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SUMMARY

This report assesses the scale of public fast charging needed to electrify approx-
imately 20,000 vehicles across the yellow cab and for-hire segments in New York
City. The analysis considers real-world trip data in conjunction with driver home
locations, overnight charging access rates, driver schedules, andmore. Outcomes
indicate that the existing charging network inNewYork City is not adequate even
in the most optimistic scenario; 1,054 150-kW ports are required when 15% of
drivers have access to overnight charging, whereas 367 150-kW ports are needed
when 100% of drivers have access. Results also indicate that although charging
is demanded in areas nearby high trip demand, fast charging ports are also
demanded in areas near driver residences as a supplement for home charging
in scenarios with limited overnight charging access. These findings motivate
investment into both overnight charging and public fast charging to meet the
charging demands of ride-hailing fleets.

INTRODUCTION

Ride-hailing electrification has gained momentum in recent years as regulators have set aggressive tar-

gets for fleet electrification (California Air Resources Board, 2018). Successful fleet electrification would

help reduce the negative externalities associated with ride-hailing, such as increased emissions (Anair

et al., 2020; Ward et al., 2021). Major ride-hailing companies, most notably Uber and Lyft, have re-

sponded by setting aggressive goals of their own; both companies have pledged to fully electrify their

fleets by 2030 (Khosrowshahi, 2020; Lyft, 2020). Meeting this goal will require significant expansion in ac-

cess to fast charging, as ride-hailing drivers are less likely to have access to overnight charging than the

general population (Nicholas et al., 2020) and likely to accrue high mileage while servicing passenger de-

mand for trips (Wenzel et al., 2019). The significant infrastructure demands of electric ride-hailing vehicles

are not just hypothetical; for instance, a study analyzing a population of electric vehicles (EVs) leased for

ride-hailing purposes in California showed that ride-hailing vehicles charging at public stations

comprised 35% of the total DC charging energy demand despite comprising only 0.5% of the EVs in

the state (Jenn, 2020).

Momentum toward ride-hailing electrification is occurring alongside a broader push to accelerate light-

duty vehicle electrification, as evidenced by zero-emission vehicle programs (Northeast States for Coordi-

nated Air Use Management, 2018) being adopted by numerous states (Brown et al., 2013). New York has

established a goal of deploying 850,000 zero emissions vehicles across the state by 2025 (Rushlow et al.,

2015). These factors lead to a particular emphasis on New York City (NYC), which contains a ride-hailing

fleet of over 100,000 vehicles across the traditional yellow cab (YCB) taxi and for-hire vehicle (FHV) seg-

ments. Although ride-hailing vehicles comprise a small share of the total light-duty vehicle fleet in New

York state, the challenges of meeting statewide goals within the context of barriers to transportation

network company electrification motivated investigation of plausible rates of ride-hailing electrification

and corresponding infrastructure requirements in NYC within the context of a 2025 timeframe.

The large fleet size and generous data availability has led to a rich history of research focused on the NYC

ride-hailing fleet. This research is broad, with studies exploring questions pertaining to ride-pooling poten-

tial (Alonso-Mora et al., 2017), vehicle automation (Bauer et al., 2018), electrification (Bauer et al., 2018; Hu

et al., 2018; Tseng et al., 2019), and even a ride-hailing service integrated within public transit (Wang and
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Ross, 2017). This study is most closely affiliated with a paper by Bauer et al. (2019), which studied the im-

plications of electrifying a ride-hailing fleet in NYC operated by human drivers. In the study, the authors

employed an agent-based model characterizing the operations of an all-electric ride-hailing fleet to

explore the outcomes of scenarios with various vehicle types, charging infrastructure assumptions, and

charging strategies. The research finds that a modest number of chargers at a relatively low power level

is sufficient for supporting a fleet of EVs. For instance, in a baseline scenario, the authors find that a

charging network of 750 50-kW chargers placed at a density of three chargers per square mile supporting

a fleet of EVs each with 238 miles of driving range produces equivalent service to a similarly sized fleet

comprising gasoline-powered vehicles.

An additional study estimating ride-hailing charging infrastructure demands explored infrastructure

deployment needs across several cities, including NYC (Nicholas et al., 2020). The authors find that 55

chargers are needed beyond the predicted growth of the public charging network to electrify 60,000

ride-hailing vehicles by 2025, assuming that a portion of the ride-hailing charging demand may be

met by public infrastructure. One limitation of the study is the assumption that part-time drivers repre-

sent 94% of drivers. The NYC market is unique, wherein drivers must register with the Taxi and Limousine

Commission (TLC), biasing the driver population toward full-time drivers who disproportionately demand

fast charging. Additional factors contributing to increased demands for local charging include the local

climate in NYC, which contributes to worsened vehicle range as well as a high volume of trip demand.

The authors consider the analysis to be a reasonable estimate of charging infrastructure for typical cities,

although the unique characteristics of dense urban cities motivate additional consideration of local

factors.

This research seeks to build upon the available literature with specific emphasis on the charging infra-

structure necessary to transition the NYC ride-hailing fleet to battery-electric vehicles. This study is

distinct from prior research through its incorporation of key input parameters that were not available

to the authors of prior studies, including FHV trip data (comprising the majority of NYC ride-hailing trips)

and additional data fields made available by the 2018 TLC Factbook (NYC Taxi and Limousine Commis-

sion, 2018), which provides critical information ranging from driver residence location, shift start times,

and dynamic fleet sizing that is fundamental to this analysis. In addition, this study also explores the rela-

tionship between access to overnight charging and the corresponding fast charging network demanded

by the fleet. The analysis employs novel survey data and driver residence data obtained through

a Freedom of Information Law (FOIL) request to characterize plausible rates of overnight infrastructure

access by ride-hailing drivers. Finally, the study evaluates the charging demands of the YCB and FHV

segments simultaneously, which feature different trip dynamics, driver populations, and driver shift

considerations.

