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Abstract—Hosting capacity is an indication of the amount of
solar photovoltaics (PV) that can be hosted in a distribution
system without additional changes to infrastructure or oper-
ations. This paper presents a framework for estimating the
PV hosting capacity at scale. First, we analyze computational,
modeling and other key challenges of performing relevant,
large-scale simulations, provided along with the experiences and
lessons learned. Then, we develop two open-source Python-
based software tools to conduct repeatable distribution analyses:
the Distribution Integration Solution Cost Options (DISCO) for
configuring and analyzing simulations and the Job Automation
and Deployment Engine (JADE) for parallelizing jobs on high-
performance computing clusters. A case study of hosting capacity
estimation for the SMART-DS San Francisco (SFO) 2000+
synthetic feeders, is used to demonstrate the capability of the
developed DISCO+JADE framework and tools. The framework
and tools can help utilities assess the overall hosting capacity of
their service territory, which can help them better plan for the
overall upgrade costs to integrate more PV in the future. The
experiences are shared to aid the tool users and researchers to
conduct relevant studies and research.

Index Terms—Distributed energy resources, Hosting capacity,
Large-scale simulation

I. INTRODUCTION

The fast deployment of distributed solar photovoltaics (PV)
stretches the electric grid toward limitations and creates opera-
tional concerns for utilities. The grid’s ability to accommodate
PV is typically estimated through hosting capacity. In the field,
PV interconnection screening processes are often evaluated
based on the understanding of the feeder hosting capacity [1].
The concept of hosting capacity is defined as the total PV
capacity that can be accommodated on a given feeder without
violating operational constraints [2]. Note that in this paper,
we focus on distributed PV (DPV); thus PV and DPV are used
interchangeably.

Estimating hosting capacity normally involves simulating
many scenarios of different locations and sizes of PV to
evaluate the impact and identify boundary scenarios from
operational violations. This can be done through steady-state
or time-series simulations, and the corresponding results are
often called static or dynamic hosting capacity (SHC or
DHC), respectively. Using steady-state analysis, [3] consid-
ers a limited number of scenarios, including PV distributed
evenly, aggregated near the beginning, and aggregated near
the end of feeders; [4] proposes to estimate hosting capacity
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more comprehensively based on stochastic analysis, generating
many scenarios and penetration levels for PV deployments.
Reference [5] proposes using year-long time-series simulations
to estimate hosting capacity, where the duration of violations
and the movement of the legacy controllers can be captured.
However, because of the large number of scenarios that need
to be considered, past research mostly focused on a limited
number of feeders. It would be beneficial to have a flexible and
scalable framework for estimating feeder hosting capacity, e.g.,
with thousands of feeders and potentially millions of scenarios.
This will help utilities better plan for the overall upgrade costs
to integrate more PV [6], and it will facilitate data analytics of
the interconnection process [7]. To estimate hosting capacity
at scale, one can (but is not limited to) use a smaller number of
scenarios for more feeders [7], speed up each simulation [8],
optimize the computing execution, and use more computing
power [9].

Setting this work apart from previous hosting capacity re-
search, this paper develops a scalable hosting capacity solution
through optimizing models and the computing execution. The
main contributions can be summarized as follows:

o A framework is developed for scalable hosting capacity
estimation. As a byproduct, two open-source Python-
based software tools are developed for conducting re-
peatable distribution analyses and simulation job sub-
mission: namely, the Distribution Integration Solution
Cost Options (DISCO) [10] and the Job Automation and
Deployment Engine (JADE) [11], respectively.

o The challenges and experiences of scalable hosting ca-
pacity estimation are analyzed and discussed, including
computational and modeling challenges.

o The capability of the developed framework and tools
are demonstrated through the SMART-DS San Francisco
(SFO) region 2000+ feeders [12].

II. HOSTING CAPACITY ESTIMATION
A. Methodology

This paper uses a Monte Carlo-based stochastic approach
[4], [13] to estimate hosting capacity. Fig. 1 shows the analysis
flow; both SHC and DHC [5] are shown. Starting with the
feeder models and weather data, the stochastic approach is
used to generate the PV deployment scenarios at different
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TABLE I
SHC METRICS

Metric Threshold
Voltage + 5% deviation from the nominal value
Thermal 100% asset loading

Power quality Voltage unbalance 3%, etc.

