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Executive Summary 
The most persistent challenge in both intraday and day-ahead solar forecasting is to get 
numerical weather prediction models to produce the right type of clouds with the right frequency 
at the right time and place. Another challenge is to understand and communicate the forecast 
uncertainty. The objective of this project was to develop an optimized ensemble-based solar 
irradiance forecasting system that will (1) demonstrably improve the current state-of-the-art solar 
forecasts from the deterministic Weather Research and Forecasting-Solar (WRF-Solar) model 
and (2) provide probabilistic forecasts for grid operations. This probabilistic solar forecasting 
system, referred to as the WRF-Solar Ensemble Prediction System (WRF-Solar EPS), aims to 
significantly enhance both the intraday and the day-ahead solar forecasting capability for grid 
operations.  

This technical report summarizes the work performed in the past 3 years through a collaboration 
between the National Renewable Energy Laboratory and the National Center for Atmospheric 
Research as part of the U.S. Department of Energy’s Solar Forecasting 2 program that aims to 
improve the accuracy of solar energy forecasts and enable increased deployment of solar energy 
on the electric grid. 

The research steps in developing the ensemble solar forecasting system based on WRF-Solar 
were: 

1. Identify variables that significantly influence the formation and dissipation of clouds and 
solar radiation through a tangent linear analysis of WRF-Solar modules that influence 
cloud and radiation processes. 

2. Introduce stochastic perturbations in the variables identified in Step 1 to develop the 
WRF-Solar EPS. 

3. Calibrate WRF-Solar EPS using observations to ensure that the forecasts’ trajectories are 
unbiased and provide accurate estimates of forecast uncertainties under a wide range of 
meteorological regimes. 

4. Demonstrate the improvements of WRF-Solar EPS. 
5. Develop and deliver an open-source WRF-Solar EPS for the solar energy community. 

The first stage of our framework in developing WRF-Solar EPS required a specially designed 
method using a tangent linear sensitivity analysis to efficiently investigate uncertainties of WRF-
Solar variables in forecasting clouds and solar irradiance. We identified 14 variables in this 
analysis (Yang et al. 2021a). For the second stage, we introduced stochastic perturbations in the 
14 variables to generate the ensemble members. A user-friendly interface was developed in 
WRF-Solar EPS to enable the control of the parameters of stochastic perturbations using 
configuration files. Last, we implemented an analog technique as an ensemble post-processing 
method to calibrate the solar irradiance probabilistic forecasts (Kim et al. 2021). For the 
evaluation of the forecasts, we adapted and used satellite-derived solar radiation data from the 
National Solar Radiation Database (NSRDB) as well as in situ observations (Jiménez et al. 
2022). The improvements obtained by the ensemble calibration reduced forecast bias by 81% 
and 75% with respect to the stochastic ensemble for global horizontal irradiance (GHI) and direct 
normal irradiance (DNI), respectively. Overall, the ensemble forecasts calibrated from the analog 
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method provided unbiased estimations of the irradiance within 1% and 3.2% of the satellite 
observations of GHI and DNI, respectively. 

The probabilistic WRF-Solar system, referred as WRF-Solar EPS, developed under this project 
is now publicly available and will form part of the next WRF major release in 2022 to support 
the integration of solar generation resources and improve the accuracy of intraday and day-ahead 
probabilistic solar forecasts.  
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1 Introduction 
The contribution of solar energy to the electric grid has been rapidly increasing during the last 
few years, and it has reached a point where integration has become a major source of concern for 
system operators. One cost-effective integration method is the use of solar irradiance and energy 
forecasts to improve both the unit commitment and dispatch of this variable resource. 

To help integrate solar generation resources, the U.S. Department of Energy is now seeking to 
improve the accuracy and the ease of delivery of both day-ahead and intraday solar forecasts. 
This is the second phase of funding for solar forecasting technologies. In the first phase of 
funding, the Weather Research and Forecasting model was enhanced to better support for solar 
applications (WRF-Solar) (Jiménez et al. 2016a) by the National Center for Atmospheric 
Research and its partners. Developments focused on improving the representation of processes 
that impact solar irradiance on the ground. More specifically, WRF-Solar was developed to 
provide accurate solar forecasts through significant improvements in the representation of 
aerosols, cloud formation, and radiative transfer calculations. 

Operational weather forecasts are usually derived from single model runs because of the high 
computational cost of running high-resolution forecasts. This means that there is little or no 
information about the uncertainty of the forecast. A key challenge in integrating solar resources 
is accurately predicting the confidence in a forecast of solar power. This can be achieved by 
creating an ensemble of forecasts through the optimized perturbation of initial conditions and 
generating a probabilistic forecast using the ensemble members. Systems such as the National 
Oceanic and Atmospheric Administration’s Global Ensemble Forecast System and the National 
Hurricane Center’s Track and Intensity models produce ensemble-based probabilistic forecasts 
geared toward specific weather events, but there are no systems that are tuned to optimally 
provide a probabilistic forecast for solar energy. 

A high-quality probabilistic forecasting system would result in forecasts that can be used as a 
decision aid by system operators, utilities, and market participants. This will result in an increase 
in both the penetration and value of solar energy by significantly reducing the cost of integration; 
however, no easy-to-use probabilistic forecasting model optimized for solar energy applications 
exists in the public domain, and the proposed system would fill a significant gap in existing 
capabilities. 

WRF-Solar is currently being enhanced, and it has robust basis for developing probabilistic 
forecasts for the solar energy community. The development of a publicly available model for 
probabilistic solar forecasts building on the capabilities of WRF-Solar is a natural progression of 
development in the solar forecasting arena, and it can provide a low-risk pathway to significant 
enhancement in the ability of the energy industry to produce actionable information for grid 
operations. 

The objective of this project is to develop an optimized ensemble-based solar forecasting system 
that will: 

• Demonstrably improve the current state-of-the-art solar forecasts.  
• Provide probabilistic forecasts for grid operations. 
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The research steps in developing the ensemble solar forecasting system based on WRF-Solar, as 
shown in Figure 1, are: 

1. Identify variables that significantly influence the formation and dissipation of clouds and 
solar radiation through a tangent linear analysis of WRF-Solar modules that influence 
cloud processes. 

2. Introduce stochastic perturbations in the variables identified in step (1) to develop the 
WRF-Solar Ensemble Prediction System (WRF-Solar EPS). 

3. Calibrate WRF-Solar EPS using observations to ensure that the forecasts’ trajectories 
are unbiased and provide accurate estimates of forecast uncertainties under a wide range 
of meteorological regimes. 

4. Demonstrate the improvements of WRF-Solar EPS. 
5. Develop and deliver an open-source WRF-Solar EPS for the solar energy community. 

 
Figure 1. Research flowchart for the WRF-Solar EPS development 

The forecasting system we developed, referred as WRF-Solar EPS, is now ready to be 
disseminated to support the integration of solar generation resources and improve the accuracy of 
intraday and day-ahead probabilistic solar forecasts (Sengupta et al. 2021, 2022; Jiménez et al. 
2021). These activities were conducted during a 3-year period spanning 2018–2021, and this 
report summarizes activities conducted through a collaboration between the National Renewable 
Energy Laboratory and the National Center for Atmospheric Research under the project. 

WRF-Solar

Tangent linear analysis of WRF-Solar modules for 
sensitivity study 

Selection of key variables to generate ensemble 
members

Calibration of WRF-Solar EPS forecasts to remove 
bias and improve spread accuracy 

Deliver WRF-Solar EPS package capable of providing 
accurate probabilistic forecasts 

Stochastically perturb selected variables to provide 
probabilistic forecast
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2 Data Acquisition for Model Calibration and 
Validation 

2.1 Development of 9-km National Solar Radiation Database for WRF-
Solar Ensemble Prediction System Evaluation and Calibration 

Numerical weather prediction (NWP) developers and forecast users need to evaluate forecast 
outputs at arbitrary locations on the model grid; thus, an important requirement for evaluating the 
forecasts is to build the gridded observations that match the NWP grid because the spatial 
resolution and the projection of the two data sets are dissimilar. To achieve this task, we 
aggregated the National Solar Radiation Database (NSRDB) data (Sengupta et al. 2018) (2 km or 
4 km) to the WRF-Solar grid points (9 km). In addition, we reprocessed the native NSRDB to 
produce data for originally excluded parts of the domain over the ocean. This provides us the 
capability to evaluate the full extent of the WRF-Solar forecasts, including oceans and the 
contiguous United States (CONUS). Multiyear NSRDB data sets, which cover the period from 
2016–2018, were reprocessed and finally aggregated to the WRF-Solar grid. We created a full 
inventory of native NSRDB for the newly processed NSRDB (9 km), and this enables us to 
provide insights on the predictive capability of the WRF-Solar ensemble forecasts in terms of 
irradiance variables and cloud properties.  

While processing the satellite data sets to produce the 9-km NSRDB, we identified that 
uncertainties in cloud properties are influenced by viewing geometry (e.g., satellite viewing 
angle), with the Geostationary Operational Environmental Satellite- (GOES)-East and GOES-
West satellites producing different results in some of the overlapping regions. This implies that it 
is necessary to consider the viewing geometry dependence of retrieved cloud properties from 
satellites when we are evaluating the solar forecasts. To address this concern, we produced the 9-
km NSRDB based on viewing angles of the GOES satellites, which differs from the current 
blending method used in the existing version of the NSRDB. 

Figure 2 exhibits the satellite viewing angle calculated from GOES-East on the 9-km WRF-
Solar grid. The black shadow denotes the area when the viewing angle of GOES-East is larger 
than 70°. We consider the viewing angle cutoff at 70° because angles beyond that cause serious 
off-nadir view angle effects for GOES-East. For the black shadow area, retrieved cloud 
properties from GOES-West are included in the processing of the 9-km NSRDB, and GOES-East 
data are used for the remaining parts of the domain.  

The following are the main steps of processing the 9-km NSRDB:  

1. We generate 2-km NSRDB in which the data sets obtained from GOES-East and GOES-
West satellites are processed through the Physical Solar Model (PSM) and combined by 
stitching at 105°W longitude. 

2. Another 2-km NSRDB is produced from Step 1 but with 123°W longitude as the line for 
merging the two satellites. 

3. A data aggregation is conducted to generate two sets of half-hourly, 9-km NSRDB 
(processed by 105°W and 123°W longitudes merging longitudes, respectively) from the 
native data sets (2 km). 
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4. We select data from the two sets of the 9-km NSRDB—which are referred to as the 9-
km_NSRDB_105°W and the 9-km_NSRDB_123°W, based on satellite viewing angle 
(Figure 2)—to produce the final products.  

Note that the 123°W and 105°W longitudes used in our method indicate the approximate 
longitude at the southwest corner of the WRF-Solar grid and the closest line to the center of 
common area of two satellites, respectively; thus, the 9-km_NSRDB_123°W includes a larger 
extent from the GOES-East data than the 9-km_NSRDB_105°W. In Step 4, we produce the final 
product by selecting data from the 9-km_NSRDB_123°W for the area where the viewing angle 
of GOES-East is smaller than 70° and data from the 9-km_NSRDB_105°W for the black shadow 
area (viewing angle >70°) in Figure 2. The newly processed NSRDB data sets have been used 
for the validation of the WRF-Solar models (Jiménez et al. 2022; Kim et al. 2021; Yang et al. 
2021b; Xie et al. 2022). 

 
Figure 2. Viewing angle (degrees) for the GOES-East satellite. The area where the viewing angle is 

larger than 70° is indicated by the dark red color. 

