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Abstract. Wind turbine blade design is a highly multidisciplinary process that involves
aerodynamics, structures, controls, manufacturing, costs, and other considerations. More
efficient blade designs can be found by controlling the airfoil cross-sectional shapes
simultaneously with the bulk blade twist and chord distributions. Prior work has focused
on incorporating panel-based aerodynamic solvers with a blade design framework to allow
for airfoil shape control within the design loop in a tractable manner. Including higher
fidelity aerodynamic solvers, such as computational fluid dynamics, makes the design problem
computationally intractable. In this work, we couple an invertible neural network trained on
high-fidelity airfoil aerodynamic data to a turbine design framework to enable the design of airfoil
cross sections within a larger blade design problem. We detail the methodology of this coupled
framework and showcase its efficacy by aerostructurally redesigning the IEA 15-MW reference
wind turbine blade. The coupled approach reduces the cost of energy by 0.9% compared to a
more conventional design approach. This work enables the inclusion of high-fidelity aerodynamic
data earlier in the design process, reducing cycle time and increasing certainty in the performance
of the optimal design.

1. Introduction
Wind turbine blades are designed to meet a variety of objectives and constraints in the fields
of aerodynamics, aeroacoustics, structures, controls, materials, manufacturing, and eventually
costs. Wind turbine blade design is therefore a highly multidisciplinary process where trade-offs
are constantly weighed against one another. Recent advances in computational modeling have
fueled the development of integrated turbine analysis frameworks including HAWTOpt2 [1],
Cp-Max [2], ATOM [3], and others. As part of these frameworks, aeroservoelastic simulations
are used to estimate blade loads, with a common representation of the blades as a combination
of elastic beam and aerodynamic lifting line. International wind turbine design standards, such
as the International Electrotechnical Commission standard IEC 61400-1, are set at this fidelity
level.

In a lifting line model, airfoils are represented as look-up tables of lift, drag, and moment
coefficients as a function of angle of attack and Reynolds number. These coefficients can be
obtained via wind tunnel tests or by running numerical solvers. During design, a set of airfoils is
typically preselected and placed along the blade span. Airfoil shapes are then often kept frozen,
with the optimizer controlling either their position along span [4] or the distribution of relative
thickness, which is parameterized similar to chord and twist [1, 3]. These approaches avoid the
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need to embed an airfoil solver within the optimization loop, but their results heavily depend
on the initial set of airfoils assumed by the user. Also, often airfoils cannot change their order
along span, further limiting the solution space.

The limitation of using fixed airfoil designs has been overcome in the past by parameterizing
the shape of the airfoils with the shape control points exposed to an optimizer. This was
made tractable by integrating lower-fidelity airfoil integral boundary layer methods, such as
the one implemented in the popular XFOIL model [5]. A notable example coupling a blade-
element momentum solver and XFOIL is presented by Zhu et al. [6], where authors adopted
perturbation functions to parameterize the airfoil shapes. A second example is presented by
Sartori et al. [7], where airfoil shapes are represented with Bezier curves [8]. At each station
where the airfoil is designed, 13 design variables are passed to the optimizer. The framework
adopted an aerostructural approach and highlighted interesting trade-offs, such as the adoption
of flatback airfoils in the inboard regions of the blade.

Integrating higher-fidelity approaches, such as 2D computational fluid dynamics (CFD),
within an iterative design optimization is generally computationally impractical, especially if
using finite differences for gradient estimation. An exception is presented by Barrett et al. [9],
where a free-form shape control approach is coupled to both XFOIL and Reynolds-averaged
Navier-Stokes (RANS) CFD during the optimization. This approach was made computationally
tractable thanks to analytic gradients, though the cost of the RANS CFD still greatly increased
the optimization cost. Frameworks implementing 3D blade-resolved simulations exist for
analysis purposes and researchers have made inroads to inclusion within a design optimization,
although the high computational requirements and software complexities have so far limited the
application to niche design scenarios [10, 11].

Alternative approaches have focused on using surrogate models or response surfaces to
characterize the airfoil design space using fewer computational resources [12–15]. Li et al. [12]
parameterized airfoil shapes using eight b-spline control points and then trained a polynomial
response surface on airfoil performance from XFOIL with those eight points as inputs. Their
work was limited by the ability to accurately fit the data using the response surface and by
XFOIL’s fidelity level. Han et al. [13] used a Kriging-based surrogate trained on RANS CFD
data to enable shape optimization for 2D airfoil cross sections. This was limited to only 2D
airfoil analysis and was not extended to 3D shape or full blade optimization.