Protections Coordination, set points (false/miss detection)
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I }

‘ Generate PV deployment scenarios ‘

[
v i v

Evaluate the impact of each PV
scenario against DHC metrics
across all time points

Evaluate the impact of each PV
scenario against SHC metrics
across a few selected time points

i

i

i

i

' ‘
* i

i

i

Compute DHC range ‘ ! ‘ Compute SHC range

Dynamic hosting capacity analysis Static hosting capacity analysis

Fig. 1. Hosting capacity analysis flowchart

penetration levels and for a diverse spatial distribution accord-
ing to the technique introduced in [14]. Next, the impact of
each PV scenario is independently assessed with regard to
operational metrics and thresholds. Examples of SHC metrics
and thresholds are shown in Table I [2], [13]. Based on the
impact assessment, the hosting capacities of the system under
study are determined.

In addition, because of the stochastic nature of the PV
deployment (location, size), the analysis typically results in
a range of hosting capacities for each system, which are
characterized by minimum and maximum hosting capacities
[4].

1) Generating PV Deployments: Because it is nearly im-
possible to perfectly predict the adoption pattern of PV in
terms of location and size distribution, we develop several
adoption patterns or deployment samples to capture diversi-
fied and realistic PV scenarios [14]. The developed process
considers three spatial placement types: close, random, and
far. In each spatial placement type, the deployment of PV is
incremental from one penetration level to next; therefore, each
PV scenario is uniquely identified by its placement, sample,
and penetration level.

2) Multi-Time-Point SHC Analysis: Instead of a single
snapshot, the multi-time-point SHC analysis considers several
grid conditions that are often used in grid planning studies.
The most common four conditions include minimum daytime
load, maximum PV output, minimum net load, and maximum
load, which are extracted from load and solar irradiance
profiles. The thermal and voltage impacts of integrating each
PV scenario into the distribution grid are assessed for these
conditions. In the end, the worst-case results from the four
conditions are selected.
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3) DHC Analysis: Unlike the multi-time-point SHC analy-
sis, which evaluates the grid impact at a few selected time
points, the DHC analysis assesses the impact of each PV
scenario across year-long time series. DHC analysis allows
violations for a short duration, and it can track moving
averages and device operation counts. More details on the
DHC metrics and suggested thresholds can be found in [5].

B. Challenges and experiences of Estimating Hosting Capac-
ity at Scale

This subsection lists the challenges and considerations of
estimating hosting capacity at scale. In each listed challenge or
consideration, it is also provided alongside with a description
of how the developed framework (i.e. DISCO, JADE tools)
approaches them.

1) Computational Challenge: The main challenge is how
to use computational resources efficiently to manage large
numbers of jobs under the constraints of central processing
unit (CPU) cores, memory, and storage space. Here we con-
sider the use of high-performance computing, with access to
multiple compute nodes simultaneously. Ideally, one can use
as many as compute nodes as are available; however, not
only are the resources limited, but also, in many cases, the
benefit of using more nodes is outpaced by the burden of the
communication among nodes [9]. Conveniently, in the case of
estimating hosting capacity, the PV deployment scenarios can
be run independently (naturally partitioned) with little com-
munication required (data dependence and synchronization)
among nodes.

2) Modeling Challenge: This is related to the standardiza-
tion of the data and models. Models can take many forms,
and it is impractical to support all models. DISCO [10] defines
standard models and then provides transformations for specific
formats. For example, DISCO can run simulation both at the
feeder level and the substation transformer level. Also, note
that the actual power flow is conducted through OpenDSS
[15]; DISCO leverages PyDSS [16], an OpenDSS Python
wrapper that provides PV control functions with enhanced
convergence (i.e., volt-var, volt-watt) and many other func-
tions.

