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Li-ion batteries (LIB) are a promising solution to enable the storage of intermittent energy 
sources due to their high energy density. However, LIBs are known to significantly degrade 
after about 1000 charge-discharge cycles. LIBs degrade following different degradation 
modes and at a rate that depends on the operating conditions (e.g., external temperature, 
load). To plan the installation of batteries, appropriate understanding and prediction 
capabilities of their lifecycle is needed. In particular, the LIB degradation model needs to 
be transferable to variable operating conditions throughout the LIB lifetime. To this end, 
degradation models of individual LIB battery properties are sought to allow for sufficient 
granularity in the degradation model.

High-fidelity numerical models of LIBs such as the pseudo-two-dimensional (P2D) model 
have been shown to accurately represent the charge-discharge-cycle of an LIB if the physi-
cal parameters used in the model are accurately estimated. Given observations of battery 
charge-discharged cycles, the objective is to use the P2D model to infer the values of all 
the battery properties, throughout the battery life. To prevent overfitting and account for 
the sparse data availability, the overarching objective is to enable Bayesian calibration to 
solve the inverse problem. Given the number of physical parameters, and the number of 
cycles to simulate, adjusting parameters directly via P2D forward runs is computationally 
intractable.

This work describes the development of a surrogate model that would replace numerical 
integration of the P2D equations to significantly reduce the cost of the forward r uns. To 
capture parameter dependencies, a physics-informed neural network (PINN) is developed 
as a surrogate substitute for the P2D model. The inverse modeling approach is illus-
trated in Fig. 1 (top). The PINN is advantageous as it needs little to no observational 
data, which avoids offsetting the reduced inference computational cost with an increased 
training data generation burden. However, PINNs are notoriously difficult to train in stiff 
dynamical systems such as the P2D equations. Here, we discuss the specific training pro-
cedure that is adopted to efficiently cover parameter space, handle model stiffness, enforce 
initial, boundary conditions, and treat variables of different m agnitudes. Furthermore, a 
verification procedure akin to ones used in computational fluid dynamics is  implemented 
to ensure that the right governing equations are implemented. An emphasis is placed on 
verifying the governing equation even in presence of numerical errors.

The training procedure and loss convergence are described to highlight training instabil-
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ities encountered. In addition, the training cost is evaluated and put in perspective of
the forward integration of the P2D equations. Through ablation studies, we discuss what
model components are the most critical to appropriately capture P2D solutions.

The trained PINN is validated against numerical solutions of the P2D model (sample
results are shown in Fig. 1 bottom). In particular, it is assessed whether the PINN can
replicate numerical solutions for parameter values not represented in the training data
which is key in ensuring that the surrogate can be used for parameter calibration.

Figure 1: Top: inverse modeling approach of the battery degradation model. Bottom: sample predicted
battery state discharge profile.
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