Recently, neural networks (NNs) have been studied as possible tools to decrease the cost
of airfoil shape control into the design process [14, 16, 17]. Oh [14] used an artificial neural
network trained using XFOIL to optimize airfoil shapes and compare them to response surface
methods. They found that the NN accuracy was better than the response surface for complex
data sets, but not for smaller dimensional spaces. Additionally, this work was limited to only
airfoil performance and did not extend to full blade design. Bouhlel et al. [17] used a gradient-
enhanced NN to predict subsonic and transonic airfoil performance, leading to drastically lower
computational costs for airfoil optimization. Sessarego et al. [16] used 3D aeroelastic analysis to
train a neural network to design curved turbine blades. They used a vortex particle method and
suggested further work in neural network accuracy and optimization method improvements.

Until now, CFD-trained neural networks have not yet been combined with full wind turbine
design tools. Doing this would allow for full blade design control in a computationally tractable
manner while outputting relevant cost metrics. In this work we extend the state of the art
by exploiting recent advancements in artificial NNs based on conditional generative adversarial
networks [18, 19]. We train a NN on 2D airfoil CFD results, and by inverting the NN, we gain
the ability to rapidly generate 2D airfoil designs for desired performance at high fidelity and
low computational cost. Next, we couple the NN-based airfoil design method to a wind turbine
design framework. This novel design approach unlocks the performance improvements needed
to accurately optimize blades of increasing size and flexibility in a practical manner.
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This paper continues by explaining the methodology behind the invertible neural network
(INN) training and implementation and the coupled design framework in Sec. 2. With the
methodology established, Sec. 3 details the optimization problems studied and dissects the
resulting airfoil and blade designs. Lastly, Sec. 4 discusses the conclusions, the main takeaways
of this work, and how this design approach could integrate into other workflows.

2. Methodology
2.1. INN training and implementation
Our NN-based design uses a specialized INN architecture to accelerate design iterations. The
INN framework learns a bijective mapping between input airfoil shapes, operating condition, and
output aerodynamic and structural considerations [20, 21]. Given a forward mapping f = f(x),
the INN approximates the function f(x) ≈ fINN (x; Θ), where Θ represents the collection of
trainable network weights and biases. The INN architecture comprises specialized invertible
blocks [22]. These blocks give the network a closed-form inverse function, f−1

INN , while sharing
all of the model parameters, Θ, between the forward and inverse evaluations of the network. A
key component of ensuring invertibility is the use of latent space variables, z, that parameterize
the generally ill-posed inverse mapping f−1

INN . A final component of the INN is the collection
of simulation parameters, y, that help characterize the input-output relationship but are not
considered design or unknown quantities. These quantities are allowed to pass through the INN
and can be specified on either forward or inverse evaluations of the model. Figure 1 contains a
schematic representation of the INN architecture.

Figure 1. A schematic of the INN architecture that learns a bijective mapping between model
inputs, x, and outputs, f . Invertibility is ensured by the use of latent variables, z. y contains
simulation parameters that can be specified in either direction.

For the airfoil design problem, we define the input vector x to be the collection of parameters
defining the airfoil shapes as well as the operational angle of attack α. We use a data-driven
Grassmannian shape representation of the airfoils that identifies dominant modes of spatial
variation and builds a low-dimensional parameterization over those modes [23, 24]. Figure 2
shows how airfoils change along each of the six parameters in x that define the shape. The angle
of attack, α, is the final entry of the input vector x and can vary from −4◦ to 20◦. The collection
of outputs, f , under consideration include the coefficient of drag (CD), the ratio of lift to drag
(L/D), the stall margin (αstall − α), and the maximum thickness-to-chord ratio (t/c). The
aerodynamic quantities are obtained for each airfoil shape using CFD simulations generated by
the HAM2D solver [25]. For this work, the simulation parameters, y, only contain the Reynolds
number (Re), which ranges from [3, 12] × 106. The final component of the network is the latent
variables, z, which are assumed to be realizations of a standard Gaussian distribution.