3) Other Practical Considerations:

o Computational burden load balancing refers to the prac-
tice of distributing approximately equal amounts of work
among processors so that all processors are kept busy all
the time [17]; otherwise, the slowest task will determine
the overall run time. In the case of estimating hosting
capacity, different feeders with different numbers of cir-
cuit elements that create challenges to computational load
balancing (not to be confused with the load in customer
demand in kilowatts). In DISCO, a linear regression
model is developed to predict the job run times with the
predictor variables that include the numbers of PV units
and circuit elements. Based on the predicted run time,
the jobs can be batched and allocated roughly evenly to
the processors. This linear regression model builds its
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estimates based on a training dataset created by dry run
jobs.

o Often, not all jobs will successfully run the first time due
to issues including model errors, computational limits, or
convergence challenges. The capability to test run, debug,
and rerun failed or missing jobs is critical for managing
large numbers of jobs. Both DISCO and JADE have
comprehensive logging functionalities for each steps of
the simulation providing meaningful debug information
to the users and developers. In addition, JADE records
status for each simulation job (i.e. pass or fail), and has
a function that directly re-submit the failed jobs.

o Job monitoring and reporting are important because
the execution information can be used for tuning the
simulation parameters such as required computational
nodes on HPC, simulation wall time, job batch size per
computational node, etc. The reported metrics for job
execution in JADE include individual job status, errors
and events, job execution times, and compute resource
utilization statistics such as CPU and memory usage,
and networked communication related metrics! (e.g. time
consumed transmitting packets from CPU to hard drives,
hard drives to CPU).

o Care is required in data architecture and formats when
working with large quantities of input and output data.
Data storing, query, sharing are critical to data man-
agement and analytics. DISCO has build-in function to
ingest raw output of the simulation results into a SQLite
database. The current database schema are designed for
distribution impact analysis, e.g. hosting capacity.

I1II. DEVELOPED OPEN-SOURCE TOOLS
A. Hosting Capacity Estimation with DISCO

DISCO—an NREL-developed, open-source tool—is a col-
lection of integrated functions that can be used to automate
a wide range of electric distribution analyses at scale. For
instance in the LA100 distribution analysis effort, it was
used to conduct impact analysis and estimate upgrade costs
for thousands of feeders with hundreds of scenarios each
[18]. Here we focus on its use for distributed PV hosting
capacity estimates. Fig. 2 shows the flowchart for the main
steps to run the hosting capacity estimation. These blocks
are briefly described as follows, and more details about the
implementation and examples can be found in [10]:

o Prepare the OpenDSS models and directory structures
according to the data sources defined by DISCO, then
provide the input path to DISCO. Four types of data
sources are currently supported.

e Transform the source of the OpenDSS models into
DISCO models. In the case of hosting capacity, the
transformed DISCO models include PV deployment sce-
narios and OpenDSS instances through PyDSS with PV
control enabled as well as functions such as selectively
saving simulation results. These functions and the files

Thttps://mrel.github.io/jade/tutorial.html#resource-monitoring
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are described by a JSON file, which is the output of this
step.

o Configure the JADE jobs based on the DISCO models
with customized execution requirements. Execution on a
high-performance computer (HPC) is highly configurable
depending on the job resource requirements, e.g., the
number of computational nodes to use, the number of
jobs to run in parallel on each node. The output is an
updated JSON file from the previous step with the added
entries including all the job configuration information.

e Submit the jobs with JADE based on the JSON file.
Underneath, JADE uses subprocess management [19]
to parallelize the execution of the jobs on either HPC
clusters (with Slurm [20]) or stand-alone computers. The
submitted jobs will be run once the requested resources
become available.

o After the jobs are complete, JADE can assist with the
execution analysis by showing summaries of the individ-
ual job status, errors and events, job execution times, and
compute resource utilization statistics. DISCO provides
simulation results analysis and certain visualizations.

B. JADE for Submitting Jobs

JADE [11] automates the parallelized execution of jobs. It
has specific support for distributing work on HPC compute
nodes, but it can also be executed on stand-alone computers.
Some important features are described as follows; for more
information, see [11]:

¢ Maximizing the number of jobs that can be completed
on a given node in a specific time duration is critical
to optimize jobs on HPC systems, even more so if the
HPC systems are managed such that the computational
nodes are typically allocated for a limited period of time
and are not always available. JADE constructs per-node
job batches by accounting for job duration, number of
required and available CPUs, and allocation time to max-
imize the use of each node. JADE allows customization
of all parameters.

o For job monitoring and reporting, for example, after the
simulation jobs are submitted, JADE provides ways to
monitor the simulation status and results, find failed jobs,
and restart them.

o For pipeline capability, JADE allows users to specify
inter-job dependencies and pipeline stages to submit all
work in one step. JADE implements a distributed submit-
ter protocol’> whereby a node can submit new jobs once
dependent jobs are complete. This obviates the need to
monitor jobs from a software application that must remain
running for the duration of the work, which can take
multiple days or weeks, depending on node availability.