To take advantage of the large amount of data available in NYC, the Highly Integrated Vehicle Ecosystem

(HIVE) framework (Fitzgerald et al., 2021) is employed, which simulates the operations of a dispatchable

vehicle fleet using agent-based modeling. This paper proceeds by briefly introducing HIVE and detailing

how the model leverages data published by the TLC. Next, scenarios consistent with 2025 timing are out-

lined with input simulation values defined. Results for each scenario follow, as well as a discussion of major

findings and conclusions.
HIVE simulation platform

HIVE is an agent-based transportation platform that simulates the operations of a dispatchable fleet of

EVs accommodating exogenous travel demand. Key simulation parameters include a supply of fleet as-

sets (vehicles and charging infrastructure), which are servicing the demand for transportation (passenger

trip requests) occurring on a roadway network. As the simulation progresses, passenger trip demand is

iterated through sequentially, and trips are paired with eligible vehicles with sufficient range to complete

the trip and the ability to arrive at a given trip origin within a specified wait time. When the driving range

of a vehicle drops beneath a given threshold, the vehicle seeks charging infrastructure (either slow

charging at a vehicle’s home location or fast charging at a network of public stations) to replenish power-

train energy capacity before continuing to service trips. This cycle of trip service and vehicle charging

continues throughout the course of the simulation, with a centralized controller influencing the state

of the fleet (vehicle request matching and repositioning instructions) and individual agents making

vehicle-level decisions (commuting, shift behavior, and charging behavior). Further information
2 iScience 25, 104171, April 15, 2022
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regarding the functionality and structure of HIVE may be found in supporting documentation (Fitzgerald

et al., 2021).

This study employs HIVE to investigate the operations of an EV fleet operated by human drivers servicing

ride-hail trips in NYC. Both YCB and FHV fleets are characterized using input data made available by the

TLC (NYC Taxi and Limousine Commission, 2018). HIVE models these fleets simultaneously to understand

potential synergies or conflicts between the charging demands of each segment. (Although FHVs may not

service YCB requests—and vice versa—these fleets may rely upon the same public fast charging infrastruc-

ture.) Individual drivers were assigned vehicles and assumed to drive for a single ride-hailing segment,

either YCB or FHV. (The FHV segment itself comprises multiple entities, most notably Uber and Lyft. Indi-

vidual fleet membership across these two competitors was not explicitly modeled given the limited data

specific to each company and the frequency of ‘‘multi-apping,’’ whereby drivers are on-shift for both ser-

vices simultaneously. Charging demand and performancemetrics for the FHV segment are thus considered

across all drivers affiliated with one or more companies within the FHV segment.). Drivers take the vehicles

used for ride-hailing operations to their home locations when off-shift (TLC registration data were consid-

ered to infer locations of likely YCB depots, although inspection of these locations using satellite imagery

frequently revealed small commercial storefronts where vehicles were registered but likely did not dwell

while off-shift. Absent reliable data, vehicles were assumed to be taken by the drivers to their home loca-

tion when off-shift.) and travel to recent locations of trip demand when transitioning from off-shift to on-

shift. When transitioning from on-shift to off-shift, vehicles complete any ongoing requests before

commuting home (charging en route, if required). Upon arriving at the home location, vehicles are plugged

into an AC charger if the driver has access to residential charging; otherwise, no charging occurs. Ride-hail

vehicles do not accrue off-shift mileage (e.g., for personal travel) after arriving at home because the travel

data set used for this analysis is limited to ride-hailing trips only.

HIVE simulations used a ‘‘conditioning day,’’ whereby the simulation progresses to a realistic state after the

first day. The second simulation day—a direct continuation of the prior day—is an ‘‘evaluation day’’ over

which all relevant performance statistics are calculated. This approach is frequently observed in the litera-

ture (Bauer et al., 2018; Loeb et al., 2018) and is an effective method for inducing realistic initial conditions

at the beginning of the evaluation day. Finally, the average state of charge (SOC) of all fleet vehicles is

compared between the beginning and the end of the evaluation day and confirmed to be within 5%.

This step ensures the fleet does not undercharge (and is thus poorly prepared for the following day) or over-

charge (in response to the initial condition of the conditioning day).
Scenario definition and assumptions

Given the objective of infrastructure sizing, the set of input data selected for simulation was intended to

characterize the operations of a ride-hailing fleet in NYC operating under challenging conditions. Although

results from a typical day may be more representative, sited infrastructure will be inadequate for days with

large trip counts or extreme weather. Thus, the HIVE inputs selected for this analysis are intended to char-

acterize a near-worst-case scenario, namely a large number of trips on a cold weather day reflecting NYC’s

climate. Analysis of historical TLC trip request volume data (Schneider, 2021) (Figure 1, top left) revealed

that March 2019 was the most active month across both the YCB and FHV fleets, with an average of over

1 million trips per day throughout the month. This month also contained the largest active fleet in historical

data, with an average of over 70,000 vehicles operating per day (Figure 1, top right). Additional subplots

compare March 2019 with other months throughout the same year.

Data from March 2019, discussed further below, were selected as the foundation for estimating infrastruc-

ture requirements to support an electrified ride-hailing fleet. More recent data, especially after the impacts

of the COVID-19 pandemic, are not chosen to avoid undersizing the charging network for fleet operations,

which have shown signs of recovery (Blumberg, 2021). No growth beyond observed trip and vehicle vol-

umes in March 2019 is assumed given the lack of available data or goals.

Fleet size

Investigation of infrastructure requirements corresponding to a timeline of 2025 contributed to an

assumption of partial fleet electrification; although ride-hailing companies have announced ambitious

targets for electrifying their fleets, it is considered unlikely that the NYC ride-hailing fleet will be fully

electric by 2025. Instead, an estimation of the evolution of the NYC ride-hailing fleet was performed
iScience 25, 104171, April 15, 2022 3



Figure 1. Historical trip requests and active fleet sizes by month for the FHV and YCB segments
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to produce plausible electric fleet sizes corresponding to aggressive rates of electrification under the

following assumptions:

� Initial fleet size of 13,587 YCB vehicles and 107,435 FHVs (NYC Taxi and Limousine Commission,

2018), all assumed to be internal combustion engine (ICE) vehicles.

� Average vehicle age of 5 years.

