximum values from each seed. Short-term DELs of a given QoI were computed directly
from the time series as an aggregate across all seeds using the NREL postprocessing tool, MLife. [11]
Rainflow counting was used to bin a histogram of load cycle amplitudes over the time series. In this
case, no Goodman or other mean-value correction was applied to the histogram amplitudes. The
short-term DELs were computed from the histogram bins and the material-specific Wöhler exponent,
m, from classical S-N fatigue theory. As is standard practice, m = 4 was used for loads on steel
components (main shaft, tower, and monopile), and m = 10 was used for blade loads as a composite
material. For fatigue of vector-component QoI, such as blade-root and tower bending moments, a
load rose analysis was applied with a 10◦ increment, from which the maximum DEL around the rose
was selected.

The thesis of this work is that rotor plane velocity profiles are suitable as generic inputs to
a surrogate model for turbine loads. To that end, the potential surrogate input parameters are
the velocity components at vertical, horizontal, and ±45◦ slices across the rotor plane. These
slices are shown in Figure 2(c) on top of the time-averaged T1 rotor plane u-velocity. Standard
deviations and absolute maximum values were also considered, resulting in three potential temporal
statistics. Sampling the rotor plane velocity field in FAST.Farm is most easily done by exporting the



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 032095

IOP Publishing
doi:10.1088/1742-6596/2265/3/032095

5

instantaneous inflow wind velocity of all 50 blade stations at each time step. These values neglect
blade and induced velocity effects, and are purely the inflow values including any wake effects from
upstream turbines. Then, for each blade station (radial position), the data is binned into 1◦ segments
by the corresponding azimuthal position, as depicted in Figure 2(a). Here, each line shows the time-
averaged value at each azimuthal angle for a given blade station. From here, the time-averaged
planar velocity across varying rotor plane cross sections can be constructed by pulling out the values
at specific azimuthal angles. For example, the horizontal rotor plane cross section is taken to be the
time-averaged values from Figure 2(a) at 270◦ and 90◦ (0◦ is the blade pointing vertically up), as
shown in Figure 2(b). This same process is repeated for the vertical cross section (0◦ and 180◦);
+45◦ cross section (225◦ and 45◦); and −45◦ cross section (315◦ and 135◦). On each slice, first,
second, and third spatial moments of the velocity components are computed. The three velocity
components, four slices, and three spatial moments give 36 possible turbine-inflow combinations to
be used as input dimensions.
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Figure 2. Inflow statistics generation process. (a) Inflow rotor plane and velocity profile ”slice”
visualization; (b) Time- and azimuthally-averaged results vs spatial location; and (c) Time- and
azimuthally-averaged results vs spatial location.

To determine how much information about the inflow is required to construct accurate surrogates,
many surrogates were created for different inflow parameter combinations. The tested input
parameter combinations are summarized in Table 4. The rows in this table show all 24 available
time-averaged surrogate input options, comprised of spatial moments for each velocity component
and spatial slice. Each case number shows which of those 24 input options was used to construct
a given surrogate, leading to 12 input parameter combinations using only temporal means. This
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input parameter grouping was repeated for each temporal statistic, with the first set of 12 using only
temporal means of the inflow quantities, the second set adding temporal standard deviations of the
inflow quantities (in addition to the temporal means), and the final set adding temporal maxes of
the inflow quantities (in addition to the temporal means and standard deviations). This test matrix
resulted in a total of 36 input combinations or cases.

Table 4. Sample input parameter combinations to be tested for surrogate generation.
Component Slice Spatial Mom. Time stat. Case Number

1 2 3 4 5 6 7 8 9 10 11 12

u-velocity

horizontal
1st mean x x x x x x x x x x x x
2nd mean x x x x x x x x
3rd mean x x x x

vertical
1st mean x x x x x x x x x x x x
2nd mean x x x x x x x x
3rd mean x x x x

+45◦
1st mean x x x x x x
2nd mean x x x x
3rd mean x x

−45◦
1st mean x x x x x x
2nd mean x x x x
3rd mean x x

v-velocity

horizontal
1st mean x x x x x x
2nd mean x x x x
3rd mean x x

vertical
1st mean x x x x x x
2nd mean x x x x
3rd mean x x

+45◦
1st mean x x x
2nd mean x x
3rd mean x

−45◦
1st mean x x x
2nd mean x x
3rd mean x

2.4 Surrogate Generation and Testing
The parametric approach yielded 11, 340 rotor plane velocity fields, 36 input dimension combinations,
and 40 output dimensions. The 11, 340 cases can be separated into different training and testing
sets, in which the training set is used to generate the surrogate model, using one of the five surrogate
approaches mentioned in Section 2.2, and then tested against the FAST.Farm results of the remaining
cases. Through this process, mutually exclusive data sets were used to verify the accuracy of the
trained surrogate models.