The data used to train the neural network as well as to build the Grassmannian basis come
from perturbations to nine baseline airfoils from the National Renewable Energy Laboratory’s
(NREL’s) 5-MW wind turbine blades and the International Energy Agency Wind Technology
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Figure 2. A visualization of sweeps through the Grassmann parameter space. For each xi,
airfoil shapes transitioning from blue to yellow reflect changes in the associated parameter from
its minimum to maximum value while all of the other parameters are held constant at their
mean.

Collaboration Programme (IEA Wind) 15-MW reference wind turbine blades. New airfoils
are generated by randomly perturbing the class-shape transformation [26] parameters defining
these baseline shapes by up to ±20%. In total, this provides us with 724 airfoils to define our
Grassmannian basis representation and to use for INN training and validation. We randomly
select roughly 70 airfoils to exclude from network training for validation. The INN is trained
in alternating forward and inverse steps that seek to minimize prediction errors in f and pass-
through reconstruction of y. The shape parameters, x, and the latent variables, z, are trained
against the target distributions of the training data and a standard Gaussian, respectively. Once
trained, the INN model is able to rapidly design airfoil shapes along with the operational angle
of attack for a desired set of performance features, including the drag coefficient, L/D, stall
margin, and t/c. This capability enables the coupled design of airfoils within the larger blade
design loop.

2.2. Coupled INN+WISDEM framework
We couple the INN to NREL’s Wind-Plant Integrated System Design Engineering Model
(WISDEM R©) framework1 for wind turbine design as shown in figure 3. New analysis blocks
are shown in green and existing analysis blocks are yellow. The optimizer is shown in blue, and
the gray off-diagonal blocks represent data flow between the modules. The optimizer can supply
the parameters needed for airfoil inverse design that are used to generate the airfoil shapes and
aerodynamic polars using the INN. Those shapes are then passed to WISDEM to compute the
rotor performance metrics, including cost, which are fed back to the optimizer.

Prior to this work, WISDEM used either static airfoil polars provided by the user or directly
queried XFOIL [5]. In either case, WISDEM could optimize the spanwise location of the
airfoils [27] and apply the corrections on the lift coefficients to account for 3D effects based
on the Du/Selig model [28]. WISDEM, however, did not have the ability to vary the airfoil
shapes automatically. The inclusion of the CFD-trained INN within WISDEM allows the airfoil
shapes to be controlled during the design optimization, impacting every downstream component
within WISDEM, including the aerodynamic, structural, manufacturing, and cost modules.

1 https://github.com/WISDEM/WISDEM/

https://github.com/WISDEM/WISDEM/
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Optimizer Re,CD , L/D, stall margin, t/c Twist and chord profiles

INN: Inverse design CST ,αinn Airfoil shapes

INN: Generate polars Lift and drag polars

Performance, LCOE, loads, masses WISDEM: Calculate rotor metrics

Figure 3. A schematic view of the workflow for the coupled INN+WISDEM framework. New
capabilities added as part of this work are shown in green. (CST = class-shape transformation;
LCOE = levelized cost of energy)

Additionally, the added cost of the INN is much lower than the cost of including XFOIL and
provides higher-fidelity performance information.

3. Problem formulation and results
3.1. Optimization problem formulation
To showcase the coupled INN+WISDEM design process, we construct and solve two separate
optimization problems outlined in table 1. Both optimize the rotor of the fixed-bottom version
of the IEA Wind 15-MW reference turbine [29]. The first problem, labeled “Blade planform
only” (WISDEM), features only the design variables available prior to this work. The second,
labeled “Airfoil shape + blade planform” (INN+WISDEM), includes the airfoil shape design
variables detailed earlier in addition to the blade shape and structural thickness variables. In
each case the objective is levelized cost of energy (LCOE), and constraints limit blade strains
to 3,500 microstrains, stall margin to 3 ◦, and tip deflection to stay within the blade tower
clearance with a combined safety factor of 1.42. Although the optimization problems differ, the
analyses are the same between the cases. To achieve a fair comparison, the INN is queried to
obtain airfoil aerodynamic data for both cases.