2.2 Evaluation of 9-km National Solar Radiation Database Against 
Ground Observations 

 

The 9-km, half-hourly NSRDB data sets were compared with ground-measured data. The ground 
observations obtained from seven Surface Radiation Budget (SURFRAD) network sites that 
provide 1-minute data were used to evaluate the 9-km NSRDB data set. Table 1 includes general 
information for locations of the ground measuremnts. The NSRDB global horizontal irradiance 
(GHI) data for the years 2016–2018 were analyzed for each measurement location. Averaged 
SURFRAD observations over a 30-minute time interval (e.g., averaged 1-minute observations 
from hh:15 to hh:45) were considered to assess the performance of the NSRDB GHI. Prior to 
comparing between the NSRDB and ground observations, we filtered the two data sets using the 
following criteria (Habte et al. 2017): 
 

• 0° < solar zenith angles < 85° 
• GHI > 0 W/m2  
• Missing values of ground observations are not included in the data sets. 
• Cloud types from the NSRDB are used to determine clear-/cloudy-sky conditions. 
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Table 1. Information on SURFRAD Sites 

Name Latitude (°N) Longitude (°W) Elevation (m) Time Zone 

Table Mountain, CO (TBL) 40.12 105.24 1689 UTC-7 

Bondville, IL (BON) 40.05 88.37 230 UTC-6 

Fort Peck, MT (FPK) 48.31 105.10 634 UTC-7 

Goodwin Creek, MS (GWN) 34.25 89.87 98 UTC-6 

Penn. State Univ., PA (PSU) 40.72 77.93 376 UTC-5 

Desert Rock, NV (DRA) 36.62 116.02 1007 UTC-8 

Sioux Falls, SD (SXF) 43.73 96.62 473 UTC-6 

Four statistical metrics were used for the evaluation of the NSRDB against ground-measured 
observations: mean absolute error (MAE) (W/m2), mean bias error (MBE) (W/m2), normalized 
MAE (%), and normalized MBE (%), which are determined as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑊𝑊/𝑚𝑚2) =
1
𝑁𝑁
�|𝑋𝑋 − 𝑂𝑂|
𝑁𝑁

 (2.1) 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑊𝑊/𝑚𝑚2) =
1
𝑁𝑁
�(𝑋𝑋 − 𝑂𝑂)
𝑁𝑁

 (2.2) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑀𝑀𝑀𝑀𝑀𝑀 (%) =
1
𝑁𝑁∑ |𝑋𝑋 − 𝑂𝑂|𝑁𝑁

𝑂𝑂�
× 100 (%)  

(2.3) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑀𝑀𝐵𝐵𝑀𝑀𝐵𝐵 (%) =
1
𝑁𝑁∑ (𝑋𝑋 − 𝑂𝑂)𝑁𝑁

𝑂𝑂�
× 100 (%) 

(2.4) 

where the ground-measured GHI is denoted by 𝑂𝑂, the NSRDB GHI is represented by 𝑋𝑋, 𝑁𝑁 is the 
total number of data pairs, and 𝑂𝑂� is the ground-measured GHI average over the 𝑁𝑁 values used in 
the calculation.  

The comparison of the NSRDB against the ground observations using global statistical metrics 
are presented in Figure 3. The normalized MAEs computed with all available data for the period 
from 2016–2018, indicated by 3-YRS in Figure 3b, show that the 9-km NSRDB provides more 
accurate GHI in clear-sky (MAE: 4%–8%) than cloudy-sky (MAE: 22%–28%) conditions. The 
normalized MBE for 3-YRS is less than 5% with respect to the GHI under all-sky, clear-sky, and 
cloudy-sky conditions for all stations; however, the 9-km NSRDB produces positive MBEs, 
indicating GHI overestimation (Figure 3d).  
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Figure 3. (a) MAE (W/m2), (b) normalized MAE (%), (c) MBE (BIAS) (W/m2), and (d) normalized MBE 
(BIAS) (%) of the 9-km NSRDB GHI computed with all available data for seven SURFRAD sites for 

the period from 2016–2018 

Comparing the statistical metrics of the 2018 NSRDB with the 2016 and 2017 NSRDB data sets 
demonstrates notable improvement in the MAE and MBE (figures 3a and 3c). The 2018 
NSRDB shows considerable reduction in the MAE of GHI across most of the seven SURFRAD 
sites compared to the 2016 and 2017 GHI data sets in all-sky conditions. The improvements in 

(a)

(b)

(c)

(d)
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the 2018 NSRDB are attributed to the use of quarter-hourly, 2-km data of cloud properties 
retrieved from GOES-16, which has a higher temporal and spatial resolution than cloud data 
obtained from GOES-13 (half-hourly, 4 km was used in producing the data sets for the 2016 and 
2017 NSRDB). Especially for the BIAS in cloudy-sky conditions, the 2018 NSRDB produces 
BIAS values near zero for all stations except the DRA site (Fig 3c). To summarize the results in 
Figure 3, we calculated the average of the MAE and BIAS for seven SURFRAD sites under 
three sky conditions (Figure 4). Improvements in the 2018 NSRDB are shown for all-sky and 
cloudy-sky conditions, indicated by the MAE reductions of approximately 13% (cloudy: 19%) 
and 14% (cloudy: 18%) compared to the 2016 and 2017 data sets, respectively (Figure 4a). The 
MAEs of the three data sets are similar under clear-sky conditions. Consistent with the results in 
figures 3c and 3d, the 2018 NSRDB shows good agreement with the ground measurements with 
an average BIAS of almost zero (Figure 4b).   

 
Figure 4. (a) MAE (W/m2) and (b) MBE (BIAS) (W/m2) of GHI averaged across seven SURFRAD sties 

for the 2016, 2017, and 2018 9-km NSRDB data sets 

  

(a)

(b)
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3 WRF-Solar Ensemble Prediction System 
Development 

3.1 Tangent Linear Analysis 

3.1.1 Theory of Tangent Linear and Automatic Differentiation Tool 
The first stage of the project framework in developing WRF-Solar EPS required a specially 
designed method using a tangent linear analysis to efficiently investigate uncertainties of WRF-
Solar variables in predicting clouds and solar irradiance (Yang et al. 2021a). To develop the 
tangent linear version of the modules for the sensitivity analysis, we selected six modules that 
affect solar irradiance and directly impact the representation of clouds. In particular, CLD3 
parameterization was newly added to the tangent linear analysis. (The original plan was to 
implement a sensitivity analysis for five WRF-Solar modules.)  

WRF-Solar physics modules selected for the tangent linear analysis: 

• Fast All-Sky Radiation Model for Solar Applications (FARMS) (Xie, Sengupta, and 
Dudhia 2016) 

• Thompson microphysics (Thompson, Rasmussen, and Manning 2004; Thompson et al. 
2008) 

• Mellor–Yamada–Nakanishi–Niino (MYNN) for the planetary boundary layer (PBL) 
(Nakanishi and Niino 2009) 

• Deng shallow cumulus system (Deng, Seaman, Kain 2003) 
• Unresolved clouds parameterization module based on relative humidity (CLD3)  
• Noah land surface model (LSM) (Chen and Dudhia 2001) 

The tangent linear models (TLMs) for each of the six WRF-Solar modules selected were 
developed using the Transformation of Algorithms in Fortran (TAF) (Talagrand 1991; Giering 
and Kaminski 1998) software. TAF is a tool for automatic differentiation. TAF is a source-to-
source transformation tool for functions written in Fortran 90/95 or Fortran 77. This means that 
TAF accepts functions defined by source code in either language, with a few restrictions. From 
this source code, TAF can generate derivative code that operates either in forward mode or in 
reverse mode. Via command line options, the user can influence the coding standard of the 
generated code. Applying TAF recursively, code for the evaluation of higher-order derivatives 
can be generated. For functions defined by a program, automatic differentiation constitutes an 
alternative way of providing derivatives. The source code of a program represents a 
decomposition of the underlying (composite) function into elementary functions. On the level of 
these elementary functions, derivatives (or local Jacobian matrices) can be derived according to 
simple rules. According to the chain rule, the product of all the local Jacobians represents the 
derivative of the composite function. These multiple products of local Jacobians can be evaluated 
in arbitrary order; any order will yield the same result, but the computational cost usually 
depends strongly on the order. If the evaluation works in the order given by the function, the 
derivative algorithm is said to operate in forward (or tangent linear) mode. If it works in the 
opposite order, the derivative algorithm is said to operate in reverse (or adjoint) mode. The 
computational resources needed in forward mode, similar to those of divided differences, are 
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proportional to the number of independent variables. In reverse mode, they are proportional to 
the number of dependent variables. 

The TAF software package enables the sensitivity analysis of complex functions that have been 
coded into Fortran. TAF generates tangent linear code of forward models (FWMs) that evaluates 
the derivative of the output variables with respect to the input variables, thereby providing the 
capability to analyze the sensitivity of the input variables to the output.  

For this project, TAF was used to analyze the sensitivity of six different WRF-Solar modules that 
influence clouds and solar irradiance. Among other outputs for the module, the TAF-generated 
TLM provides the derivative of output variables with respect to input variables, and this is the 
information we use for our analysis. Prior to transforming the numerical codes of WRF-Solar to 
the TLMs, we extracted the selected modules from WRF-Solar, the FWMs, for the efficient 
development of the TLMs and their subsequent sensitivity analysis of the output variables under 
a variety of conditions. 

The TLM is derived from the FWM. The FWM is defined as: 
𝐘𝐘 = 𝑀𝑀(𝐗𝐗) (3.1) 

where 𝑀𝑀 is the FWM (in our case, the WRF-Solar modules), 𝐗𝐗 is the 𝑛𝑛 × 1 vector of the input 
variables of 𝑀𝑀, and 𝐘𝐘 is the 𝑚𝑚 × 1 vector of the output variables of 𝑀𝑀. The tangent linear 
operator (𝐉𝐉), also called the Jacobian matrix, contains the partial derivatives of the FWM (Eq. 
3.1) with respect to the input variables, and it is given by: 

𝐉𝐉 =
𝜕𝜕𝐘𝐘
𝜕𝜕𝐗𝐗

(3.2) 

where 𝐉𝐉 is a 𝑚𝑚 × 𝑛𝑛 matrix, where 𝑚𝑚 and 𝑛𝑛 are the number of output variables and input 
variables, respectively. For the WRF-Solar modules, each component of 𝐉𝐉 in Eq. 3.2 estimates 
the influence of each input variable on the individual output variables. 

The validity of the TLM generated by TAF as a linear approximation of the nonlinear model, the 
FWM, should be verified. This is verified with a linearity test. The linearity test compares the 
ratio of the derivatives in Eq. 3.2 calculated with the FWM and the derivatives from the TLM, 
e.g., Xiao et al. (2008) and Zhang, Huang, and Pan (2013). The derivatives with the FWM are 
calculated using the derivative definition, which requires introducing perturbations to the input 
variables. The metric for the linearity test is determined as follows:  

                                    Φ(∆𝐗𝐗) =
‖𝑀𝑀(𝐗𝐗 + ∆𝐗𝐗) −𝑀𝑀(𝐗𝐗))‖

‖∆𝐗𝐗 ∙ 𝐉𝐉‖
,  lim
∆𝐗𝐗→0

Φ(∆𝐗𝐗) = 1                                 (3.3) 

where ∆𝐗𝐗 is a perturbation, 𝑀𝑀(𝐗𝐗 + ∆𝐗𝐗) and 𝑀𝑀(𝐗𝐗) are perturbed FWM and FWM outputs, and 𝐉𝐉 
is the sensitivity from the TLM (Eq. 3.2). In Eq. 3.3, as the perturbations decrease and approach 
zero, the ratio [Φ(∆𝐗𝐗)] should converge to 1 if the TLM has been correctly generated by TAF. 
The input variables of the WRF-Solar modules have quite different characteristic values, e.g., 
5·10-3kg/kg for water vapor mixing ratio and 300K for temperature; thus, reasonable 
perturbations, which are small enough to calculate the derivatives with the FWM, are applied to 
input variables in this linearity test. The model state inputs (𝐗𝐗) calculated from the WRF-Solar 
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simulations are used because this builds confidence in the validation of the TLMs for realistic 
scenarios under all-sky conditions (see Section 3.1.2).  