Surrogate model performance was measured by comparing the predicted load channel statistic
against the true FAST.Farm value at every point in the testing data set. For this vector of
comparison values, accuracy was quantified using the classical r2 correlation coefficient and the
average percentage error. The r2 correlation coefficient measures the linear dependence between
two variables and is therefore a useful measure of how well the surrogate tracks the trend of the
truth values. The average percent error was used as the most intuitive measure of accuracy, though
artificially large errors are predicted when the truth values are small.

To help improve surrogate model accuracy, training points were first selected from the minimum
and maximum inflow cases. Specifically, from the −20 and +20 degree inflow angle, 0.1 and 0.3
shear exponent, class B and D turbulence, and 6.6 and 16.6 m/s cases. These data points define
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the bounds of the input space for the surrogate space, so always including them in the training data
set eliminates extrapolation when querying the surrogate models.

3 Results
The accuracy of the surrogate model types listed in Section 2.2 is shown in Figure 3 and tabulated
in Table 5. This comparison was performed using all 36 cases of rotor plane descriptor sets from
Table 4. Each surrogate was trained with 1, 000 randomly selected points and tested using 1, 000
random other points for each surrogate model. Not all available training data were used to keep the
computational time tractable. For each surrogate, the average r2 values across the input cases are
shown via scatter points for the temporal means and maxes of all considered QoI. The dashed lines
indicated the average r2 value across all QoI.

IDW and NN clearly separate themselves as better performers, with IDW having the highest
average numerical r2 performance across all output statistics (0.853) and the lowest computational
cost (0.00112 seconds/surrogate) of all the surrogate models. The IDW method has better prediction
qualities than other methods when the input data are irregularly spaced, which is the case for the
velocity and moments presented here. The NN method had similarly high performance, but required
10, 000× longer to generate and test each surrogate. Although IDW predicts the actual QoI well, the
gradients at each training point are zero by definition, which is physically unrealistic. Thus, for use
in gradient-based optimization, special care must be used when adopting IDW to avoid numerical
difficulties caused by this. Based on the results shown in Figure 3 and Table 5, the remainder of the
paper focuses on results found using IDW.
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Figure 3. Correlation coefficient of (a) temporal mean and (b) temporal max of QoI for several
surrogate methods. Correlation coefficients for each surrogate method computed as the average of
all 36 cases described in Table 4. Dashed lines represent average correlation coefficient for all QoI
values. A higher r2 value indicates a better capture of output trends.

To determine surrogate convergence, r2 values are computed over a variable number of training
points for all QoI statistics. Percent error results are not included in this paper because of space
limitations and they did not show appreciably differrent results from those of r2. These convergence
plots are shown in Figure 4. For the sake of clarity, only Case 3 results are shown. For a given
training point set, the r2 values are computed against the same set of 1, 000 testing points. For
all QoI statistics, increasing training points increases the accuracy of the surrogate, with rapidly
decreasing benefit to including more points. For QoI temporal mean values, the r2 values quickly
converge to > 0.9 by 100 training points, with the exception of tower base yaw moments. For the



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 032095

IOP Publishing
doi:10.1088/1742-6596/2265/3/032095

8

Table 5. Computational timings for surrogate generation and testing averaged per case and resulting
average r2 for each surrogate model and output subset. These values are for off-the-shelf surrogate
models without extensive tuning.

