Transforming ENERGY

TINREL - .

Storage Futures Study: Key Learnings
for the Coming Decades

¥ - VN USSR N —

__ Nate Blair, Principal Investigator
) LE Paul Denholm, Principal Energy Analyst
~ ..., National Renewable Energy Laboratory
‘I May 10, 2022

»



Nate Blair

Chad Augustine
Wesley Cole
Paul Denholm

Will Frazier
Madeline Geocaris
Jennie Jorgenson
Kevin McCabe
Kara Podkaminer
Ashreeta Prasanna




Multiyear research project

Explored the rapidly increasing role of
energy storage in the electrical grid
through 2050

Supported by the U.S. Department of
Energy’s Office of Strategic Analysis
and Energy Storage Grand Challenge
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Storage Futures Study Questions

e How might storage cost and
performance change over time?

e Whatis the role of diurnal storage in p_
the power sector?

e How much storage could be
economically deployed in the
United States?

e What factors might drive
deployment?

e What are the impacts to
grid operations?




Storage Futures Study Reports

1. The Four Phases of Storage Deponment

2. Energy Storage Technology Modelmg Input Data Report
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3 Economic Potential of D|urnaI Storage in the ). S Power Sector

. 4. Distributed Storage Customer Adoptlon Scenarios
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N 5. The ChaIIenges of Def|n|ng Long Duration Energy Storage

y 6. Gr|d Operatlonal Impllcatlons of Wldespread Storage Deployment

7. Key Learnings for the Coming Decades




Important Caveats

Factors that Could Impact the Future of Energy Storage



Important Caveats

e Storage growth and compensation
(both energy and capacity)

— How do markets appropriately value and
compensate storage
* Technology evolution

— Significant R&D efforts could improve other storage
technologies, potentially competing with lithium-ion
batteries
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Important Caveats

 Role of flexible loads

— Need better characterization of demand response,
flexible load contribution potential, and cost

* Value of distributed storage
— Emerging value streams and bi-directional EV's
* Evolving storage duration and
seasonal storage

— Multiplied uncertainty as renewable fuels likely
shared across sectors (industrial sector)

— Could long-duration tech displace diurnal storage?
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Eight Key Learnings

What to Know for the Coming Decades



Key Learning 1: Storage is poised for rapid growth.

e 100-650 GW (600 to 3000+ GWh) in 2050, or 5X today’s capacity
e Driven by storage costs, natural gas prices, renewable energy cost

N w
a (=]
o o

e
o
o

—
o
o

Storage Capacity (GW)
2 2

o

Reference Case

12-hour Pumped-Hydro Storage
10-hour Battery Storage

8-hour Battery Storage

6-hour Battery Storage

4-hour Battery Storage

2-hour Battery Storage

2025 2030 2035 2040 2045 2030

Storage Capacity (GWh)

3,500
3,000
2,500
2,000
1,500
1,000

500

0

Resource Sensitivity Scenarios

— Low Battery Cost Case
— Reference Case
— High Battery Cost Case

i

2020 2020 2030 2035 2040 2045 2050

REL | 11



Key Learning 2: Recent storage

continue, with

market share for some time.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

0
10
20
30
40
50
60
70
-80
90

-100

-57%

-62%
-64%

= Offshore Wind
——Land Based Wind

Distributed PV -80%

——Utility Scale PV -88%

—e—Lj-ion Battery Pack

are projected to
continuing to lead the

NREL | 12



Key Learning 2 continued: Recent storage
projected to continue, with

are
continuing

to lead the market share for some time.
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Key Learning #3: The ability of storage to provide

is a primary driver for cost-effective deployment.
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Key Learning 4: Storage is not the only
but its declining costs have changed when it is

deployed vs. other options.

The Flexibility Supply Curve

Option costs are system-dependent and evolving over time.
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Key Learning 4 continued:
Storage is not the only but its

declining costs have changed when it is
deployed vs. other options.
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Key Learning 5:

complement each other.
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Key Learning 6: Cost
reductions and
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Key Learning 7:

Storage

will likely increase

as deployments
Increase.
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Key Learning 8:
technologies become especially

important for systems.

g
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Key Learning 8 continued:
technologies become especially

important for

Reference
100%

High Low RE &
Electrification Battery Cost
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systems.

100% decarbonization scenarios

In these scenarios, large amounts (greater
than 400 GW) of seasonal storage
technologies are deployed

Demonstrating the value of having a
technology that can overcome the seasonal
mismatch in renewable energy production
and electricity demand systems
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o Learn more about the Storage Futures Study

)
NREL/PR-7A40-82370 = O -
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Nate.Blair@nrel.gov Q

www.nrel.gov/analysis/storage-futures
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