Table 2 shows the results of the linearity test for the six WRF-Solar modules. Φ(∆𝐗𝐗) was 
repeatedly calculated with all perturbed input variables of the individual modules and with 128-
bit precision. Clearly, Φ(∆𝐗𝐗) converges to 1 as the magnitude of the perturbations is reduced. 
This indicates that the TLMs accurately approximate the derivatives of the output variables with 
respect to the input variables. We also performed the test by perturbing the input variables 
individually and found that in all cases the results converged, similar to the results shown in 
Table 2. In summary, the linearity tests were conducted to validate the accuracy of the TLM by 
comparing the results from the perturbations of the FWM. 

Table 2. Validation Results of TLMs Developed for WRF-Solar Modules 

Relative Perturbation 

Perturbation 
Φ(∆𝐗𝐗) 

FARMS Thompson 
Microphysics MYNN-PBL Deng Shallow 

Cumulus CLD3 Noah LSM 

0.10000000000000000∙X 
0.01000000000000000∙X 
0.00100000000000000∙X 
0.00010000000000000∙X 
0.00001000000000000∙X 
0.00000100000000000∙X 
0.00000010000000000∙X 
0.00000001000000000∙X 
0.00000000100000000∙X 
0.00000000010000000∙X 
0.00000000001000000∙X 
0.00000000000100000∙X 
0.00000000000010000∙X 
0.00000000000001000∙X 
0.00000000000000100∙X 
0.00000000000000010∙X 
0.00000000000000001∙X 

1.00382202657812190 
1.00112431685746888 
1.00002193066539698 
1.00000219754714054 
1.00000021979951057 
1.00000002198039901 
1.00000000219804438 
1.00000000021980448 
1.00000000002198044 
1.00000000000219804 
1.00000000000021980 
1.00000000000002198 
1.00000000000000219 
1.00000000000000022 
1.00000000000000002 
1.00000000000000000 
0.99999999999999997 

8.40532778431445196 
3.58213603506903987 
0.98876942531880101 
0.99995285758007716 
0.99999322280220673 
0.99999930093096164 
0.99999992987887805 
0.99999999298574490 
0.99999999929855306 
0.99999999992985509 
0.99999999999298551 
0.99999999999929855 
0.99999999999992986 
0.99999999999999299 
0.99999999999999930 
0.99999999999999993 
0.99999999999999998 

0.06686879658617226 
0.39812514470897838 
0.65799013982880905 
0.95825212484169588 
0.99579498903314501 
0.99957929378280519 
0.99995792742856240 
0.99999579272346088 
0.99999957927215227 
0.99999995792721332 
0.99999999579272135 
0.99999999957927217 
0.99999999995792725 
0.99999999999579276 
0.99999999999957931 
0.99999999999995797 
0.99999999999999581 

0.09818640407425982 
0.98148044148417833 
2.73987449915886884 
0.99879600028879147 
1.00059113905074119 
1.00007797560531154 
1.00000798529004398 
1.00000080044709553 
1.00000008009434688 
1.00000000804037734 
1.00000000083479343 
1.00000000011423317 
1.00000000004217712 
1.00000000003497152 
1.00000000003425096 
1.00000000003417890 
1.00000000003417169 

0.07946947745956231 
0.62022510991009561 
1.26337810990238063 
0.98030439222280128 
0.99794703609719434 
0.99979381727280132 
0.99997937280779208 
0.99999793719152780 
0.99999979371826021 
0.99999997937181710 
0.99999999793718162 
0.99999999979371816 
0.99999999997937182 
0.99999999999793718 
0.99999999999979372 
0.99999999999997937 
0.99999999999999793 

1.95871019138368918 
1.07012301126729319 
1.00670638148017697 
1.00066760665367331 
1.00006673038986377 
1.00000667274218920 
1.00000066727717477 
1.00000006673367082 
1.00000000667935040 
1.00000000067391866 
1.00000000007337549 
1.00000000001332117 
1.00000000000731574 
1.00000000000671520 
1.00000000000665515 
1.00000000000664915 
1.00000000000664856 

3.1.2 Method for Quantifying Uncertainties of WRF-Solar Variables in Tangent 
Linear Analysis 

To investigate uncertainties of the output variables with respect to the uncertainties in the input 
variables of the parameterizations under investigation, we first identified a large set of 
atmospheric states with the input variables, 𝐗𝐗, to run the TLMs. For these purposes, we used 
both WRF-Solar simulations and satellite-derived data.  

The satellite-derived data were used only for providing the input variables to the FARMS 
module. For FARMS, the analysis was performed independently for clear-sky and cloudy-sky 
conditions. Data obtained from the NSRDB (Sengupta et al. 2018), which provides gridded 
observations at a 4-km horizontal resolution for each 30-minute interval, were used for the 
FARMS input variables. We extracted 2017 CONUS data for nine parameters—solar zenith 
angle, surface pressure, surface albedo, Ångström wavelength exponent, aerosol optical depth 
(AOD), asymmetry factor of aerosol, total precipitable water, cloud optical depth, and cloud 
effective radius—which correspond to FARMS inputs. The data were processed to determine the 
minimum, maximum, and percentiles, and the information was used to generate cases for clear-
sky and cloudy-sky conditions for the FARMS sensitivity analysis. For the clear-sky condition, 
8,100 input vectors (𝐗𝐗) were generated with various combinations of input parameters given the 
constraint of the lower 5% and the upper 95% percentiles. The cloud optical depth and the cloud 
effective radius were set to zero in this set of input vectors. In general, uncertainties in 
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calculating the solar irradiance are larger in cloudy regions than the regions where no clouds 
exist; therefore, we examined more cloudy cases in the sensitivity analysis of FARMS. For 
cloudy-sky conditions, 262,144 input vectors were considered, with cloud optical depths and 
effective radius being positive quantities. 

The input variables to the other WRF-Solar modules were obtained from a WRF-Solar 
simulation. The WRF-Solar domain covered CONUS at a 9-km horizontal grid spacing. The 
National Centers for Environmental Prediction Global Forecast System (0.25° x 0.25°; 3-hourly 
intervals) forecast data were used for the initial and boundary conditions. The forecast spanned 
the period from 0000 UTC April 15–0000 UTC April 16. The forecast provided the input 
variables to the TLMs of the other five parameterizations under this study. 

The sensitivities from the TLMs (𝐉𝐉) were used to calculate the uncertainties in the output 
variables. In this derivation, we used the derivatives of the output variables with respect to the 
input variables provided by the TLMs (𝐉𝐉) and estimations of the uncertainties in the input 
variables (see 𝑋𝑋𝐸𝐸 in Eq. 3.4). This procedure serves two purposes: (1) It provides us realistic 
weighting based on estimates of input uncertainty, and (2) it removes dependence on the input 
units (Yang et al. 2019) and allows a direct intercomparison of the importance of particular input 
variables. For example, GHI is very sensitivity to the solar zenith angle; however, the uncertainty 
in calculating the solar zenith angle is small, which leads to the small impact of the uncertainty 
of solar zenith angle on the GHI estimation.  

By multiplying the sensitivity calculated from the TLM (Eq. 3.2) by the uncertainty in the input 
variable, we obtain the uncertainty in the output variable: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
∙ 𝑋𝑋𝐸𝐸 =  𝑌𝑌𝑈𝑈  (3.4) 

where 𝑋𝑋 and 𝑌𝑌 are the input and the output variables of the WRF-Solar module, respectively; 𝑋𝑋𝐸𝐸 
is the representative value of the uncertainty in the input variable;  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 is the sensitivity or the 

partial derivate from the TLM; and 𝑌𝑌𝑈𝑈 is the uncertainty of the output variable resulting from the 
uncertainty in the input variable. Note that there is a linear relationship between the uncertainty 
in the output variables (𝑌𝑌𝑈𝑈) and the uncertainty in the input variables (𝑋𝑋𝐸𝐸). If the uncertainty of 
the input variables is increased (or reduced) by a factor of two, then the uncertainty in GHI 
estimation, for example, will be doubled (or halved).  

Perfectly representing the actual uncertainty of the input variables for individual WRF-Solar 
modules is difficult because of the limited availability of the observations for all meteorological 
variables and for the vertical layers of the WRF-Solar model. In this study, the uncertainties in 
the input variables, 𝑋𝑋𝐸𝐸, are estimated using three strategies: (1) an error determined based on our 
experience; (2) a standard deviation of the input variables, 𝑋𝑋, calculated with the 1-day WRF-
Solar simulation; and (3) the input value itself (i.e., 𝑋𝑋𝐸𝐸 = 𝑋𝑋). Even though this methodology is 
very basic, our choice of the uncertainty estimation with three approaches considers different 
characteristics for the input variables and yields approximately the representative value of the 
input errors without actual observations.  
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In the first approach, the uncertainties were determined based on our experience. This approach 
involves a certain degree of subjectivity, but it takes advantage of the error estimation for some 
two-dimensional variables where the representative value of the error can be inferred empirically 
without actual measurements. This method was also used for the three-dimensional variables, 
which have low variability over whole atmospheric layers, in which case the uncertainty was 
estimated by using an absolute change as a percentage of the value of the input variable in the 
vertical layers (e.g., 10% of 𝑋𝑋 as 𝑋𝑋𝐸𝐸).  

In the second approach, the uncertainties were estimated by the standard deviation of the input 
variable. We calculated the standard deviation at each vertical layer independently. For each 
vertical layer, the standard deviation was computed with all predicted model state values across 
the model grid (CONUS) and the simulation period (1 day). Additionally, the uncertainty of 
specific variables was estimated for the ocean grid points separately to further assess the model 
state uncertainties. This approach is used for the variables that have relatively higher variability 
over land in regions of the complex terrain, such as water vapor, Exner pressure, and pressure.  

In the third approach, we assumed that the uncertainties are the values of the input variables. 
This method might be suitable if the variability of the input variable is high across the vertical 
layers. 

For this study, we selected the appropriate combinations of error estimation schemes for each 
input variable and each WRF-Solar module. Note that we opted to use the first method in 
FARMS because it was possible to estimate the uncertainties for all input variables based on our 
experience with WRF-Solar. It was not possible to infer the input uncertainties for the other 
WRF-Solar modules that include atmospheric profiles using only the first method; thus, we 
adopted the three methodologies together, in which the uncertainties of the input variables can be 
estimated across vertical layers. Although more sophisticated and objective methods could be 
applied to infer the representative value of errors for the input variables, we chose basic methods 
because of the simplicity of their application because of the limited availability of observations 
that can be used to estimate the uncertainties in the input variables. 