IV. CASE STUDIES

The capability of the developed framework is demonstrated
on the SMART-DS synthetic SFO 2000+ feeders [12]. This

Zhttps://nrel.github.io/jade/distributed_submission.html
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Fig. 2. DISCO workflow: bold fonts with grey boxes indicate data input and output; and dashed arrows indicate customized configurations and features.

section analyzes the large-scale simulations and results. We ran
simulations on NREL’s Eagle HPC. The HPC contains 2500+
compute nodes, where each node has 36 cores and at least 90
GB of memory. Only a fraction of these nodes were used at
any given time for this analysis. The synthetic SFO system is
built in the geographic area of the extended San Francisco Bay
Area, California. The data set contains 40 subregions that span
both urban and rural geographies. It covers a total of 2,236
feeders, 4.3 million consumers, 9.8 million electrical nodes,
632 primary substations, and 559,151 distribution transformers
and is publicly available at [21].

A. Large-Scale Hosting Capacity Results

The large-scale hosting capacity estimation result is visual-
ized as the hosting capacity map shown in Fig. 3. The map
color codes feeders based on the percentage of PV hosting
capacity to peak loads. It shows a diverse hosting capacity
results for all 2000+ feeders. Fig. 4 provides a zoom-in
example results for 3 feeder near San Mateo area, which shows
the example feeders can host relatively high PV penetration.
Fig. 5 gives the distribution of the hosting capacity results in
terms of the number the feeders, it roughly follows a normal
distribution except the extreme 0 and 200 percent results.

B. Computational Efficiency

In addition to a large number of feeders under study, the
stochastic approach for estimating hosting capacity requires
running many power flows with different PV scenarios for
each feeder. In this study, there are a total of 849,719 jobs to
run, and each job contains 8 snapshot power flows, including
2 control modes for PV (unity power factor and volt-var) and
4 time points (see Section II.A.2). All the jobs are packed in
batches, and each batch is assigned to compute nodes based on
an estimated run time (see Section II.B.3). Fig. 6 gives the job
simulation time distribution. The average job simulation time
is 12 minutes, with a standard deviation of 8 minutes. The total
simulation time is 10,012,654 minutes, which is equivalent
to 19 years. This is the amount of time needed if all the
simulations were run in a serial program. Using HPC with the
developed framework, we required 1000 computational nodes,
and the total simulation was done in approximately 35 hours,
plus 5 more hours to post-process the results.

V. CONCLUSIONS

This paper has described our experiences estimating PV
hosting capacity at scale for distribution systems. First, we
analyze the key challenges of performing relevant, large-scale
simulation, including computational and modeling challenges,
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Fig. 3. Hosting capacity map for synthetic SFO feeders, where the maximum
hosting capacity percentage relative to peak loads are displayed. Note that this
figure serves as a demonstration only, the values of the hosting capacity might
be different when the analysis assumptions are different, e.g. PV DC-AC ratio,
load and PV values, legacy controls, etc.
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Fig. 4. Zoomed-in hosting capacity map for 3 feeders, other adjacent feeders
are not displayed for better readability.

our experiences and lesson learned are also provided. Then,
two Python-based, open-source tools are created for modeling
and running the simulations. The case study using the SMART-
DS SFO 2000+ feeders demonstrates the capability of the
developed framework and tools. Our experience shows that
estimating hosting capacity at scale requires large number of
power flow simulations, it is critical to efficiently manage the
limited computational resources.

The outcomes from this research can help utilities better
plan for the overall costs of integration, and it can help enable
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data analytics of the interconnection process. Future work
will include large-scale simulations of DHC and cost-benefits
analysis of traditional upgrade and non-wire alternatives.
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