� EV sales for ride-hailing increasing linearly from 0% in 2020 to 100% in 2030, corresponding to the

timing of full electrification announcements by major transportation network company fleets.

These assumptions, iterated annually, estimated that EVs would comprise 30% of the NYC ride-hailing fleet

by 2025 (Table 1). Note that this is not a formal forecast of EV adoption, but rather a means of identifying a

plausible scenario that aligns with announced electrification goals.

Although the YCB and FHV segments comprise over 120,000 total vehicles, only a fraction of these vehicles

operate on a given day. This is observable in Figure 1, whereby the busiest month’s data show a fraction of

the total fleet size in operation (71,600 out of 121,000). Applying the 30% EV penetration rate obtained

from the simplified vehicle turnover model previously mentioned produces a total fleet size of roughly

21,000 EVs for simulation, comprising 3,244 YCB vehicles and 17,967 for-hire EVs operating in 2025 with

travel demand equivalent to observations from March 2019.

Trip requests

Friday, March 8, was identified as having the largest number of trip requests in March 2019. Note that this

day (the busiest day from the busiest month) does not necessarily select themost active day in the historical

data; extreme days such asmajor holidays were avoided to ensure that results are more generalizable. Trip-

level records containing information for pickup times, pickup locations, and drop-off locations for both FHV
4 iScience 25, 104171, April 15, 2022



Table 1. Ride-hailing electrification by year using simplified assumptions regarding fleet turnover

Year YCB – ICE YCB – EV FHV – ICE FHV – EV EV Percent

2020 13,587 0 107,435 0 0%

2021 13,315 272 105,286 2,149 2%

2022 12,772 815 100,989 6,446 6%

2023 11,957 1,630 94,543 12,892 12%

2024 10,870 2,717 85,948 21,487 20%

2025 9,511 4,076 75,205 32,231 30%

2026 8,044 5,543 63,602 43,833 41%

2027 6,522 7,065 51,569 55,866 52%

2028 5,000 8,587 39,536 67,899 63%

2029 3,533 10,054 27,933 79,502 74%

2030 2,174 11,413 17,190 90,245 84%

Bolded values correspond to the target year of the study (2025).
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and YCB segments were obtained from the TLC for March 7 (conditioning day) and March 8 (evaluation

day), 2019 (NYC Taxi and Limousine Commission, 2021). Pickup and drop-off locations provided by the

TLC are available at the ‘‘taxi-zone level,’’ a geography intended to approximate neighborhoods (NYC

Open Data, 2021). Locations within a given taxi zone were assumed to be distributed uniformly to avoid

stacking passengers exactly at a precise origin or destination location, which could contribute to unrealis-

tically low empty miles traveled between trips.

Finally, aggregated trip counts across both the conditioning day and evaluation day were scaled in accor-

dance with the number of EVs being simulated. Exposing the partially electric fleet to all requests would

induce an unrealistically large number of trips per vehicle. In reality, EVs will be competing with ICE vehi-

cles, which comprise 70% of the fleet and accommodate themajority of the requests in this 2025 scenario. It

is assumed that a given ICE vehicle and a given EV are equally likely to pick up a given passenger and that

exposing a proportional share of requests to the EV fleet is an adequate proxy for incorporating compe-

tition for demand. (The approximation of competition through request reduction was tested through a se-

ries of smaller-scale experimental HIVE runs with a fleet size of 3,000 vehicles. The performance of a partial

fleet exposed to a corresponding share of requests (such as 30% of vehicles exposed to 30% of requests)

was found to be very similar to a partial fleet exposed to all requests while competing with a counterpart

ICE fleet (30% of vehicles modeled as EVs competing with 70% of vehicles modeled as ICE vehicles all

exposed to 100% of requests). Applying the 30% sampling rate to trip data produces approximately

84,000 YCB trips and 249,000 FHV trips occurring throughout the evaluation day (Figure 2). Trip counts

are low during overnight hours, with an initial peak during the morning commute. Trip counts rise again

during evening hours, corresponding to Friday night demand for ride-hailing.

Charging infrastructure

Vehicles in HIVE rely on public charging infrastructure to replenish battery energy while on-shift. Public DC

charging power levels were assumed to be 150 kW given the increasing proliferation of vehicles capable of

accepting higher DC charge rates, deployment of high-power infrastructure at or above 150 kW (Brown

et al., 2021), and the driver incentive to maximize vehicle uptime and minimize time spent charging (Pav-

lenko et al., 2019). Public network size (number of 150-kW ports) and geography (locations of ports

throughout NYC) were determined using the infrastructure siting workflow described in Section Infrastruc-

turemodeling approach. DC ports simulated in this study were assumed to be available to both ride-hailing

fleets, but no general-purpose use by the public is modeled owing to absent available data. Consideration

of competition for charging by the public is a topic of future inquiry and a noted limitation of this study.

Prior research has shown that access to overnight charging can dramatically affect the size of the infrastruc-

ture needed to support daily electric operations (Moniot et al., 2019; Nicholas et al., 2020; Rushlow et al.,

2015). Drivers with access to off-shift overnight charging can start shifts with higher battery SOC and may

not require use of public DC stations while on-shift, in contrast with drivers who do not have access to over-

night charging and are fully reliant on the public charging network. However, access to overnight charging
iScience 25, 104171, April 15, 2022 5



Figure 2. Trip counts by time of day and by fleet segment for the day selected using a 30% sampling rate
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is not ubiquitous, requiring reliable parking, and is typically restricted to individuals living in single-family

homes with garages. Access to overnight charging has been found to correlate positively with income (Ba-

uer et al., 2021). Ride-hailing drivers are disproportionately lower-income (Benenson Strategy Group and

GS Strategy Group, 2020), and thus anticipated to have more limited access to overnight charging.

The importance of access to overnight charging—in addition to the unique density and demographics of ride-

hailing drivers in NYC—contributed to detailed estimation of plausible access to overnight charging. Access

to overnight charging (summarized in Figure 3) was calculated by synthesizing several data sources:

� Percentage of ride-hailing drivers by residence type. These data were obtained through a FOIL

request facilitated by the TLC comparing driver address locations with zoning data to infer what

housing type the drivers likely reside in. Raw driver address location was not shared given the sensi-

tivity of the data. These data are outlined in the orange column in Figure 3.