3.1.3 Identification of Key Variables from Six WRF-Solar Modules 

3.1.3.1 Fast All-Sky Radiation Model for Solar Applications 
The impact of the uncertainty of the input variables on the output variables was analyzed for the 
six WRF-Solar modules independently. For FARMS, the uncertainty of GHI and direct normal 
irradiance (DNI) was analyzed with respect to the uncertainties in seven input variables for clear-
sky and six input variables for cloudy-sky conditions, respectively (Figure 5). In clear-sky 
conditions, GHI was highly sensitive to uncertainties in surface albedo (albdo), AOD, total 
precipitable water (w), and aerosol asymmetry factor (g), and it was less sensitive to uncertainty 
in surface pressure (p) (Figure 5a). The uncertainty in surface albedo produced the highest 
positive uncertainties across all scenarios for GHI under clear-sky conditions because an increase 
in surface albedo increases the magnitude of the backscattered radiation from the aerosols to the 
land surface. For DNI, all cases of AOD and Ångström wavelength exponent (alpha) produced 
negative uncertainties, indicating that an increase in the magnitude of the variables leads to a 
decrease in DNI. Under cloudy-sky conditions, GHI exhibited its notable uncertainties regarding 
uncertainties in the variables of cloud optical depth (e.g., qc and qs); this is because of the 
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transmittances of the cloud for direct incident radiation/direct outgoing radiation and direct 
incident radiation/diffuse outgoing radiation, which are mainly governed by cloud optical depth 
(Figure 5b), whereas DNI brings its uncertainties near zero for cloud optical depth and cloud 
effective radius (re_qc, re_qi, and re_qs). The small uncertainty of DNI to uncertainty in cloud 
optical depth occurred because nearly all DNI is attenuated for most clouds and changes in cloud 
optical depth can no longer influence changes is DNI. In the case of cloud effective radius, the 
same holds true because in most cases, the cloud is sufficiently optically thick to scatter all direct 
radiation irrespective of the size of the cloud particles.  

 
Figure 5. Uncertainty in (a), (b) GHI and (c), (d) DNI with respect to uncertainty in the main input 
variables for FARMS under clear-sky and cloudy-sky conditions. The 𝐝𝐝(𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕) in the vertical 

axis represents 𝐘𝐘𝐔𝐔 in Eq. 3.4. The Inner box indicates the lower quartile, the median, and the upper 
quartile of data; and the lower and upper bars represent the lower 10% and the upper 90% of the 

data, respectively. 

3.1.3.2 Thompson Microphysics 
The analysis of sensitivity of the Thompson microphysics to input variable uncertainty was 
performed using 6,480 input vectors from a 1-day WRF-simulation (see Section 3.1.2). We 
focused on the output variables associated with the cloud formation and dissipation. In particular, 
we analyzed uncertainties of the six vertical profiles of cloud mixing ratio and effective particle 
size for liquid water, ice, and snow with respect to uncertainties in 11 input variables (Figure 6). 
The mixing ratio (QC) and effective radius (RE_QC) of cloud water was sensitive to 
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uncertainties in the amount of water vapor (qv), temperature (th), Exner pressure (pii = � 𝑝𝑝
𝑝𝑝0
�
𝑅𝑅𝑑𝑑
𝑐𝑐𝑝𝑝 =

𝑇𝑇
𝜃𝜃
), and pressure (p). The cloud ice mixing ratio (QI), effective radius (RE_QI), and number 

concentration (not shown) were also sensitive to uncertainties in water vapor and temperature. 
For effective radii for water and ice, the negative uncertainty for the temperature denotes that 
cloud condensation decreases with increasing temperature. In addition, the cloud ice number 
concentration (ni) had negative uncertainties across all cases for cloud ice mixing ratio. This 
means that as ice number concentration decreases, the effective size of ice increases. The 
uncertainty in the effective radius of snow (RE_QS) was highly sensitive to the uncertainty in the 
snow mixing ratio (QS). Most hydrometeor mixing ratios tend to be more sensitive to their own 
values than to others.  
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Figure 6. Same as Figure 5 but for uncertainty in (a), (c), (e) mixing ratio and (b), (d), (f) effective 
radius of cloud with respect to uncertainties in the main input variables for the Thompson 

microphysics scheme 

3.1.3.3 Mellor–Yamada–Nakanishi–Niino Planetary Boundary Layer 
Figure 7 shows the uncertainty results for the sensitivity analysis of the MYNN-PBL scheme. 
Four output variables of the MYNN-PBL related to boundary layer clouds, which dominate 
uncertainties in predicting solar irradiance, were examined: cloud water (QC_BL) and cloud 
fraction (CLD_FRA) from the boundary layer, tendency variables for temperature (TH 
tendency), and water vapor (QV tendency). The key input variables responsible for the largest 
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uncertainties in predicting cloud water and cloud fraction are air temperature (th) and water 
vapor mixing ratio (qv). Uncertainties in the tendencies of temperature and water vapor were 
sensitive to uncertainties in the air density (rho) and turbulent kinetic energy (qke), respectively. 

 
Figure 7. Same as Figure 5 but for uncertainty in (a) cloud water from the boundary layer, (b) cloud 

fraction from the boundary layer, (c) tendency of temperature, and (d) tendency of water vapor 
with respect to uncertainties in the main input variables for the MYNN-PBL scheme 

3.1.3.4 Deng Shallow Cumulus System  
The analysis of the sensitivity of the Deng shallow cumulus scheme was performed to identify 
the input variables that cause the largest uncertainties in three output variables: effective cloud 
fraction for radiation (ca_rad), effective cloud water for radiation (cw_rad), and tendency of 
water vapor (rqvshten). Note that the “effective” cloud fraction proposed by Deng, Seaman, and 
Kain (2003) represents the net effect of subgrid clouds on radiation; the effective cloud water is 
calculated with the sum of the grid-averaged condensed water content and the resolved scale of 
cloud water mixing ratio; and the tendency of water vapor is estimated by feedback of the 
convective tendency to the resolvable-scale cloud in the Deng shallow cumulus scheme. Figure 
8 shows the uncertainty results calculated with all cases from the 1-day WRF simulation for the 
three output variables. This confirms that temperature (t) and two mixing ratio variables of water 
vapor (qv) and cloud water (qc) had a relatively large width distribution compared with the other 
variables for effective cloud fraction for radiation. The uncertainty of the cloud water mixing 
ratio produced the highest impact on the effective cloud water for radiation. The uncertainty of 
the tendency of water vapor was found to be sensitive to uncertainties in vertical velocity (w) as 
well as to water vapor mixing ratio (qv). 
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Figure 8. Same as Figure 5 but for uncertainty in (a) effective cloud fraction for radiation, (b) 

effective cloud water for radiation, and (c) tendency of water vapor with respect to uncertainty in 
the main input variables for the Deng shallow cumulus scheme 

3.1.3.5 CLD3 
The CLD3 scheme was designed to capture unresolved clouds based on the temperature and 
moisture profiles of each grid. It was also analyzed to identify the input variables responsible for 
the largest uncertainties in predicting subgrid-scale cloud fraction (CLDFRA), cloud water 
mixing ratio (QC), and cloud ice mixing ratio (QI). The analysis showed similar results from the 
Deng shallow cumulus scheme because subgrid-scale clouds are predominantly controlled by 
moisture and temperature. It is evident that uncertainties in the selected output variables of 
CLD3 are sensitive to uncertainties in water vapor mixing ratio (qv) and temperature (t) (Figure 
9).  
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Figure 9. Same as Figure 5 but for uncertainty in (a) cloud fraction, (b) cloud water mixing ratio, 

and (c) cloud ice mixing ratio with respect to uncertainties in the main input variables for the 
CLD3 unresolved cloud fraction scheme 

3.1.3.6 Noah Land Surface Model 
The sensitivity analysis of the Noah LSM was conducted for sensible heat flux (HFX) and latent 
heat flux (LH), which influence cloud formation and evolution by the land surface interactions. 
The goal was to identify the input variables that caused the largest uncertainties in the surface 
fluxes. In Figure 10, uncertainties in temperature variables (T3D and TSLB, temperature at first 
layer and soil temperature) exhibit high impact across all scenarios on uncertainties in sensible 
heat flux, which is an expected outcome of the sensitivity test. The soil moisture (SMOIS) and 
water vapor mixing ratio (QV3D) were confirmed as important variables that cause high 
uncertainties to the latent heat flux. In the Noah LSM scheme, the latent heat flux is calculated as 
a function of the direct soil evaporation, canopy water evaporation, total plant transpiration, and 
sublimation from snowpack. The soil moisture and water vapor mixing ratio predominantly 
affect the change in the direct soil evaporation and are thus applicable to the stochastic 
perturbations of input variables in the Noah LSM.  
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Figure 10. Same as Figure 5 but for uncertainty in (a) sensible heat flux and (b) latent heat flux 

with respect to uncertainties in the main input variables for the Noah LSM scheme 

3.2 Development of WRF-Solar Capabilities to Enable Perturbation of 
Variables 

3.2.1 Variable Selection to Perturb 
Variables to perturb are selected based on our sensitivity analysis for the six WRF-Solar 
modules. Table 3 shows 14 selected variables and the locations where they will be perturbed 
inside the six modules. Perturbation types can be controlled in two ways, with the first one 
assigning an absolute value and the second using a relative percentage of the variable value. 
Perturbations of relative percentage are applied to the first trial. 
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Table 3. Selected Variables to Perturb in the Six WRF-Solar Modules 

# Variable Name in 
Code Location Perturb 

Type 

1 Albedo ALBEDO Inside FARMS % 

2 Aerosol optical depth  AOD5502D Inside FARMS % 

3 Angstrom wavelength 
exponent Angexp2d Inside FARMS % 

4 Asymmetry factor  Aerasy2d Inside FARMS % 

5 Water vapor mixing 
ratio QVAPOR Inside FARMS, MYNN, Thompson, 

Noah, Deng, and Icloud3 % 

6 Cloud water mixing 
ratio QCLOUD Inside FARMS, MYNN, Thompson, and 

Deng % 

7 Ice mixing ratio QICE Inside Thompson % 

8 Snow mixing ratio QSNOW Inside FARMS and Thompson % 

9 Ice number 
concentration NI Inside Thompson % 

10 Potential temperature Theta Inside MYNN, Noah, Deng, and Icloud3 % 

11 Turbulent kinetic 
energy  QKE Inside MYNN % 

12 Soil moisture content  SMOIS Inside Noah % 

13 Soil temperature  TSLB Inside Noah % 

14 Vertical velocity W Inside Deng % 

3.2.2 Stochastic Perturbations 
We specify the characteristics of the stochastic perturbations for each variable using a text file 
(Kim et al. 2020). We have updated WRF-Solar to generate multiple stochastic perturbations 
according to this text file, and the perturbations are stored in the array pert3d(i,k,j,n). The 
perturbations in pert3d are linked to the six WRF-Solar modules, which are the FARMS 
radiation scheme, the Thompson cloud microphysics scheme, the Noah LSM scheme, the 
MYNN-PBL scheme, the Deng shallow cumulus scheme, and the CLD3 unresolved cloud 
fraction scheme, respectively. 