In both problems, we control the chord of the blade, the spar cap thickness, and the spanwise
location of the defined airfoils. In the INN+WISDEM problem, the design variables also
parameterize the spanwise distributions of lift over drag ratio (L/D), the drag coefficient (CD),
the margin to stall, and the thickness-to-chord ratio (t/c). Next, a set of design variables controls
the latent variables z, which is the only parameter that does not have an immediate physical
meaning as it affects the INN inverse mapping process. The design variables representing the
airfoil positions are active in both optimization problems. Finally, the blade aerodynamic
twist is controlled by a set of explicit design variables in the WISDEM case, whereas it is
implicitly optimized in the INN+WISDEM problem via the calculated angle of attack. In the
INN+WISDEM case, the angle of attack provided by the INN is used to invert the blade-
element-momentum equations and back-calculate the corresponding twist for each airfoil along
blade span [30].

For each design variable except the airfoil position and z values, we use a b-spline
parameterization along the blade span. This allows us to control the optimization
parameterization independently of the analysis discretization; for example, we can perform
analysis at 30 locations along the span while exposing only four b-spline control points to
the optimizer. Each variable is controlled using six b-spline points along the span, with the
innermost two points held fixed. The chord at blade tip is also fixed.
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Table 1. The design variables, constraints, and objective for each optimization problem.
Blade planform only Airfoil shape + blade planform

(WISDEM) (INN+WISDEM)

Design variables

twist 4 (determined from stall margin)

chord 3 3

spar cap thickness 4 4

airfoil position 4 4

lift over drag ratio 4

drag coefficient 4

stall margin 4

thickness to chord 4

z 3

Total 15 30

Constraints

strain 6 6

stall 23 23

tip deflection 1 1

Total 30 30

Objective LCOE 1 1

3.2. Optimization results
We now discuss the results of these two design problems presented in table 1. We use the
COBYLA algorithm defined by Powell [31] and implemented in NLopt [32] to solve each problem.
COBYLA is a derivative-free nonlinear optimizer that handles arbitrarily constrained problems.
It operates by constructing a linear approximation of the problem by creating a simplex of ndv+1
dimensions then iterating through a trust-region method.

Figure 4 shows how performance metrics from the two cases converge as the optimizer
progresses. By plotting the blade cost and AEP along the optimization history, we can see
how the optimizer varies the blade shape and power production to enhance the LCOE objective.
The WISDEM case finds an optimal result in 374 iterations, whereas the INN+WISDEM case
takes 704 iterations to explore the larger design space. Each iteration takes approximately
22 core-seconds on a notebook workstation with an Intel Core i7-9850H CPU. Although the
INN+WISDEM case takes more iterations, it finds a lower LCOE value before the WISDEM
case is done converging. The initial iteration histories of both cases show COBYLA exploring
the design spaces with large variation in performance until it finds a region of convergence.

Table 2 compares the two final designs against the initial performance. Compared to the
WISDEM case, the INN+WISDEM case further reduces LCOE by 0.9%. This reduction in
LCOE comes from both a further reduction in blade cost as well as an increase in annual
energy production (AEP), showing that having airfoil shape control allows for additional design
improvements when included in an aerostructural blade optimization. Again, these optimization
results consider only the blade and airfoil design; these gains are found without including any
tower, platform, or controller design variables. Further decreases in LCOE could be found using
the coupled INN+WISDEM method when considering the full turbine design.

Examining the resulting airfoil designs in more detail, figure 5 shows the initial and optimal
airfoil polars and shapes for four sections along the blade span. Figure 6 shows design quantities
along the span for both cases, including blade twist, chord, lift-to-drag ratio, thickness-to-chord
ratio, and spar cap thickness. The spline control points are highlighted in the WISDEM twist
curve to show the amount of design flexibility used in these studies.



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 042052

IOP Publishing
doi:10.1088/1742-6596/2265/4/042052

7

0 100 200 300 400 500 600 700
0.58
0.60
0.62
0.64

Blade cost, $M Blade planform only
Airfoil shape + blade planform

0 100 200 300 400 500 600 700

70

75
AEP, GWh

0 100 200 300 400 500 600 700
Optimization iterations

90

95

100
LCOE, $/MWh

Figure 4. Convergence of the high-level performance metrics for each design case. The INN-
enhanced procedure is shown in orange and the industry standard is shown in blue. The
INN+WISDEM case finds a lower LCOE value in more optimization iterations.