� Home charging access ratio by dwell type. These values were generated based on a survey (Ge et al.,

2021) conducted among New York state residents. The survey collected information on the respon-

dents’ parking options available at home, outlet availability of each parking option and their

perceived potential for new outlet installation if not currently available, and where each vehicle is

typically parked at home. Home charging access likelihood by dwell type from 408 respondents in

NYC is outlined in green in Figure 3, whereas the results from 397 respondents in New York State

but outside NYC are outlined in gray. Residential charging access is described by two scenarios,

which respectively capture the lower and upper bound. Scenario 1 shows the percent of vehicles

that are currently parked near electrical access, whereas the more optimistic Scenario 2 considers

overnight charging as available if the vehicle can be moved to a parking option at home that either

has electrical access already or where new electrical access can be installed. Admittedly, the home

charging access of transportation network company drivers can differ from the general population

even when housing type is controlled, and a survey targeting transportation network company

drivers would be ideal for assessing their residential charging access in a future research effort.

� When drivers’ residence locations were not available or did not correspond with zoning data, they

were assumed to have access to overnight charging at a rate of 20% likelihood for existing parking

behavior and 50% likelihood for Scenario 2, assuming the possible parking behavior changes and

new outlet installation. These values are outlined in red in Figure 3.

The final column included in Figure 3 assumes ubiquitous access to overnight charging regardless of the dwell-

ing type. Although this is not realistic—especially in NYC—the scenario was included to investigate the rela-

tionship between overnight charging access and DC network size. Aggregating the percentage of drivers by

residence type and the likelihoodof overnight charging access by residence typeproduces values of 17%over-

night charging access for existing parking behavior, 42% overnight access for parking behavior with a possible

behavior modification and new electrical installation, when necessary, and 100% overnight access. Aggre-

gated values were rounded slightly and approximated through the following scenarios:

� Business as Usual: 15% of ride-hailing drivers have access to overnight charging.

� Residential Investment: 45% of ride-hailing drivers have access to overnight charging.

� Home Charging for All: 100% of ride-hailing drivers have access to overnight charging.
6 iScience 25, 104171, April 15, 2022



Figure 3. NYC ride-hailing driver residency and overnight charging access likelihood by dwelling type
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Vehicle specifications

The current ride-hailing fleet is dominated by relatively fuel-efficient sedans. It is assumed that the current

fleet composition by vehicle size will persist, which motivated the selection of values for battery size and

charge acceptance (Table 2) reflective of existing and emerging four-door EV sedan options. Also included

in Table 2 are energy consumption rates corresponding to an optimal day and an extremely cold day. An

increase in energy consumption per mile of 100% is assumed based on observed reductions in EV perfor-

mance in cold ambient temperatures versus ideal ambient temperatures (Yuksel and Michalek, 2015) and

the climate of NYC in the winter.

Driver shifts

Human drivers in HIVE are modeled as operating on shifts with defined start and end times. Shift start time

data were obtained from the 2018 TLC Factbook (NYC Taxi and Limousine Commission, 2018) for both YCB

and FHV segments. Shift end times are not provided; instead, shift lengths were synthesized randomly be-

tween 6 and 8 h for FHV drivers and between 10 and 14 h for YCB drivers. These shift times reflect observed

shift times from TLC driver data, with YCB drivers operating more hours per day on average (Schneider,

2021). Shift times strongly correlate with trip demand, with a greater number of drivers on-shift during pe-

riods of high requests.

The small share of part-time drivers within the FHV segment is unique to NYC. Part-time drivers constitute

the majority of ride-hailing drivers in other markets (Benenson Strategy Group and GS Strategy Group,

2020). The large number of full-time drivers is largely attributable to the regulatory requirements (NYC

Taxi and Limousine Commission, 2022) faced by drivers in NYC. Regulatory constraints enforced by TLC-

licensed drivers bias the population toward full-time drivers who are more likely to drive for ride-hailing

companies as their main source of income (NYC Taxi and Limousine Commission, 2018).

Driver home locations

When drivers are off-shift, vehicles are assumed to be at a home location. The 2018 TLC Factbook provides

home locations for drivers across both ride-hailing segments at the borough level (Figure 3). Overall,

drivers are observed to live in locations where housing is more affordable, with more drivers living outside

NYC than in Manhattan. Specific home locations within each borough were approximated by randomly

sampling coordinates and snapping points to the road network (ensuring that drivers live in locations

that can be driven to). Drivers living outside NYC were synthesized to live on the edges of the outer bor-

oughs (all but Manhattan). This approach effectively captures long commute distances without necessi-

tating the need for a road network outside of the NYC boroughs. Note that rates of overnight charging
Table 2. Assumed vehicle parameters for EVs simulated

Parameter Value

Battery capacity 50 kWh

Maximum charge acceptance 150 kW

Energy consumption rate, cold day 450 Wh/mi

Energy consumption rate, optimal day 225 Wh/mi

iScience 25, 104171, April 15, 2022 7



Figure 4. Share of driver residence locations by borough and ride-hailing fleet segment
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access, estimated previously, are not varied for drivers in response to driver home location. Data limitations

regarding the contents of the FOIL request response did not enable estimation of variation in home

charging access across NYC.

Infrastructure modeling approach

The DC charging network is both an input to HIVE and a desired output from this analysis. To discover

requisite infrastructure demanded by the fleet, a modeling pipeline was developed using HIVE to quan-

tify the performance of candidate networks. The workflow, outlined in Figure 4, contains the following

steps:

1. An initial HIVE simulation is performed (including a conditioning day and an evaluation day) using

input values corresponding to the scenario in question, including variables such as rates of overnight

charging access and ambient temperature assumptions influencing vehicle energy consumption

rates. This simulation sites ubiquitous DC charging in the form of finely sited stations with no port

count restrictions for on-shift charging needs.