Our strategy for introducing stochastic perturbations is summarized in Table 4. Standard 
deviation (Std) indicates the size of the perturbation. This number is a relative percentage of each 
value of the variable. Lambda and Tau are the length scale in meters and the timescale in seconds 
of each perturbation, respectively. Considering random perturbations as a Gaussian distribution, 
Cut_off number 3 means that 3% of the edges are excluded. The seed controls which random 
numbers to start with. Vert_s provides information on the variable dimension. Vert_s number 0 
or 1 means that the dimension of each variable is 2 or 3, respectively. 
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Table 4. Default Settings for Adding Stochastic Perturbations to WRF-Solar 

# Variable Std Lambda (m) Tau (s) Cut_off Seed Vert_s 

1 ALBEDO 0.10 100000.0 86400.0 3.0 17 0 

2 AOD5502D 0.25 100000.0 3600.0 3.0 18 0 

3 Angexp2d 0.10 100000.0 3600.0 3.0 19 0 

4 Aerasy2d 0.05 100000.0 3600.0 3.0 20 0 

5 QVAPOR 0.05 100000.0 3600.0 3.0 21 1 

6 QCLOUD 0.10 100000.0 3600.0 3.0 22 1 

7 QICE 0.10 100000.0 3600.0 3.0 23 1 

8 QSNOW 0.10 100000.0 3600.0 3.0 24 1 

9 NI 0.05 100000.0 3600.0 3.0 25 1 

10 Theta 0.001 100000.0 3600.0 3.0 26 1 

11 QKE 0.05 80000.0 600.0 3.0 27 1 

12 SMOIS 0.10 80000.0 21600.0 3.0 28 1 

13 TSLB 0.001 80000.0 21600.0 3.0 29 1 

14 W 0.10 80000.0 21600.0 3.0 30 1 

Figure 11 shows the distribution of the perturbations for two variables, which are AOD and 
turbulent kinetic energy. We can check the perturbation length scales and sizes from this 
example. The standard deviation of the perturbation for the AOD is 0.25. It indicates that a 
maximum of 25% of the AOD can be added to or subtracted from the original value. The length 
scale of the AOD is 100 km and that of the turbulent kinetic energy is 80 km. The timescale of 
the AOD is 1 hour, and that of the turbulent kinetic energy is 10 minutes. It means that 
perturbations are implemented more frequently for turbulent kinetic energy.  
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(a) 

 
(b) 

Figure 11. Distributions of perturbations for (a) AOD and (b) turbulent kinetic energy 

3.2.3 Test of Stochastic Perturbation to Generate Ensemble Members from the 
Fast All-Sky Radiation Model for Solar Applications 

The stochastic perturbations for seven variables—ALBEDO, AOD5502D, Angexp2d, Aerasy2d, 
QVAPOR, QCLOUD, and QSNOW—were implemented in the FARMS scheme. We ran two 
WRF-Solar simulations, one without perturbations and the other with perturbations, to see if the 
implemented perturbations work as expected. Simulated GHI were compared to SURFRAD 
observations, and results show that the GHI simulation with perturbations better match the GHI 
observation than the simulation without perturbations, especially for cloudy time periods (Figure 
12 and Figure 13).  
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Figure 12. Time series of observed and simulated GHI at the TBL SURFRAD site in Boulder, 

Colorado (40.13°N, 105.24°W). The green and red lines indicate the WRF-Solar simulations without 
and with perturbations, respectively. 

Figure 13 shows the simulated GHI distribution and differences when perturbations were added 
to the FARMS radiation scheme on 15 UTC April 16, 2018, over the CONUS domain. The 
difference in GHI tends to increase significantly in cloudy areas near noon. 
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(a) 

 
(b) 

Figure 13. (a) Simulated GHI distribution on 15 UTC April 16, 2018, and (b) differences in GHI 
simulations without and with perturbations (GHI_wh_pert – GHI_wo_pert) 

Five ensemble members of WRF-Solar were tested in a preliminary version of the WRF-Solar 
ensemble system, and simulated GHI were compared to the TBL SURFRAD site (Boulder, 
Colorado) observations (Figure 14). The simulation time is from 06 UTC April 15, 2018, to 06 
UTC April 17, 2018. Results show that the impact of perturbations on five ensemble members 
was more pronounced in cloudy conditions. 



25 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 14. Observed and simulated GHI from the five ensemble members of WRF-Solar at the TBL 

SURFRAD site in Boulder, Colorado (40.13°N, 105.24°W) from 06 UTC April 15, 2018, to 06 UTC 
April 17, 2018 

3.2.4 Implementation of Stochastic Perturbations for Six WRF-Solar Modules 
The stochastic perturbations for seven variables—albedo, AOD (AOD5502D), angstrom 
wavelength exponent (Angexp2d), asymmetry factor (Aerasy2d), water vapor (QVAPOR), cloud 
water (QCLOUD), and snow (QSNOW)—were implemented for the FARMS scheme. We 
implemented a perturbation of a single variable in the WRF-Solar model and ran five ensembles 
to confirm that the perturbations work as expected. All the steps were repeated for every 
variable, and then we implemented seven perturbations together at the end.  

The NSRDB observations are used for the validation of the WRF-Solar forecast results. The next 
subsection (Section 3.2.5) provides a verification of the satellite-derived data with SURFRAD 
observations.  

Differences in the ensemble mean to the NSRDB (��𝑓𝑓̅ − 𝑁𝑁𝑜𝑜𝑜𝑜�2 ) observations were calculated to 
estimate the model forecast error compared to observations for the five ensemble runs. Figure 
15a shows those differences for the experiment that added perturbations to all the selected 
variables from the FARMS scheme at a specific forecast time (1530 UTC April 16, 2018). 

Standard deviations for the five ensemble forecasts (� 1
𝑁𝑁−1

∑ (𝑓𝑓𝑖𝑖 − 𝑓𝑓̅)2𝑁𝑁
𝑖𝑖=1  ) were also calculated to 

estimate the ensemble spread. Figure 15b displays these scores. 
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 (a) (b) 

Figure 15. (a) Differences in the ensemble mean to the NSRDB and (b) standard deviations for five 
ensemble forecasts on 1530 UTC April 16, 2018, when perturbations are added to the FARMS 

scheme 

Stochastic perturbations were added to four variables in the Deng scheme: water vapor, cloud 
water, temperature (Theta), and vertical wind (W). The development process followed the same 
steps as the FARMS’s development. The differences in the ensemble means and the standard 
deviations of the five ensembles were also compared to the NSRDB (Figure 16). 

  
(a)                                                                                             (b) 

Figure 16. Same as Figure 15 except perturbations are added to the Deng shallow cumulus 
scheme 

Stochastic perturbations were added to four variables in the MYNN PBL scheme: water vapor, 
cloud water, temperature (Theta), and turbulent kinetic energy (qke). Again, the development 
process followed same steps as the FARMS’s development. The differences in the ensemble 
means and the standard deviations of the five ensembles were compared to the NSRDB 
observations (Figure 17).  



27 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

  
 (a) (b) 

Figure 17. Same as Figure 15 except perturbations are added to the MYNN PBL scheme 

Stochastic perturbations were added to four variables in the Noah LSM scheme: water vapor, 
temperature (Theta), soil moisture (SMOIS), and soil temperature (TSLB). The development 
process followed the same steps as the FARMS’s development. The differences in the ensemble 
means and the standard deviations of the five ensembles were compared to the NSRDB 
observations (Figure 18).   

 
(a)                                                                                              (b) 

Figure 18. Same as Figure 15 except perturbations are added to the Noah land surface scheme 

Stochastic perturbations were added to five variables in the Thompson microphysics scheme: 
water vapor, cloud water, cloud ice (QICE), snow (QSNOW), and ice number concentration 
(Ni). The development process followed the same steps as the FARMS’s development. The 
differences in the ensemble means and the standard deviations of the five ensembles were 
compared to the NSRDB observations (Figure 19).   
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 (a) (b) 

Figure 19. Same as Figure 15 except perturbations are added to the Thompson microphysics 
scheme 

Stochastic perturbations were added to two variables in the CLD3 scheme: water vapor and 
temperature. The development process followed the same steps as the FARMS’s development. 
The differences in the ensemble means to the observations and standard deviations of the five 
ensembles were compared to the NSRDB observations (Figure 20).  

  
 (a) (b) 

Figure 20. Same as Figure 15 except perturbations are added to the CLD3 sub-grid cloud scheme 

Finally, stochastic perturbations were added to all 14 variables in the six WRF-Solar physics 
modules. The development process followed the same steps as the FARMS’s development. The 
differences in the ensemble means to the observations and standard deviations of the five 
ensembles were also compared to the development of adding perturbations to all schemes 
(Figure 21).  
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 (a) (b) 

Figure 21. Same as Figure 15 except perturbations are added to all of six physics schemes 

3.2.5 Validation of National Solar Radiation Database for Ensemble Evaluation 
The NSRDB is a satellite-based solar radiation database of observations (Sengupta et al. 2018). 
This is a public data set that has been created for the last 21 (1998–2018) years and provides GHI 
and DNI at a 4-km horizontal resolution at 30-minute intervals for the CONUS region. These 
data show good agreement with surface observations, with mean percentage biases within 5% 
and 10% for GHI and DNI, respectively. The NSRDB observations were interpolated to the 9-
km WRF-Solar grid resolution to validate the forecast results.  

Figure 22 shows a comparison of GHI observations from the NSRDB and SURFRAD and the 
forecast results of WRF-Solar_V1 during 06 UTC April 15, 2018, to 06 UTC April 17, 2018, at 
seven SURFRAD sites. The two observational data sets generally show good agreement for this 
case. The difference between the NSRDB and SURFRAD is significantly smaller than the bias 
of the WRF-Solar forecast, which indicates that the NSRDB observation can be used for the 
model evaluation. When we look at the BON (Bondville, Illinois) and PSU (Pennsylvania State, 
Pennsylvania) sites (figures 22b and 22f), those locations are cloudy for both days. For cloudy 
conditions, it is observed that the NSRDB and SURFRAD observations agree well. The WRF-
Solar GHI forecast was significantly underestimated in the SXF (Sioux Falls, South Dakota) 
region because the model predicts a larger area of thick cloudy conditions than the observations 
(Figure 22d). Figure 22f also shows that the WRF-Solar_V1 forecast overpredicts the cloud 
optical thickness but captures the cloud timing well.  
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 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 

 
(g) 

Figure 22. Time series of GHI observations from SURFRAD and the NSRDB and GHI forecasts 
from WRF-Solar_V1 during 06 UTC April 15, 2018, to 06 UTC April 17, 2018, at seven SURFRAD 

sites 
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3.2.6 WRF-Solar Ensemble Forecast Result 

3.2.6.1 Result for One-Day-Ahead Forecast 
The WRF-Solar ensemble forecast using 10 ensembles was run from 06 UTC April 15, 2018, to 
06 UTC April 17, 2018. Figure 23 compares the forecasted GHI and SURFRAD observations at 
the TBL site. The 10 ensemble members show different GHI distributions, and the impact of the 
stochastic perturbations was more pronounced in cloudy conditions. 

 
Figure 23. Observed and simulated GHI from the 10 ensemble members of WRF-Solar at the TBL 
SURFRAD site in Boulder, Colorado (40.13°N, 105.24°W) from 06 UTC April 15, 2018, to 06 UTC 

April 17, 2018 

Figure 24 compares the GHI forecasts from WRF-Solar_V1 and WRF-Solar ensemble forecasts 
against NSRDB observations on 1530 UTC April 16, 2018. The WRF-Solar forecast tends to 
produce more clouds than the observations. The results are promising because cloud distributions 
from the WRF-Solar ensemble move closer to the observations by reducing some of the clouds. 
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(a) NSRDB (W/m2) 

 
(b) WRF-Solar_V1 (W/m2) 

 
(c) WRF-Solar_Ensemble (W/m2) 

Figure 24. (a) GHI observations on 1530 UTC April 16, 2018, and predicted GHI from the (b) WRF-
Solar_V1 and (c) WRF-Solar ensembles 
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3.2.6.2 Results for Seven Sets of Day-Ahead Forecasts Sampled from April 2018 
The forecast skills of each member of the WRF-Solar stochastic ensemble were investigated 
using the NSRDB for April 2018. Forty-eight-hour forecasts had been performed every 4 days 
during April 2018 (seven samples) initialized at every 06 UTC. 

Figure 25 shows the bias and MAE for WRF-Solar Version 1 (V1), WRF-Solar V1 with 
coupling FARMS (couple_farms = true), and 10 stochastic ensemble members. It shows that 
coupling of FARMS GHI to the Noah land surface model has a positive impact on the GHI 
forecast. Ten ensembles show a similar bias and MAE during the forecast hours, and the bias and 
MAE are less than WRF-Solar. The perturbations in five physics schemes seem to play a positive 
role in the GHI predictions. 

