Subcell Coupling in Tandem Solar Cells: Measurements and Modeling

John F. Geisz1, William E. McMahon1, Jeronimo Buencuerpo1,2, Michael Rienäcker3, Adele C. Tamboli1, Emily L. Warren1

1National Renewable Energy Laboratory (NREL), Golden, CO, USA
2Currently at L’Institut Photovoltaïque d’Ile-de-France (IPVF), Palaiseau, France
3Institute for Solar Energy Research Hamelin (ISFH), Emmerthal, Germany

Tandem measurements
- ALWAYS control or characterize BOTH subcells e.g. measure bottom I_{sc} with top at OC & SC
- Information comes from light, current and voltage
- More terminals provides flexibility for characterization and power optimization

\[J_{ext} = \int_{0}^{\infty} EQE(\lambda) \phi(\lambda) d\lambda \]
\[J_{em} = J_{0b} e^{(-eV_{oc}/kT)} - 1 \]
\[J_{0b} = \beta J_{m} e^{(-eV_{oc}/kT)} - 1 \]

Light-powered by python-based open-source
https://github.com/NREL/PVcircuit

Tandem subcells ARE NEVER INDEPENDENT!
Number of terminals changes limitations

- Electrical coupling
- Optical coupling

2T: Series current limitation
- Luminescent coupling

3T: Common resistance
- Luminescent coupling

4T: Potential shunt
- Luminescent coupling

If a subcell has a voltage
- it emits light (more prominent for good emitters like III-Vs and Perovskites)
If it emits light
- the tandem has luminescent coupling
- LC is up to $\beta = 4n^2$ times the emitted light

Tandem modeling powered by python-based open-source
https://github.com/NREL/PVcircuit

Coupled dark IV curves are sensitive for fitting model