2. Charging demand from the simulation evaluation day, defined as instances when vehicles transition

from servicing trips to dispatching to the nearest DC charging station, is aggregated by space and

time. In space, demand is aggregated to the hex level using the H3 Python package. H3 hexagons

are preferred for evaluating charging demand across equal-area geographies versus arbitrarily

defined political boundaries. A hexagon resolution of 7, corresponding to an average area of 2 miles,

is chosen given the dense road network of NYC. (Larger hexes may be justified when aggregating

charging demand from other geographies, such as rural areas.) In time, demand is aggregated by

the 30 min bin (corresponding to a typical DC charge time plus allocation for ingress/egress). Spatial

aggregation provides a suggestion of the charging demand of the fleet throughout the city, whereas

temporal aggregation provides insight into the number of ports needed at a given location, account-

ing for opportunities for distinct charging demand events in the same location to be accommodated

by a single port if they occur in different time bins.

3. Processing of the spatial-temporal charge event aggregation facilitates insight into potential port

utilization. Ports are prioritized based on utilization and ranked from highest to lowest. Charging net-

works are generated using this ranking, iterating from sparse networks containing only the most

highly demanded ports (top n% ports) to generous networks containing all ports demanded during

the seed run. All ports demanded within a given hex are aggregated into a single station at the

centroid.

4. HIVE is run numerous times with the same inputs originally used during the seed run but with candi-

date DC charging networks instead of a ubiquitous network. Key performance indicators (KPIs) are

evaluated for each run to determine whether a charging infrastructure was deemed to provide a suf-

ficient level of performance. KPIs used to assess the adequacy of a given network within this study are

at the fleet (a) and vehicle (b) level:
8 iScience 25, 104171, April 15, 2022



Figure 5. Infrastructuremodeling approach using HIVE to identify a sufficient charging network for each scenario

(DCFC = DC fast charging)
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a. At the fleet level, infrastructure must enable service of at least 95% of all trips simulated as being

requested. Note that the requested trips simulated in HIVE are actually served trips as reported

by the TLC. There are alsomany unserved trips not taken by passengers that are not present in the

data but could have been possibly served by the simulated vehicle fleet. Diminishing returns were

found when increasing the number of fleet vehicles or infrastructure ports, suggesting that

servicing trips at or near a 100% rate would require more sophisticated supply/demand balancing

or incorporation of heterogeneous driver behavior. Achieving 95% quality of service is considered

to meet a similar level of service to the real world.

b. At the vehicle level, infrastructure must be sufficient such that the average queue time encoun-

tered by drivers at DC charging stations does not exceed 15 min. It is assumed that drivers will

not be tolerant of significant delays to access charging infrastructure.
This approach is similar to others in the literature that site infrastructure for electric fleets in accordance with

the observed or inferred demand for charging (Bauer et al., 2018; Chen et al., 2016), with the added benefit

of being able to identify charging networks that satisfy specific KPIs.
RESULTS AND DISCUSSION

Results: infrastructure network sizing

Candidate infrastructure networks were generated and assessed for three scenarios corresponding to

increasing share of drivers assumed to have home charging access (Business as Usual: 15%, Residential In-

vestment: 45%, Home Charging for All: 100%). These three scenarios were evaluated assuming a high

vehicle energy consumption rate—450 Wh/mi—corresponding to cold ambient conditions typical of

NYC winters. In each case, spatiotemporal charging demand was generated using seed runs of HIVE

wherein ubiquitous DC charging access was provided. Candidate networks, generated based on simulated

port utilization from an unconstrained network, were re-simulated using HIVE for each infrastructure-con-

strained scenario. Figure 5 shows the results of this process for all three scenarios, comparing the size of the

DC charging network against KPIs used to assess adequacy of the charging network (request service per-

centage and mean queue time).

Applying performance constraints—minimum of 95% requests served and maximum average queue times

of 15 min—enabled selection of a charging network size for each scenario, described in Table 3. Increasing

the magnitude of the charging network was shown to improve both KPIs of interest, as greater access to

infrastructure increased fleet uptime through reduced dispatching distances to chargers and reduced

driver queue times. However, results in Figure 5 also indicate diminishing returns across KPIs as the network

size grows. Diminishing returns with respect to trip service and driver queue times underscore the impor-

tance of selecting strategic KPI thresholds; requirements of 95% request service and maximum average
iScience 25, 104171, April 15, 2022 9



Table 3. DC charging infrastructure network sizes necessary to accommodate 21,211 human-driven ride-hailing vehicles servicing trips in NYC on a

challenging day

Scenario

Share of Vehicles with Overnight

Charging Access Number of Overnight Chargers Number of DC 150-kW Ports Sited

Business as Usual 15% 3,176 1,054

Residential Investment 45% 9,540 806

Home Charging for All 100% 21,1211 367
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queue times of 15 min were selected as targets by the authors. Although these thresholds produced an

effective charging network, stakeholders in the ride-hailing ecosystem responsible for providing access

to charging may deem separate thresholds to be more strategic.

Further analysis of network sizing results in Figure 6 indicates a strong relationship between the number of

drivers with access to overnight charging and the number of DC ports needed to support an adequately

performing fleet. Increasing the number of vehicles with access to overnight charging from 15% to 100%

reduced the number of DC ports needed by 65% (1,054 ports to 367 ports). On a per-port basis, results indi-

cate that one less DC port is needed for every 26 drivers who gain access to overnight charging. This finding

is consistent with other literature suggesting that increased access to off-shift charging reduces the need

for on-shift charging (Jenn, 2021; Nicholas et al., 2020). However, results indicate that a substantial DC

charging network will still be needed even by populations with access to overnight charging. The network

size demanded by drivers with access to overnight charging is much higher than in a similar study per-

formed by the authors (Moniot et al., 2019), which found that providing overnight charging access to

taxi drivers in Columbus, Ohio, would nearly eliminate the need for DC charging infrastructure entirely. Ma-

jor contributors to the size of the DC charging network in the ‘‘Home Charging for All’’ scenario include

incorporation of NYC’s cold climate using a high vehicle energy consumption rate (450 Wh/mi) and the

long shift lengths (up to 14 h), which induce charging for some vehicles despite starting their shifts with

a full battery capacity.