 
(a) 

 
(b) 

Figure 25. (a) Bias and (b) MAE of the GHI calculated with the 10 WRF-Solar stochastic ensemble 
forecasts and WRF-Solar V1 over the CONUS domain for the April 2018 NSRDB observations 

Ensemble No.
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3.2.6.3 Analysis of Stochastic Ensemble Using Different Ensemble Sizes 
Three different numbers of stochastic ensembles are tested and evaluated in terms of root meant 
square error (RMSE), spread, bias, rank histogram, and continuous rank probability score. 

Forty-eight-hour forecasts were performed for every day during April 2018 (30 samples) 
initialized at every 06 UTC. The forecast results of the second day are evaluated using 7 NSRDB 
observations. When using 20 ensemble members, the RMSE, spread, and bias scores are slightly 
better, but the results are generally similar as when using 10 or 5 ensemble members (figures 26, 
27, and 28).  

 
(a) 

 
(b) 

Figure 26. (a) RMSE (solid line) and spread (dashed line) from 20 (black), 10 (red), and 5 (blue) 
stochastic ensemble forecasts. (b) Bias from 20 (black), 10 (red), and 5 (blue) stochastic ensemble 

forecasts 
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(a) 

 
(b) 

 
(c) 

Figure 27. Rank histogram from (a) 20, (b) 10, and (c) 5 members of the stochastic ensemble 
forecasts 
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Figure 28. Continuous rank probability score as a function of the lead time from 20 (black), 10 

(red), and 5 (blue) members of the stochastic ensemble forecasts 
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3.2.7 WRF-Solar Experiments Using Different Physics and a Stochastic 
Perturbation Method 

The 24 configurations of the physics parameterizations in WRF-Solar were tested for April 2018, 
and NSRDB observations were used for validation over CONUS. The 24 configurations are 
focused on different methodologies for accounting for the effects of unresolved clouds, the grid 
resolving cloud microphysics, PBL parameterization, and the atmospheric radiation processes. 
Cloud microphysics and atmospheric radiation processes are the main driver for the formation 
and dissipation of clouds and solar radiation. The importance of unresolved cumulus clouds on 
shortwave radiative process was also investigated in Jiménez et al. (2016b). 

For this analysis, 30 day-ahead forecasts (i.e., 24-hours ahead at 30-minute resolution) were 
simulated for April 2018 (30 samples). All the forecasts were initialized at 06 UTC, and the 
NSRDB observations were used for the validation of the forecasts over CONUS.  

Figure 29a shows the bias of the GHI computed at each grid point (600 x 354) of the WRF-Solar 
domain, and Figure 29b shows the MAE of the GHI as a function of lead time. Various 
combinations of WRF-Solar physics have been tested. The combinations include four types of 
shallow cumulus schemes (Deng, CLD3, MYNN, and Grell), four types of cloud microphysics 
schemes (Thompson aerosol awareness, Thompson, WSM6, and Goddard), three types of 
shortwave radiation schemes (Rapid Radiative Transfer Model for GCMs [RRTMG], Dudhia, 
and Goddard), and three types of PBL schemes (MYNN, YSU, and MYJ). The 10 members of 
the WRF-Solar stochastic ensemble based on WRF-Solar_V1 (couple_farms=true) have also 
been included in the analysis.  

The WRF-Solar_V1 without shallow cumulus scheme exhibits the smallest bias and MAE 
scores. The 10 members of the WRF-Solar stochastic forecast also show good agreement with 
the NSRDB observations, with MAE scores similar to those of the WRF-Solar_V1 without the 
shallow cumulus experiment. This indicates that our control physics configuration of the MYNN 
PBL, Thompson aerosol awareness, Noah LSM, Deng shallow cumulus, and RRTMG radiation 
schemes is working reasonably for the day-ahead GHI forecasts. The performance of 10 
members of the WRF-Solar stochastic ensemble is confirmed based on these results, and an 
ensemble calibration is applied to the 10 stochastic ensemble members (Section 4).  
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(a) 

 

 
(b) 

Figure 29. (a) Bias and (b) MAE of the GHI from 24 different configurations of WRF-Solar against 
NSRDB observations over the CONUS domain for April 2018. The statistical metrics are calculated 

with all available data at a given lead time. 
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3.2.8 Representation of Horizontal Cloud Fraction in FARMS 
FARMS was lacking a horizontal cloud fraction. This led to an overestimation of the GHI 
predictions under regimes with partial cloudiness. To overcome this limitation, we investigated 
four cloud fraction representation methods in the FARMS scheme:  

1. Maximum overlap. The horizontal cloud fraction (CLDFRA_H) is represented following 
Eq. 3.5, which uses the maximum fraction value in 40 vertical layers (max_cldfra): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀_𝐻𝐻(𝑁𝑁, 𝑗𝑗) = max(𝑐𝑐𝑁𝑁𝑁𝑁𝑓𝑓𝑁𝑁𝑁𝑁(𝑁𝑁,∗, 𝑗𝑗)                                     (3.5) 
where cldfra is the three-dimensional variable for cloud fraction. 

2. Weighted average by cloud mass from Eq. 3.6 (wgtAvg_cldfra): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀_𝐻𝐻 = ∑ 𝑄𝑄_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑛𝑛)
∑ 𝑄𝑄_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑘𝑘)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑘𝑘=1

𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛=1 × 𝑐𝑐𝑁𝑁𝑁𝑁𝑓𝑓𝑁𝑁𝑁𝑁(𝑛𝑛)                         (3.6) 

where Q_clouds represents the sum of cloud water, ice, and snow. 
3. The third method is to use a logarithm average, as in Eq. 3.7 (logAvg_cldfra): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀_𝐻𝐻 = exp[�∑ log(𝑐𝑐𝑁𝑁𝑁𝑁𝑓𝑓𝑁𝑁𝑁𝑁(𝑘𝑘))𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑘𝑘=1 �/𝑛𝑛𝑁𝑁𝑁𝑁𝑛𝑛𝑁𝑁𝑁𝑁]                          (3.7) 

4. Use a CLDFA_H value of 1 (wo_cldfra).  
Simulations from the RRTMG were also tested, and these results were compared to NSRDB 
observations in January 2018 and July 2018. Figure 30 and Figure 31 compare the bias and the 
MAE of the five different experiments. When the cloud fraction is set to (1), the result shows the 
smallest bias, but it is difficult to say that the forecast result is improved even though positive 
bias has been reduced. Indeed, the MAE shows a larger value than the other methodologies. The 
weighted average by clouds method (wgtAvg_cldfra) shows the best MAE performance. Based 
on these results, we selected the weighted average method in FARMS. 

 
 (a) (b) 

Figure 30. Bias calculated at each forecast lead time in (a) January 2018 and (b) July 2018 for five 
different experiments 
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(a) (b) 

Figure 31. MAE calculated at each forecast lead time in (a) January 2018 and (b) July 2018 for five 
different experiments 
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4 Validation of Day-Ahead Forecasts 
4.1 Ensemble Calibration 

4.1.1 Analog Ensemble 
The analog ensemble (AnEn) technique (Alessandrini, Sperati, and Delle Monache 2019) was 
applied to calibrate ensemble forecasts of GHI and DNI simulated from the WRF-Solar EPS. 
The AnEn method selects a set of past observations that corresponded to the best analogs of the 
NWP and provides a set of ensemble members of the selected observation data set. The set of 
ensemble members can then be used in a probabilistic or deterministic (e.g., ensemble mean of 
AnEn) way.  

The analog metric is defined as follows (Delle Monache et al. 2011; Delle Monache et al. 2013; 
Alessandrini, Sperati, and Delle Monache 2019): 

 ‖𝐶𝐶𝑡𝑡,𝑀𝑀𝑡𝑡′‖ = �
𝑤𝑤𝑖𝑖

𝜎𝜎𝑓𝑓𝑖𝑖
�� (𝐶𝐶𝑖𝑖,𝑡𝑡+𝑗𝑗 − 𝑀𝑀𝑖𝑖,𝑡𝑡′+𝑗𝑗)2

�̃�𝑡

𝑗𝑗=−�̃�𝑡

𝑁𝑁

𝑖𝑖=1

 (4.1) 

where 𝐶𝐶𝑡𝑡 is the current forecast at future time 𝑡𝑡; 𝑀𝑀𝑡𝑡′  is an analog forecast with the same forecast 
lead time but valid at a past time 𝑡𝑡′; 𝑁𝑁 and 𝑤𝑤𝑖𝑖 are the number of meteorological predictors and 
their weights; 𝜎𝜎𝑓𝑓𝑖𝑖 is the standard deviation of the time series of past forecasts of a given predictor 
at the same location (to normalize the contribution to the metric of predictors with different 
units); �̃�𝑡 is half of the time window over which the analog metric is computed; and 𝐶𝐶𝑖𝑖,𝑡𝑡+𝑗𝑗 and 
𝑀𝑀𝑖𝑖,𝑡𝑡′+𝑗𝑗 are the values of the current forecast and the analog of the atmospheric predictors in the 
time window. 

In this work, the training data set comprised 365 sets of WRF-Solar EPS simulations covering 
2017. We used four predictors to select the best analogs sets from past forecasts for each station 
(Kim et al. 2021)—the mean of GHI, the mean of DNI, the standard deviation of GHI, and the 
standard deviation of DNI—from 10 ensemble members simulated from WRF-Solar EPS (see 
Section 4.1.2). The weight optimization was performed independently for each location by 
choosing the optimal weights that minimize the error over the training data set (2017).  

4.1.2 Impact of Different Combinations of AnEn Predictors 
We tested different sets of predictors: the mean and standard deviation of GHI, DNI, 2-m 
temperature, and the total column of water vapor from WRF-Solar EPS. This AnEn technique 
includes a “weight optimization” method that can allocate a different weight to each predictor. 
The impact of the weight optimization was also compared. Table 5 includes AnEn predictor 
combinations applied to the calibration of WRF-Solar EPS. 
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Table 5. AnEn Predictor Combinations 

Predictor 
Combination 

Predictor 

GHI 

(Mean) 

GHI 

(Std) 

DNI 

(Mean) 

DNI 

(Std) 

Temperature 

(Mean) 

Temperature 

(Std) 

Water 
Vapor 

(Mean) 

Water 
Vapor 

(Std) 

1P √        

2P √ √       

4P √ √ √ √     

4P_T √ √   √ √   

4P_W √ √     √ √ 

 
Figure 32 shows the bias and RMSE of the AnEn prediction results. The yellow boxes show the 
results of the unweighted optimization, which implies that all predictors have the same weight. 
The green boxes show the results of the weight optimization. For example, yellow 4P_T means 
that the mean and standard deviation of GHI and DNI are used as predictors, and each predictor 
has the same weight. The best results using RMSE and bias as metrics are obtained when using 
the mean and standard deviation of GHI and DNI as predictors (4P). 

When we analyzed the results from using an optimized weight distribution, the mean of GHI had 
the highest weight for all combinations, but the weight optimization did not significantly 
improve the results in this study.  

 
(a)                                                                                            (b) 

Figure 32. The mean (a) bias and (b) RMSE of the calibrated WRF-Solar EPS for different 
combinations of predictors 

Same weights

Optimized weights
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4.1.3 Evaluation of Calibrated Forecasts 
The AnEn has been applied to calibrate the GHI prediction from the WRF-Solar forecasting 
system over CONUS for every 5 x 5 WRF grid point (8,520 grid points). We compared the 
forecast results of two prediction systems: WRF-Solar V1 and WRF-Solar EPS. The analog 
ensemble (AnEn) has been applied to calibrate the solar irradiance forecast results from these 
two systems. 