Model Timing [cpu-seconds] r2 means r2 std devs r2 maxes r2 DELs
IDW 0.001 12 0.896 0.841 0.879 0.795
RBF 0.0112 0.801 0.491 0.533 0.384
RMTB 1.51 0.813 0.708 0.781 0.613
KPLS 7.19 0.877 0.763 0.861 0.768
NN 18.2 0.878 0.832 0.875 0.792

tower-base yaw moment, r2 continues to improve with additional training points and reaches up to
0.8. For QoI standard deviation, ultimate loads, and DEL results, r2 convergence was reached by
most QoI by 500 training points, at which point most QoI had an r2 of at least 0.8. Exceptions to this
were tower loads and rotor thrust, to different extents based on the statistical quantity. Surrogate
convergence was overall reached by 500 training points, though some QoI, especially tower loads,
benefited from additional samples. In addition to being slow to converge, the tower loads tended to
be the least accurate for all QoI statistics, in particular the yaw moments. To capture the highest
accuracy possible for this study, the remaining results are based on surrogates generated with 2000
training points.

Shown in Figure 5 are r2 values for each considered input case (Cases 1–36) and each QoI.
Cases are grouped such that the first 12 cases use only temporal means of the rotor plane velocity
quantities, the next 12 cases add temporal standard deviations as potential input parameters, and
the final 12 cases add temporal maximum values as potential input parameters. These groupings are
designated by the red vertical dashed lines. For the mean QoI results, high r2 values are observed
for almost all input cases and all QoI. Exceptions to this are the same QoI that showed slow or
poor convergence in Figure 4: tower-top total bending and yaw moments, tower yaw moments, and
low-speed shaft bending. For these QoI, r2 values are the highest overall when u-velocity temporal
means and standard deviations of the horizontal and vertical planes are included (Cases 3, 15, and
27). Similar accuracy is reached when the corresponding v-velocity components are included, but
the addition of this velocity component does not itself increase the accuracy. Thus, this peak in
accuracy is likely due to the additional cross-plane slices, and not the additional velocity components
or temporal statistics. The best and worst performing cases for each QoI-statistic combination, as
measured by r2 values, are identified in Table 6. When cross-referenced with Table 4, the rotor
plane velocity features that are the key drivers of surrogate performance are evident. For the sake of
brevity, not all QoI-statistic combinations will be explained in depth. Overall, it is apparent that the
best r2 values for all QoI statistics are quite close to 1.0, with some of the tower statistics topping
out at 0.93. This underscores that the rotor plane velocity quantities can serve as accurate inputs
for turbine load surrogates.

For the QoI standard deviation results, the best surrogate performance usually occurred with
Case 13, which incorporated the first moment of the temporal standard deviation and mean along
the horizontal and vertical cross planes. For the maximum values, the best performance does not
occur when the temporal maximum rotor plane velocity quantities are included (Cases 25–36), but
rather when just the temporal mean and standard deviation quantities are included (Cases 13 and
17). This supports the notion that the QoI maximum value can be thought of as a superposition of
the mean value and some number of standard deviations. Therefore, if a set of rotor plane quantities
can accurately predict both the mean and standard deviation of a QoI, then it should also be able to
predict the maximum value. However, the temporal maximums are leveraged for the most accurate
DEL surrogates of the tower load channels (Cases 25 and 26). DEL values also benefited from
including the third moment (skew) of the rotor plane velocity slices. This is perhaps due to the more



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 032095

IOP Publishing
doi:10.1088/1742-6596/2265/3/032095

9

Number of training points [-]

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

 [-
]

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1.0
Means LSSGagMXY

RootMXY
RootMzc1
RotSpeed
RotTorq
RotThrust
RotPwr
YawBrMXY
YawBrMzp
TwrBsMXY
TwrBsMzt

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1.0
St. Devs. LSSGagMXY

RootMXY
RootMzc1
RotSpeed
RotTorq
RotThrust
RotPwr
YawBrMXY
YawBrMzp
TwrBsMXY
TwrBsMzt

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1.0
Ultimate Loads LSSGagMXY

RootMXY
RootMzc1
RotSpeed
RotTorq
RotThrust
RotPwr
YawBrMXY
YawBrMzp
TwrBsMXY
TwrBsMzt

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1.0
Damage Equivalent Loads LSSGagMy

LSSGagMz
RootMIP
RootMOoP
RootMzc
TwrBsMx
TwrBsMy
TwrBsMz
YawBrMx
YawBrMy
YawBrMz

Figure 4. Prediction performance convergence as measured by r2 values; only Case 3 results are
shown.

complex calculation procedure for DELs where rainflow counting is used to bin load oscillations by
amplitude.