In addition to quantifying total port counts, the infrastructure siting approach provides visibility regarding

where ports are sited throughout NYC. Figure 6 contains results by H3 hex of sited stations and port counts

for each of the three scenarios. Note that a single station is sited within each hex and assumed to contain all

ports within the hex; in reality, a given geography may be served by many stations, although this was not

explicitly modeled. It was assumed that a single large station may support a similar number of vehicles, as

multiple smaller stations with the same number of overall ports provided sufficient driver information

regarding queues and station proximity.

In each case, the area with the greatest demand for ports was found to be in midtown Manhattan, which

corresponds with the largest amount of trip demand. These results are consistent with prior research, which
Figure 6. Simulation results regarding request service and mean queue time across home charging access scenarios in response to candidate DC

charging networks
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Figure 7. Concentration of sited ports across scenarios throughout NYC
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has found a strong relationship between request density and effective infrastructure siting (Bauer et al.,

2019). However, trip demand alone is not shown to be fully predictive of charging network geography; ac-

cess to overnight charging is also shown to influence the location of demanded charging infrastructure.

Scenarios with lower shares of overnight charging access demand a larger share of charging in outer bor-

oughs away from dense trip demand and nearby home locations. This charging corresponds to on-shift de-

mand for charging but also the commuting needs of vehicles as they start and end their shifts with low SOCs

because of limited access to overnight charging. These findings support multiple infrastructure paths for

electrifying a fleet of ride-hailing vehicles that balance investment in DC charging in areas of high travel

demand (such as urban cores) and investment in overnight charging access (such as in residential neighbor-

hoods). Cost calculations comparing the trade-offs between these approaches were not explored given the

uncertainty in estimating infrastructure costs for both DC charging stations and overnight chargers across a

variety of overnight parking locations.
Results: fleet simulations using sized networks

Fleet load profiles were developed for each simulation to understand the magnitude of the electrical load

demanded by time of day. These loads, broken out by ride-hailing segment and port type, are shown in

Figure 7 for each scenario. Inspection of the load profiles reveals that FHVs contribute the majority of

charging demand, which is to be expected considering the larger fleet size relative to YCB vehicles. In addi-

tion, the load profiles indicate that greater shares of home charging access result in less energy dispensed

through public DC charging stations, as expected. Amore surprising finding, however, is that the peak load

across scenarios is relatively similar. Although overnight charging uses a lower power level relative to DC

charging, ubiquitous access to overnight charging leads to a high percentage of the fleet charging simul-

taneously. Having said this, peak charging demand from overnight charging is more dispersed across the

electric network and may be less likely to exceed local grid hosting capacity versus fewer centralized high-

power stations.

Loads from scenarios with ubiquitous overnight access are contrasted with fleets primarily relying upon

public DC charging. Note that the charging behavior in this study is uncoordinated; prior research pertain-

ing to personal vehicles and automated ride-hailing fleets has indicated that charging loads may be highly

flexible without interrupting travel requirements (Moniot et al., 2020; Sheppard et al., 2021). Finally, in addi-

tion to assumptions regarding unmanaged charging, the authors emphasize the importance of driver

behavior with respect to load shape. For instance, the early morning peak observed in the Business-as-

Usual scenario (15% overnight charging access) is induced by a large number of drivers beginning their

shifts, commuting to the city, and requiring a charge because of a low overnight SOC and no access to

home charging. In practice, drivers may develop more sophisticated charging strategies that avoid queues

and reduce peak demand.

In addition to fleetwide profiles, HIVE outputs were analyzed using smaller geographies. Load profiles for

all ports in each hex, modeled as belonging to a single station, are shown for exemplar stations from the
iScience 25, 104171, April 15, 2022 11



Figure 8. Fleetwide load profiles corresponding to simulations using sized infrastructure networks for each scenario across infrastructure type

(DC and Level 2 [L2]) and fleet segment (YCB and FHV)

ll
OPEN ACCESS

iScience
Article
‘‘Business-as-Usual’’ case in Figure 8, with the largest station in the urban core (79 ports in the midtown

Manhattan hex) and a smaller station supporting neighborhood travel (5 ports in a Brooklyn hex). The au-

thors reiterate that the large number of ports per station in dense regions is an artifact of modeling reso-

lution and these areas with a high density of ports could be spread across multiple station locations. How-

ever, this abstraction does not impact the demand for ports by time of day or the utilization of ports

averaged across a hex.

Comparison of these load profiles reveals that the Manhattan station heavily contributes to the fleetwide

morning peak, driven by many low-SOC vehicles transitioning on-shift and commuting into the city,

requiring an early shift charge event and demanding charging simultaneously. However, after this peak

event, the station is not highly utilized throughout the remaining day and especially not during overnight

hours when the majority of the fleet is off-shift and commutes home. This load shape is contrasted with the

neighborhood station, which accommodates a more consistent stream of charging events throughout the

day and the overnight hours. The Brooklyn station’s location enables it to service en route trips for on-shift

vehicles, as well as low-SOC vehicles commuting to or from a home location. These charging dynamics

contribute to a higher utilization (calculated using Equation 1) for the neighborhood DC charging station

in Brooklyn (41%) versus the DC charging station in Manhattan (26%).

mstation =

Pp
n tn

24p
(Equation 1)

Where mstation = station-level utilization, tn = total time in hours port, n dispensed energy in a day, p = num-

ber of ports affiliated at station mstation, 24 = number of hours in a day.

Finally, the load profiles also vary by fleet segment. The Manhattan station charges a disproportionate

number of YCB vehicles relative to fleet size given the consolidation of YCB requests to Manhattan. This

is contrasted against the Brooklyn station, which primarily services FHVs that can accommodate trips

throughout all boroughs. The few charging events demanded by YCB vehicles at the Brooklyn station

correspond to drivers commuting to or from their home location nearby.