Figure 33 shows the maps of the RMSE in the GHI prediction over the CONUS region. The 
upper panels are the results of the raw forecasts, which are WRF-Solar V1 and WRF-Solar EPS. 
The lower panels are the results of the calibrated ensembles from the two systems. WRF-Solar 
EPS reduces the RMSE in WRF-Solar V1 by 9%, and the AnEn reduces the RMSE in WRF-
Solar EPS by 5%. The total improvement of 14% is attained by the calibrated WRF-Solar EPS, 
indicated by the reduction in RMSE with respect to WRF-Solar V1. The GHI bias is reduced by 
81% (calibrated WRF-Solar EPS versus WRF-Solar V1) (Figure 34). The calibrated WRF-Solar 
EPS provides unbiased estimations of the solar irradiance within 1% of the satellite observations 
of GHI. 

Figure 35 exhibits the RMSE maps for DNI. Compared to WRF-Solar V1, WRF-Solar EPS 
reduces the RMSE by 7% in the DNI prediction, and the AnEn reduces the RMSE in WRF-Solar 
EPS by 10% in the DNI prediction. Consistent with the GHI results for RMSE, an overall 
improvement of 16% for DNI is attained by the calibrated WRF-Solar EPS (calibrated WRF-
Solar EPS versus WRF-Solar V1). The DNI bias is reduced by 75% (calibrated WRF-Solar EPS 
versus WRF-Solar V1) (Figure 36). The calibrated WRF-Solar EPS improves the DNI forecasts 
of WRF-Solar V1 with unbiased estimations of the DNI within 3.2% of the satellite observations. 

Figure 37 shows the annual cycles of bias, RMSE, and correlation in GHI prediction. The AnEn 
reduces the positive biases, especially in the summer season. The calibrated WRF-Solar EPS 
shows the smallest RMSE throughout 2018. The WRF-Solar EPS shows a higher correlation 
than WRF-Solar V1.  

Figure 38 shows the diurnal cycles of bias, RMSE, and correlation in GHI prediction. Results 
shows that the diurnal cycle of the bias scores of the calibrated WRF-Solar V1 is similar to that 
of the calibrated WRF-Solar EPS. The calibrated WRF-Solar EPS shows the smallest RMSE 
throughout the day. Also, the calibrated WRF-Solar EPS reduces the RMSE peak of WRF-Solar 
V1 by 17%. The WRF-Solar EPS shows a correlation value as high as the calibrated WRF-Solar.  
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Figure 33. RMSE maps of GHI forecasts from WRF-Solar V1, WRF-Solar EPS, the calibrated WRF-

Solar V1, and the calibrated WRF-Solar EPS against 2018 NSRDB observations 

 
Figure 34. Bias maps of GHI forecasts from WRF-Solar V1, WRF-Solar EPS, the calibrated WRF-

Solar V1, and the calibrated WRF-Solar EPS against 2018 NSRDB observations 
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Figure 35. RMSE maps of DNI forecasts from WRF-Solar V1, WRF-Solar EPS, the calibrated WRF-

Solar V1, and the calibrated WRF-Solar EPS against 2018 NSRDB observations 

 
Figure 36. Bias maps of DNI forecasts from WRF-Solar V1, WRF-Solar EPS, the calibrated WRF-

Solar V1, and the calibrated WRF-Solar EPS against 2018 NSRDB observations 
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(a) 

 
(b) 

 
(c) 

Figure 37. Annual cycles of (a) bias, (b) RMSE, and (c) correlation of GHI forecasts from WRF-
Solar V1, WRF-Solar EPS, the calibrated WRF-Solar V1, and the calibrated WRF-Solar EPS against 

2018 NSRDB observations 
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(a) 

 
(b) 

 
(c) 

Figure 38. Diurnal cycles of (a) bias, (b) RMSE, and (c) correlation of GHI forecasts from WRF-
Solar V1, WRF-Solar EPS, the calibrated WRF-Solar V1, and the calibrated WRF-Solar EPS against 

2018 NSRDB observations 
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4.2 Forecasts for Topic Area 1 Evaluation Plan  

4.2.1 Sites Determined by Topic Area 1  
For this task, ground observations were obtained for 1-minute GHI and DNI from 10 stations, 
including the SURFRAD, SOLRAD, and Atmospheric Radiation Measurement Southern Great 
Plains sites, etc. Figure 39 shows the sites determined by Topic Area 1, which include two 
stations in California and one station each in South Dakota, Oklahoma, Mississippi, 
Pennsylvania, Virginia, Florida, Washington, and Colorado. Table 6 includes general 
information for the locations of the ground measurements. We acquired the observations from 
the Solar Forecast Arbiter website (https://solarforecastarbiter.org) and processed the data sets to 
meet the requirements for the Topic Area 1 evaluation plan. The data sets were used to perform 
calibrations and evaluations of GHI and DNI forecasts simulated from WRF-Solar EPS.  

 
Figure 39. Observation locations determined by Topic Area 1 

 

https://solarforecastarbiter.org/
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Table 6. Information of 10 Sites in Figure 39 

Name Latitude (°N) Longitude (°W) Elevation (m) Time Zone 

NASA Langley, VA (LGL) 37.10 77.39 3 UTC-5 

Goodwin Creek, MS (GWN) 34.25 89.87 98 UTC-6 

Penn. State Univ., PA (PSU) 40.72 77.93 376 UTC-5 

Sioux Falls, SD (SXF) 43.73 96.62 473 UTC-6 

Hanford, CA (HAN) 36.31 119.63 73 UTC-8 

Lamont, OK (LAM) 36.61 97.49 307 UTC-6 

Humboldt State Univ., CA 
(HUM) 40.88 124.08 36 UTC-8 

Cocoa Beach, FL (COC) 28.40 80.77 11 UTC-5 

Richland, WA (PNNL) 46.34 119.28 123 UTC-8 

Table Mountain, CO (TBL) 40.12 105.24 1689 UTC-7 

4.2.2 Calibration of WRF-Solar Ensemble for Locations Determined by Topic 
Area 1 

The predictability of solar irradiances from WRF-Solar EPS and the calibrated WRF-Solar EPS 
was evaluated using the ground-measured observations provided by the Solar Forecast Arbiter. 
We analyzed the final products to be delivered that meet all requirements for the 10 sites 
determined by the Topic Area 1 evaluation plan. 

The WRF-Solar model was configured to provide day-ahead predictions over CONUS using 9-
km grid spacing. One year (365 days) of day-ahead forecasts spanning December 31, 2017–
December 30, 2018, were produced for every 15 minutes from WRF-Solar EPS. Each simulation 
was initialized at 6 UTC, and the forecast length was 48 hours. The National Centers for 
Environmental Prediction Global Forecast System (0.25° x 0.25°; 3-hour intervals) forecast data 
were used for the initial and boundary conditions of the WRF-Solar model. We simulated 10 
ensemble members to predict GHI and DNI from WRF-Solar EPS. 

The AnEn technique (Alessandrini, Sperati, and Delle Monache 2019) was applied to calibrate 
the ensemble forecasts of GHI and DNI simulated from WRF-Solar EPS. The training data set 
comprised 365 sets of WRF-Solar EPS simulations covering 2017. We used four predictors to 
select the best analogs sets from past forecasts for each station: the mean of GHI, the mean of 
DNI, the standard deviation of GHI, and the standard deviation of DNI. The WRF-Solar 
reference (WRF-Solar REF; Jiménez et al. 2022) forecast has been simulated and compared to 
the calibrated WRF-Solar EPS forecast results. The WRF-Solar REF configuration was used for 
the WRF-Solar REF simulation, which is a deterministic forecast.  

Forecasts of GHI and DNI obtained from WRF-Solar REF and the calibrated WRF-Solar EPS 
were evaluated against surface observations covering the full year of 2018. The bias and RMSE 
were calculated with all available model-observation pairs at a given forecast lead time for the 
second day.  
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Figure 40 and Figure 41 display diurnal cycles of bias and RMSE of the two forecast results. It 
is observed that AnEn effectively reduces biases for both the GHI and DNI forecasts. Figure 42 
and Figure 43 exhibit bias and RMSE computed with all available predicted and observed data 
of GHI and DNI for each station. Improvements from the ensemble calibration are indicated by 
the overall reductions in bias and RMSE across all stations. In particular, a large reduction in 
bias and RMSE is achieved by AnEn for the Humboldt State University site (Figure 42), which 
is near the coastline, which is generally prone to large forecast errors. Predicted DNI shows 
higher forecast errors compared to predicted GHI from WRF-Solar EPS. Nevertheless, the AnEn 
calibration improved the ensemble DNI forecasts for all 10 locations (Figure 43). 

 
 (a) (b) 

Figure 40. (a) Bias and (b) RMSE of the 2018 GHI forecasts for WRF-Solar REF (black) and the 
calibrated WRF-Solar EPS (green) as a function of forecast lead time 

 
 (a) (b) 

 

Figure 41. Same as Figure 40 except for the 2018 DNI forecasts 
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 (a) (b) 

Figure 42. (a) Bias and (b) RMSE of the 2018 GHI forecasts using WRF-Solar EPS (hatched 
rectangular) and the calibrated WRF-Solar EPS (gray rectangular) for each station (LGL, GWN, 

PSU, SXF, COC, HAN, LAM, HUM, PNNL, and TBL) and all stations (ALL) 

 
(a)                                                                                               (b) 

Figure 43. Same as Figure 4 except for the DNI forecasts 

4.2.3 Uploading National Renewable Energy Laboratory Forecasts to the Solar 
Forecast Arbiter 

We completed the upload of the day-ahead forecast data to the Solar Forecast Arbiter. Forty sets 
of forecast data for the year 2018 [i.e., 10 stations × 2 variables (GHI and DNI) × 2 forecasts 
(average of calibrated ensemble members and reference WRF-Solar forecasts)] were processed 
to meet all requirements shown in Table 7. An example of the uploaded data to the website is in 
Figure 44. 
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Table 7. Requirements for Day-Ahead Forecasts for Topic Area 1 Evaluation Plan 

Variables Evaluation Time Range Forecast Parameters 

GHI 
DNI 

Start: 2018-01-01 00:00 local time at each 
site 
End: 2018-12-31 23:59 local time at each 
site 

Forecast issue time: 10 a.m. local standard 
time 
Forecast lead time: 14 hours 
Forecast run length: 24 hours 
Value type: interval mean 
Interval length: 1 hour 
Interval label: ending 

 
Figure 44. An example of uploaded GHI forecasts on the Solar Forecast Arbiter 

4.3 Evaluation of Solar Irradiance Forecasts from WRF-Solar Using 
the National Solar Radiation Database 

We explored the use of the NSRDB to evaluate solar irradiance forecasts from WRF-Solar. In 
this work, we analyze the advantages and limitations of using GHI observations from the 
NSRDB to quantify the performance of the WRF-Solar model as well as to evaluate GHI 
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forecasts from WRF-Solar with a robust analysis framework in time and space. This aims to 
further understand the model performance to continue improving the value of WRF-Solar for 
solar energy applications. Based on our findings for 2018, the model bias is positive in winter 
and in summer indicates an underestimation of the cloudiness field, or the simulation of optically 
thinner clouds, or a combination of both. In addition, the reference WRF-Solar configuration in 
combination with NSRDB retrievals has been used to explore sensitivities to the model 
configuration and to quantify the degradation of the forecasts as a function of the lead time. The 
model sensitivities also explored the impact of increasing the grid spacing from 9 km (reference) 
to 3 km and the benefits of parametrizing shallow cumulus at both resolutions. This work was 
presented in Jiménez et al. 2022. 