Table 2. High-level metrics for the optimized results compared to the initial design show both
a decrease in turbine cost and an increase in AEP.

Blade cost, $M Turbine cost, $M AEP, GWh LCOE, $/MWh

Initial 0.621 22.399 74.554 90.76

Blade planform only 0.607 22.294 76.519 88.34

Airfoil shape + blade planform 0.598 22.170 77.088 87.58

Across the blade span, the INN+WISDEM case increases the lift-to-drag ratio of the airfoils,
especially at the operation points. The airfoil shapes do not differ greatly near the midspan of the
blade, but outboard the INN+WISDEM method converges to thicker airfoils, whereas inboard
the INN+WISDEM airfoils are slightly thinner. Throughout the span, the INN+WISDEM
method is able to improve the operating lift-to-drag ratio by fine-tuning the airfoil shape in
tandem with blade twist. Overall, the INN+WISDEM approach simultaneously increases the
aerodynamic performance and reduces ultimate loads. These loads are estimated in WISDEM
by simulating an extreme steady-state “gust” hitting the turbine at rated rotor speed and rated
pitch angle. The INN+WISDEM tunes the airfoil shapes and polars so that the angles of
attack generated during the steady-state gust fall into the post-stall region and sit in the dip of
minimum lift coefficient, in turn limiting the blade deflections toward the tower and the strains
along span. The reduced loads allow a decrease in the spar cap thickness and therefore the blade
mass. A true blade design process would involve optimizing over many design scenarios to find
the aerostructurally limiting case, whereas in this work we used one such case.
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Figure 5. Here we show the two optimized blade designs using WISDEM and INN+WISDEM
and their corresponding polars at selected cross sections. The optimized airfoil shapes differ
along the span for the INN+WISDEM case and generally have higher operating lift-to-drag
ratios. The operational angles of attack for each airfoil are shown with points.
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Figure 6. Spanwise design parameters are shown here with the b-spline control points
highlighted in the twist plot. The INN+WISDEM case reduces spar cap thickness by
using thicker airfoils and reducing ultimate loads, leading to reduced blade mass and cost.
Additionally, the L/D for the INN+WISDEM case is generally higher than that for the WISDEM
case across the span.
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4. Conclusions
Coupling a novel INN to the wind turbine design framework WISDEM allows for CFD-informed
airfoil shape control within the blade design process in a computationally tractable manner.
The INN is able to parameterize airfoil shapes using a reduced set of design variables while still
maintaining meaningful control over the aerodynamic performance. As shown in our application
problems, we see a decrease in LCOE by solving this coupled optimization. The INN+WISDEM
approach tailors the airfoil shapes to decrease blade mass and cost while increasing AEP.
Additionally, we see an aerostructural trade-off where the airfoil cross sections increase in
thickness to allow for spar cap thickness to decrease while satisfying structural constraints.
This novel approach allows for better exploration of a more complex space earlier in the design
process.

This coupled INN+WISDEM approach is now included in the base WISDEM toolset,
including installation and usage documentation. Users can enable the INN by activating analysis
flags and use it for either evaluation or design optimization within the larger turbine design
workflow.

Ongoing work aims to extend the analysis to include unsteady aerodynamics and
aeroservoelasticity. The framework Wind Energy with Integrated Servo-control (WEIS)2,
which couples WISDEM to the hydro-aero-servo-elastic solver OpenFAST and to the dynamic
Reference OpenSource turbine Controller (ROSCO), will be used. Inclusion of the INN within
a turbine design framework also has other benefits not explored in this paper. Specifically, the
INN can provide analytic gradients of the outputs with respect to the inputs, which enables
efficient gradient-based optimization. Coupled to a framework that provides low-cost gradients,
the speed of the design process could be further increased through these improvements. If a
designer is interested in controlling the airfoil shapes through specific performance metrics, the
INN can be retrained with those metrics as inputs to the inversion process. Although we used
L/D, CD, and t/c as design variables in this work, those are not the required parameters for
the framework, and any desired metric could be used instead. Ongoing work is also focused on
improving the accuracy of the INN relative to performance data obtained from CFD. Lastly,
there is ongoing work to use CFD data from 3D simulations of the blade to train the INN. This
would move away from the 2D airfoil approach and allow for more realistic prediction of the 3D
aerodynamic performance of the full blade.
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