The relationship between station location and utilization was explored further across all stations sited in

each HIVE scenario. Distributions of station utilization are communicated by borough in Figure 9 for

each scenario. Results indicate a pattern: stations sited in Manhattan experience less utilization than neigh-

borhood stations, which contain a fewer number of ports but provide charging benefits to the fleet during

broader time periods (as opposed to primarily servicing the morning rush for charging). Utilization results

also contain a handful of stations with very high utilization in the 15% Home Charging scenario; although
12 iScience 25, 104171, April 15, 2022



Figure 9. Sample load profiles from a large and small DC charging station from the Business-as-Usual scenario
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these stations enjoy consistent demand for charging throughout the day, they are also smaller in size and

comprise a small fraction of the total ports on the network. Finally, when interpreting the figure, readers

should note that the total network size is changing across each scenario as demanded by the fleet and

determined by constraints in the prior section. The variability in charging demand across cases contributes

to consistent station-level utilization across scenarios despite an increase in overnight charging access.

Despite differences in average utilization, all ports sited on the network are required at least once

throughout the day. For some stations, all ports at a given station are simultaneously demanded frequently;

however, at other stations, complete use of plugs occurs only briefly, such as at the Manhattan station in

Figure 8. (Inspection of Figure 8 may lead readers to conclude that all ports are not in use at any time given

that the peak station load does not reach the station capacity. All ports are indeed in use at approximately 8

a.m. for the Manhattan station; the station load does not reach the stated capacity due to nonlinear

charging rates resulting in many vehicles charging below 150 kW.). In some locations, investment into addi-

tional charging ports results in accommodating marginal charging demand. As discussed earlier, although

these additional ports were found to be necessary to meet network sizing KPIs, investments into chargers

accommodating diminishing charging demand may not be strategic depending on the motivations of the

stakeholders in the ride-hailing ecosystem.

Finally, before concluding discussion of baseline results, the authors would like to acknowledge the trade-

offs corresponding to outcomes from a single design day, Friday, March 8, 2019. Analysis of a single design

day introduces limitations because of the larger-than-normal number of requests and the emphasis of

weekday travel patterns. First, simulation of more typical weekday travel days with fewer trips would be ex-

pected to coincide with a reduction in the fleet charging demand; prior research leveraging simulations

with a fractional share of the total requests in a given day has indicated that the resulting fleetwide load

is approximately proportional to the number of requests simulated while also being similar in shape. In

other words, halving the travel demand was shown to halve the demand for charging in magnitude

when controlling for economic fleet size (Moniot et al., 2020). Second, weekend travel demand is distinct

fromweekday travel demand by time of day and across geographies given the difference in travel behavior,

such as reduced trip demand corresponding to commuting and increased trip demand corresponding to

recreational opportunities. Although a single travel day was explored in this study to accommodate

computational resources and to keep the quantity of results tractable, it is acknowledged that a charging

network satisfying the needs of both weekend and weekday travel patterns may be slightly larger than the

network introduced in this section and is a recommended topic for future work.

Sensitivity results: fleet simulations on a warm day

Results from HIVE introduced thus far correspond to simulations assuming a very cold day and high vehicle

energy consumption rates. An additional set of HIVE simulations was performed assuming a more ideal
iScience 25, 104171, April 15, 2022 13



Figure 10. Utilization rates broken out by station borough and scenario
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energy consumption rate of 225 Wh/mi. All other variables (e.g., DC charging network, trip data) were kept

constant to isolate the impact of fleet consumption rate on charging demands and station utilization.

Load profiles from simulations assuming a low vehicle energy consumption rate are shown in Figure 10, with

inclusion of the aggregated load from the corresponding high vehicle energy consumption rate simulation

(originally introduced in Figure 7) shown for reference. Most notable is the reduction in load across cases;

more energy-efficient vehicles are observed to demand less charging. In addition, the relative share of fleet

charging demand corresponding to private L2 chargers is higher. Overnight charging access was found to

provide sufficient energy for vehicles to complete a full shift in most cases. The limited DC charging loads

shown in Figure 10 are almost exclusively attributable to the vehicles in the fleet with no access to overnight

charging. This trend is most notable in the ‘‘Home Charging for All’’ scenario, wherein only a small fraction

of YCB vehicles with long shifts require DC charging.

Although there are many differences between the cold and warm simulations, comparison between cases

does reveal similarities. Most notably, the peak load is similar across overnight charging access scenarios,

and the overall shape of the loads is similar between cold and warm simulations. These findings suggest

that the peak load of the fleet generalizes across home charging access scenarios when controlling for a

given climate, and that the timing of the peak demand generalizes across energy consumption assump-

tions for a given collection of trip requests that must be served.

The relationship between station utilization and location was also explored for simulations with higher

ambient temperature, which assumed lower vehicle energy consumption rates. In all cases, stations expe-

rienced lower utilization during the warmer simulations, as shown in Figures 11 and 12. This lower utilization

is driven by two factors. First, vehicles without access to overnight charging still rely upon DC charging to

replenish battery energy but do not necessarily require a DC charging event each day given the lower en-

ergy consumption rate. This finding is evidenced by the reduced utilization in the ‘‘Business as Usual’’ and

‘‘Residential Investment’’ scenarios, wherein a significant portion of the fleet is still reliant on public DC

charging. Second, vehicles with access to overnight charging can satisfy their charging needs without

mid-shift charging in nearly all cases, as evidenced by the DC charging utilization rates of nearly zero for

the ‘‘Home Charging for All’’ scenario.

Outcomes from the sensitivity study indicate a high degree of variability in overall charging demand and

corresponding station utilization in response to vehicle energy consumption rates, which vary because

of ambient conditions. Findings motivate consideration of trade-offs between minimizing queueing on

cold days at the expense of poor station utilization, which may be uneconomical during warmer days.
14 iScience 25, 104171, April 15, 2022



Figure 11. Fleetwide load profiles corresponding to simulations using sized infrastructure networks and warm ambient temperatures for each

scenario across infrastructure type (DC and AC L2) and fleet segment (YCB and FHV)

Traces are also included for the peak fleet load from corresponding cold simulations.
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This balance is also affected by trip volumes, whereby days with high trip volumes induce a large demand

for fast charging, whereas simulations with reduced trip volumes induce less demand for fast charging.