4.4 Model Inter-Comparison between WRF-Solar V1, WRF-Solar EPS, 
SKEBS, and the Physics-Based Ensemble of WRF-Solar 

This study evaluates simulated solar irradiance forecasts from WRF-Solar V1, WRF-Solar EPS, 
the stochastic kinetic energy backscatter scheme (SKEBS) (Shutts 2005; Berner et al. 2009; 
Berner et al. 2011; Berner et al. 2015), and the multiphysics ensemble of WRF-Solar (WRF-
Solar PHYS). One-year simulations covering 2018 have been completed for the four WRF 
systems. WRF-Solar V1 is a deterministic forecast system. WRF-Solar EPS introduces stochastic 
perturbations in the most relevant physical variables for solar irradiance predictions in WRF-
Solar V1. In SKEBS, kinetic energy from unresolved scales is made available, or backscattered 
onto, the resolved scales via stochastic perturbations of the stream function and potential 
temperature at selected wave numbers. The WRF-Solar PHYS system runs 10 different 
combinations of the physics parameterization suite of WRF-Solar V1.  

Figure 45 compares distributions of MAE. All forecasts show higher forecasting errors in the 
eastern United States, and the regions with large errors in the prediction results are highly 
correlated with the optically thick cloud regions. WRF-Solar EPS significantly reduces the MAE 
of WRF-Solar V1 in the eastern region. Forecast results from SKEBS and WRF-Solar PHYS 
show lower MAE than WRF-Solar EPS.  
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Figure 45. Spatial distribution of MAE of the 2018 GHI forecasts from WRF-Solar V1, WRF-Solar 

EPS, SKEBS, and WRF-Solar PHYS against the NSRDB observations 

Figure 46 compares rank histograms and missing rate error (MRE) from three ensemble forecast 
systems. Three ensemble systems show under-dispersive prediction results. WRF-Solar PHYS 
produces an ensemble with better statistical consistency than WRF-Solar EPS and SKEBS. It is 
anticipated that the three ensemble systems will be improved insofar as ensemble calibration 
techniques are applied. 

 
(a)  (b)  (c) 

Figure 46. Rank histogram for the 2018 GHI forecasts from (a) WRF-Solar EPS, (b) SKEBS, and (c) 
WRF-Solar PHYS against the NSRDB observations 

4.5 Evaluation of Cloud Mask Forecasts from WRF-Solar EPS 
The main purpose of this study is to develop a method to evaluate cloud forecasts from NWP 
models. The limitation in the current verification of gridded solar forecasts, which focus only on 
the evaluation of NWP outputs for the prediction of solar irradiance using simple statistical 
metrics, has motivated a new approach in this study to assess the prediction accuracy of solar 
irradiance. Forecasting of clouds in NWP is the key factor in predicting solar irradiance because 
that directly impacts the solar irradiance under overcast or partial cloudy-sky conditions (i.e., 
solar irradiance forecasts are influenced by errors stemming from the cloud forecasts); thus, it is 
essential to implement an evaluation of cloud forecasts from NWP models. 
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In this work, we propose a method for validating cloud products from WRF-Solar EPS to 
provide grid operators with high-quality probabilistic solar forecasts.  

This work includes three objectives:  

1. Assessment of cloud mask forecasts from WRF-Solar against the NSRDB 
2. Analysis of cloud detection metrics (e.g., hit rate, false alarm rate, Kuiper’s skill score) 
3. Development of evaluation techniques to verify WRF-Solar EPS using the cloud 

detection metrics. 
The cloud detection metrics introduced by Karlsson and Johansson (2013) were used to quantify 
the results. We evaluated 10 stochastic ensemble members simulated by WRF-Solar EPS against 
NSRDB data sets for 2018. 

To analyze the capability of WRF-Solar EPS predicting the cloud mask, we need to filter the 
NSRDB and the forecasts of WRF-Solar EPS for clear- and cloudy-sky conditions. The 
following are the main steps of the filtering algorithm: 

• Step1: An absolute difference between clear-sky GHI and all-sky GHI is calculated for 
each individual pixel and time step: 

𝐶𝐶𝐵𝐵𝐶𝐶𝐶𝐶 =  �𝐺𝐺𝐻𝐻𝐵𝐵𝐶𝐶𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐻𝐻𝐵𝐵𝐴𝐴𝑐𝑐𝑐𝑐 𝑆𝑆𝑘𝑘𝑛𝑛 � (4.2) 

• Step 2: Each pixel is filtered by the conditions in Table 8. If DIFF from Eq. 4.2 is smaller 
than 1 W/m2, the pixel is treated as clear sky; otherwise, the pixel is treated as cloudy 
sky. For ensemble forecasts simulated from WRF-Solar EPS, additional criteria are 
employed. For example, if more than 50% of the ensemble members satisfy the condition 
of DIFF ≥ 1.0 W/m2, that pixel is treated as cloudy sky. Note that nighttime data are 
excluded by filtering with a threshold for inclusion (0° < solar zenith angle < 85°) in this 
analysis. 

Table 8. Criteria for Data Processing of NSRDB and WRF-Solar EPS for Clear-/Cloudy-Sky 
Conditions 

 NSRDB WRF-Solar EPS 

Clear sky DIFF < 1.0 W/m2 > 50% of ensemble members are: DIFF < 1.0 W/m2 

Cloudy sky DIFF ≥ 1.0 W/m2 ≥ 50% of ensemble members are: DIFF ≥ 1.0 W/m2 

After filtering is completed, the cloud detection metrics are calculated based on a contingency 
table (Table 9). The four categories in Table 9 indicate binary representations for the cloud 
occurrences for the NSRDB and WRF-Solar EPS.  
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Table 9. Contingency Matrix for WRF-Solar EPS and NSRDB 

 WRF-Solar EPS 

NSRDB 

Scenario Clear Cloudy 

Clear a b 

Cloudy c d 

We compute the total number of frequencies that corresponded to each category (i.e., a, b, c, and 
d) and then calculate the following metrics (Karlsson and Johansson 2013) to quantify the 
results: 

𝑃𝑃𝑂𝑂𝐶𝐶𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑁𝑁

𝑁𝑁 + 𝑜𝑜
× 100% (4.3) 

𝑃𝑃𝑂𝑂𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 =
𝑁𝑁

𝑐𝑐 + 𝑁𝑁
× 100% (4.4) 

𝐶𝐶𝑀𝑀𝐶𝐶𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑐𝑐

𝑁𝑁 + 𝑐𝑐
× 100% (4.5) 

𝐶𝐶𝑀𝑀𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 =
𝑜𝑜

𝑜𝑜 + 𝑁𝑁
× 100% (4.6) 

𝐻𝐻𝐶𝐶 =
𝑁𝑁 + 𝑁𝑁

𝑁𝑁 + 𝑜𝑜 + 𝑐𝑐 + 𝑁𝑁
× 100%   

(𝑤𝑤ℎ𝑁𝑁𝑁𝑁𝑁𝑁 0 ≤ 𝐻𝐻𝐶𝐶 ≤ 100%) 
(4.7) 

𝐾𝐾𝐵𝐵𝐵𝐵 =
𝑁𝑁 ∙ 𝑁𝑁 − 𝑐𝑐 ∙ 𝑜𝑜

(𝑁𝑁 + 𝑜𝑜) ∙ (𝑐𝑐 + 𝑁𝑁) × 100%   

(𝑤𝑤ℎ𝑁𝑁𝑁𝑁𝑁𝑁 − 100% ≤ 𝐾𝐾𝐵𝐵𝐵𝐵 ≤ 100%) 
(4.8) 

Monthly variation of four metrics was assessed—including false alarm rate (FAR) and 
probability of detection (POD) in cloudy conditions, hit rate (HR), and Kuiper’s skill score 
(KSS)—calculated from paired data sets of WRF-Solar EPS and the NSRDB (Figure 47). The 
metrics are calculated independently for each grid points and then spatially averaged as a final 
step. Figure 47 shows that the PODcloudy, hit rate, and KSS are smaller in summer than in the 
other seasons. Especially in July and August, high FARcloudy and low scores of PODcloudy, hit rate, 
and KSS are apparently related to the higher uncertainty in predicting the location and timing of 
the occurrence of convection in summer. 
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Figure 47. Monthly variation of FARcloudy, PODcloudy, hit rate, and KSS of WRF-Solar EPS for 2018 

To investigate the uncertainties in predicting different types of clouds from WRF-Solar EPS, we 
analyzed two metrics (PODcloudy and FARcloudy) classified using cloud optical depth (OPD) and 
cloud top height (CTH) ranges with data obtained from WRF-Solar EPS and the NSRDB. 
Figure 48 shows monthly PODcloudy and FARcloudy classified into cloud optical depth and cloud 
top height for CONUS in 2018. Given the PODcloudy and FARcloudy, WRF-Solar EPS provides 
accurate forecasts for high and thick clouds, whereas low and thin clouds cause difficulties in 
predicting cloud masks from WRF-Solar EPS. Consistent with the results of the cloud detection 
metrics shown in Figure 47, patterns of the classified PODcloudy and FARcloudy for different cloud 
optical depths and cloud top heights are similar throughout the seasons, noting that WRF-Solar 
produces lower PODcloudy and higher FARcloudy in summer than winter.  
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Figure 48. (a) PODcloudy and (b) FARcloudy of WRF-Solar EPS classified in three cloud optical depths 

and three cloud levels for 2018  
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5 Summary 
This report presents the development of WRF-Solar EPS to improve the management of the 
variability and uncertainty of solar generation. The main research steps in developing WRF-
Solar EPS include (1) tangent linear sensitivity analysis for identifying key variables 
significantly related to the forecasting of cloud and solar irradiance, (2) combining the stochastic 
perturbation method with WRF-Solar, and (3) ensemble calibration to improve the probabilistic 
forecasts simulated from WRF-Solar EPS.  

The major achievements and findings in (1), (2), and (3) are: 

1. Fourteen key variables responsible for the largest uncertainties in surface irradiance and 
clouds were identified using tangent linear analysis of six physics packages of WRF-
Solar.  

2. The stochastic perturbations were added to the 14 variables selected inside the six WRF-
Solar modules. The technique was fully linked to the WRF-Solar name list with a user-
friendly interface that provides controllable parameters of stochastic perturbations using 
configuration files in the model package. 

3. An AnEn method was used to calibrate the stochastic ensemble forecasts. The 
improvements obtained by the ensemble calibration are shown with bias reductions of 
81% and 75% with respect to the stochastic ensemble for GHI and DNI, respectively. 
Overall, the ensemble forecasts calibrated from the analog method provided unbiased 
estimations of the irradiance within 1% of the satellite observations of GHI and 3.2% of 
DNI. 

In addition, we successfully implemented the AnEn technique to calibrate solar irradiance 
forecasts simulated from WRF-Solar EPS for 10 sites determined by Topic Area 1. The AnEn 
calibration improved GHI and DNI forecasts with a reduction in RMSE and a bias removal of 
raw ensemble forecasts. These final forecast products were uploaded to the Solar Forecast 
Arbiter for the Topic Area 1 evaluation plan.  

In this report, we also described plans for future enhancements to reduce errors in solar 
irradiance forecasts with the WRF-Solar model (sections 4.4 and 4.5). 

Last, the WRF-Solar EPS model is already publicly available. It is an open-source model for the 
solar energy community that can provide a baseline level of forecasts for grid operation in the 
United States. Because the system will fit directly into grid operations, there will be a low barrier 
to adoption, ensuring high impact. 
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