Table 6 is also informative as it indicates when the surrogates do not perform well. Performance
can drop significantly if either insufficient or excessive numbers of inputs are provided to the
surrogates. Poor prediction accuracy occurs for the standard deviation, maximum, and DEL
surrogates when they are limited to mean-value-only temporal statistics of the rotor plane velocity
quantities. Cases 8 and 12 are commonly listed as the worst performing for these statistics and
interestingly are the ones that also include the v-component of velocity parameters. For the QoI
mean values, there was also a tendency to perform poorly when the surrogate was flooded with
too many input parameters, either from statistics beyond the temporal mean or with v-component
parameters. This was likely because the u- and v-velocity components are statistically correlated,
so including them both in the surrogate model inputs detracted from the ability to fully capture the
key, independent flow features. It is also possible that surrogate models other than IDW would be
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Figure 5. Prediction accuracy measured by r2 for each QoI with varying inflow parameters. Each
pixel corresponds to an inflow case and QoI combination, with each subplot showing a different
QoI statistic. The vertical dashed lines indicate case groupings: the first 12 cases use only temporal
means as potential input parameters; the next 12 cases add temporal standard deviations as potential
input parameters; and the final 12 cases add temporal max values as potential input parameters.
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Table 6. Cases that produce the best and worst surrogate models based on r2 value.
QoI Performance Mean St. Dev. Max DEL
Blade-root total bending moment Best 1 (1.0) 17 (0.97) 13 (0.99) 4 (0.95)

Worst 12 (0.98) 8 (0.84) 12 (0.95) 8 (0.89)
Blade-root pitching moment Best 3 (1.0) 13 (1.0) 14 (0.99) 13 (0.97)

Worst 12 (1.0) 36 (0.99) 35 (0.97) 12 (0.93)
Low-speed shaft total bending moment Best 17 (0.98) 17 (0.97) 17 (0.98) 17 (0.97)

Worst 8 (0.84) 8 (0.86) 8 (0.87) 8 (0.86)
Tower-top total bending moment Best 3 (0.97) 13 (0.97) 17 (0.92) 26 (0.98)

Worst 16 (0.78) 12 (0.78) 8 (0.7) 12 (0.85)
Tower-top yaw moment Best 4 (0.93) 13 (0.97) 17 (0.96) 26 (0.97)

Worst 14 (0.72) 12 (0.78) 8 (0.83) 12 (0.81)
Tower-base total bending moment Best 3 (1.0) 13 (0.98) 13 (0.99) 25 (0.93)

Worst 35 (0.97) 12 (0.82) 12 (0.92) 12 (0.87)
Tower-base yaw moment Best 4 (0.93) 13 (0.97) 17 (0.96) 26 (0.97)

Worst 14 (0.72) 12 (0.78) 8 (0.83) 12 (0.81)

less sensitive to the inclusion of the v-component parameters.

4 Conclusions
This work detailed an analysis of surrogate models built using rotor plane inflow statistics to predict
mean, standard deviation, ultimate, and fatigue loads of wind turbines—both waked and non-waked.
This paper focused on demonstrating the feasibility of this approach by identifying an appropriate
surrogate model, understanding the requirements to achieve good predictive performance, and
identifying which rotor plane velocity parameters were most appropriate for the prediction of various
QoI statistics. The results suggest that these surrogates could be easily paired with analytic wake
models, which are frequently used for pre-construction wind farm array optimization, to account for
turbine loading in addition to power production.

Future work will focus on testing the generality of the surrogate models demonstrated in this
paper, including performing this study with a randomly generated sample space of inflow conditions
and turbine array layout instead of the parametric approach used here. This will likely allow for
fewer training points to be needed while providing a more representative sample of potential inflow
conditions that a wind farm can experience. The effects of yaw misalignment should also be
considered in future work as well as nondimensionalizing the surrogates such that they are independent
of the turbine to further increase the surrogate generalization. Finally, the aim is to incorporate these
surrogates into lower-fidelity, steady-state wind farm simulation models, which are often used for array
layout optimization, to allow for the inclusion of fatigue and ultimate loads in the wind farm design
process. Examples of these types of models include open-source tools such as FLORIS and PyWake
or commercial tools such as OpenWind, WindFarmer, WAsP, WindPRO, and others.
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