Conclusions and limitations of study

This paper examines the infrastructure demands of an electric ride-hailing fleet of over 20,000 vehicles in

NYC. Infrastructure demands were calculated using the HIVE modeling tool, a simulation platform that

models the operation of shared vehicle fleets. HIVE considered a broad number of real-world inputs pro-

vided by the TLC, including real-world trip data, driver shift timing, and driver home locations. Additional

data pertaining to access to overnight charging supplemented the study through administered surveys of

residents in the NYC metropolitan area. HIVE was leveraged to understand the fleet demand for charging

in space and time, siting networks that met performance metrics at the fleet and vehicle level. Results indi-

cate that electrifying 30% of the NYC ride-hailing fleet by 2025 will require a robust charging network,

ranging in size from 367 to 1,054 DC ports each rated at 150 kW (depending on the level of home charging

access assumed). In addition to these findings, the analysis performed extends beyond what is typically

available in similar studies. Key contributions include simulation of heterogeneous fleets relying on shared

infrastructure and added realism through consideration of real-world data, including driver shifts and over-

night charging access informed by survey data.

There are many factors unique to the NYC environment that are important to consider when interpreting the

results. First, the ride-hailingmarket inNYC is uniquely regulatedby theTLC,whichbiases thedriverpopulation

to be predominately full-time. Second, the congested nature of NYC limits the total mileage accrued within a

given shift,meaning charging needs are greatly influencedby time-based loads including cabin heating. Third,

the presence of a high-volume public transit systemmay bias the types of trips taken by the ride-hailing fleet.

Finally, the dense nature of the housing market constrains plausible upper bounds on home charging access.

Additional modeling limitations—not specific to NYC—include the absence of off-shift vehicle miles traveled

outside of commuting, assumption of homogenous charging behavior, simulation of only a single evaluation

day, assessment of the opportunity for taxi depots to host overnight charging, simulation of partial fleet elec-

trification, and neglected consideration of the charging competition between ride-hailing drivers and the

broader light-duty vehicle fleet. These topics warrant future inquiry as ride-hailing electrification accelerates.

These caveats aside, the authors emphasize the following insights:

� Access to overnight charging dramatically reduces the size of the public DC charging network

required to support ride-hailing operations. Off-shift charging access enables vehicles to start their
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Figure 12. Utilization rates broken out by borough, home charging access scenario, and assumed ambient temperature
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shifts fully charged, as opposed to frequent use of public DC charging alone. Increasing the share of

overnight charging from 15% of the fleet to 100% reduced the required DC charging network size

from 1,054 to 367 150-kW ports for a fleet of approximately 20,000 vehicles.

� A robust network of DC ports will be needed even by fleets with overnight charging access. The ex-

isting availability of DC charging within NYC—68 public DC fast charging ports as of November 2021

(U.S. Department of Energy, n.d.)—pales in comparison to what will be needed to support successful

ride-hailing operation regardless of scenario. Although overnight charging does support the major-

ity of charging needs for drivers with access, full-time drivers are still expected to demand public

charging, particularly on cold days with high travel demand.

� The demand for charging is highly correlated with trip density, with areas of greatest public charging

demand adjacent to high-volume pickup and drop-off locations. However, scenarios with fewer ve-

hicles modeled as having overnight charging access demand DC charging nearby their residence,

despite relatively little trip demand.

� DC charging station utilization is impacted by many factors, most notably station geography,

ambient temperature, and fleet access to overnight charging. DC charging stations located in the

urban core are observed to accommodate a large number of simultaneous charge events, but

feature lower utilization overall when compared to DC charging stations located within neighbor-

hoods. In addition, a natural relationship between station utilization and demand for charging was

observed, with demand for public charging driven by vehicle energy consumption rate and overnight

charging access.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Trip records, 2019 NYC TLC https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

TLC data aggregations Todd Schneider https://toddwschneider.com/dashboards/nyc-taxi-ridehailing-uber-lyft-data/

Driver home locations by borough 2018 TLC Factbook https://www1.nyc.gov/site/tlc/about/fact-book.page

Driver shifts 2018 TLC Factbook https://www1.nyc.gov/site/tlc/about/fact-book.page
RESOURCE AVAILABILITY

Lead contact

Further information about the protocols and requests for resources and reagents should be directed to and

will be fulfilled by the lead contact, Matthew Moniot (matthew.moniot@nrel.gov).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in

the key resources table. This paper does not report original code. Any additional information required to

reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Fleet simulator

We characterize the operations of ride-hailing fleets using the HVIE simulation platform (Fitzgerald

et al., 2021). HIVE enforces various physical constraints, including battery range, vehicle state transitions,

road network routing, request and vehicle matching, and more. The study employed HIVE through

use of several real-world input datasets pertaining to ride-hailing in New York City, including real-

world trips, aggregated driver residence locations, driver shifts, and more. A key variable, likelihood

of driver overnight charging access, was inferred from data provided by the TLC describing driver

domicile type and survey data originally introduced by Ge et al., (2021) correlating likelihood of charging

access by domicile type. These inputs supported HIVE simulations which induced demand for fast

charging.

Infrastructure siting

Infrastructure locations and power levels are both an input to the HIVE simulation and the focus of the

study. To identify the demand required, the following simulations were performed:

1. A ‘‘seed’’ simulation, whereby the fleet has access to ubiquitous infrastructure spatially and with no

plug constraints

2. Candidate infrastructure networks are sited in response to this seed run, where plugs are distributed

based on observed demand from the seed run.

3. HIVE simulations are iterated with increased infrastructure network sizes until KPI’s are met at the

fleet level (quality of service constraint) and at the driver level (mean queue times to charge).
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4. Once KPI’s are met, the corresponding charging infrastructure in both space (location of stations)

and quantity (number of ports per location) are retained.

Simulations to identify demand for infrastructure assumed cold climate conditions with low vehicle effi-

ciencies under the presumption that sited infrastructure must adequately support a fleet on a challenging

day of operation. Additional simulations were performed with more favorable energy efficiency assump-

tions to understand more typical fast charging demand from the fleet.
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