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Executive Summary 
Electrical energy plays a vital role in our socio-economic activity; therefore, ensuring the reliability of the 
electric grid is critical—from generation to transmission to distribution. To maintain the power system 
parameter (i.e., frequency, voltage, and more), optimally, balancing generation and consumption is 
essential. However, solar energy is variable by nature because of cloud cover and other local phenomena. 
Hence, photovoltaic (PV) power generation brings a significant challenge to grid operators due to the 
inherent variability of the energy source. The complexity of this challenge—in terms of planning and 
dispatch ability of PV resources—aggravates the high-penetration capability of solar energy onto the 
electric grid. Therefore, to alleviate the solar energy variability and the effect on high-penetration 
capability, reliable solar radiation forecasting models based on accurate, high-quality input data become 
essential. To develop a suitable model for predicting solar radiation, high-quality, historical, real-time 
measurement is also needed. 

In this study, researchers from India’s National Institute of Wind Energy (NIWE) and the U.S. 
Department of Energy’s National Renewable Energy Laboratory (NREL) jointly developed and tested 
short-term solar forecasting frameworks using Smart Persistence and the Physics-based Smart Persistence 
model for Intra-hour forecasting of solar radiation (PSPI). We also benchmarked nine data imputation 
techniques in 15 Solar Radiation Resource Assessment (SRRA) stations, located in different parts of 
India. 

For various technical reasons, during any measurement campaign, researchers may miss a few 
observations. However, these missing observations often reduce the performance of any forecasting 
model. Therefore, a suitable data imputation method would assist researchers in obtaining continuous 
observation of solar radiation.  

Station-by-station and method-by-method analyses were carried out to understand the performance of 
each model. Based on our analysis, among all the data imputation methods, the Kalman data imputation 
method is better for Indian weather conditions. In addition, the Kalman StructTS, Linear, Stine, and 
Arima methods yield slightly inferior accuracy compared to the Kalman method but outperform other 
methods. 

Extended solar radiation data are used by solar forecasting models to predict solar radiation at 15 SRRA 
stations. For short-term forecasting, the PSPI model outperforms the Smart Persistence Model. However, 
the forecast error increases with the forecasting time-scale or horizon. 
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1 Introduction 
Solar energy systems require reliable solar resource data to predict the performance of a solar power plant. These 
data sets are prone to uncertainties and incompleteness. To increase the reliability and usability of such data sets 
for solar energy systems, this study developed a short-term solar forecasting framework using a physics-based 
solar forecasting model and data imputation methods to fill in missing data points.  

Missing and erroneous data may occur for a variety of reasons, including communication and signal issues, sensor 
problems, equipment malfunctions, maintenance and calibration issues, and data outside of physical 
meteorological limit. These issues can range from few minutes to days, and they are unavoidable when measuring 
meteorological parameters, such as the solar resource. However, high-quality temporal resolution solar resource 
data are critical for various solar energy projects during the design, financing, and operation phases of solar 
energy systems (Sengupta et al. 2021). Therefore, it is important to assess data quality and estimate any 
incomplete data set using scientifically and statistically sound imputation methodologies. Currently, there are no 
consensus methodologies for assessing data quality and data imputation for solar irradiance measurement data. 
However, there are many methods developed over the years by various researchers. Some research organizations 
developed data quality assessment models that identify erroneous data, including QCRad, SERI-QC, and the 
Baseline Surface Radiation Network (BSRN). These were developed by the Atmospheric Radiation Measurement 
(ARM) program network (Long et al. 2006), the U.S. Department of Energy’s National Renewable Energy 
Laboratory (NREL) (Maxwell et al. 1993), and the BSRN of the World Meteorological Organization (WMO) 
(Long and Dutton 2002), respectively.  

This study first investigates the data imputation methodologies to fill erroneous and missing data. To find 
optimum data imputation methodologies, we implemented nine methods, such as linear and autoregressive 
integrated moving average (ARIMA) models, which are described in Denhard et al. (2021). Details of these 
methods can be found in various reports and publications (Denhard et al. 2021; Ekhosuehi and Dickson 2016; 
Grewal 2011; Harvey 1990; Johnston et al. 1999; Lyche and Schumaker 1973; Stineman 1980; Welch and 
Bishop 1995). The data imputation methods in this study will supply extended data for forecasting solar radiation. 

Short-term solar radiation forecasting is often conducted using surface-based observations of global horizontal 
irradiance (GHI) (Kleissl 2013; Yang et al. 2018). Time series analysis or machine learning models are used to 
capture the features in the observed data to understand the underlying causes (David et al. 2016; Dong et al. 2013; 
Inman et al. 2013; Kleissl 2013; Lave et al. 2013; Reikard 2009). Predictions are often made with assumptions 
about the form of the data and the decomposition of the time series into several components, representing various 
statistical patterns. However, substantially well-investigated physics behind GHI have not been heeded by 
forecasting models. For example, extraterrestrial solar radiation is primarily dominated by the seasonal variation 
of the sun-earth distance that can be precisely predicted by physical models (Reda and Andreas 2004). Although it 
exhibits a strong correlation with the GHI forecast, the prediction of extraterrestrial solar radiation is usually 
absent in solar forecasting models that predict all unknown factors together in the form of GHI.  

To overcome this uncertainty, Kumler et al. (2019) developed the Physics-based Smart Persistence model for 
Intra-hour forecasting of solar radiation (PSPI) based on a cloud retrieval technique (Xie and Liu 2013; Xie et al. 
2014). PSPI deconstructs or decomposes solar forecasting into the computation of solar zenith angle, 
extraterrestrial solar radiation, and the prediction of cloud properties. The cloud fraction and cloud albedo are 
estimated using radiative transfer theory and surface-based observations of solar radiation. Their future variability 
is predicted using an exponentially weighted moving average with the assumption of persistent cloud structures. 
The predictions are combined to precisely compute solar radiation.  

Because PSPI has shown consistently better performance than the persistence model and Smart Persistence 
model, it is employed in this study to provide short-term solar forecasting. With the advancements of satellite 
remote sensing, cloud forecasts, and radiative transfer computation (Sengupta et al., 2018; Xie and Sengupta, 
2018; Xie et al., 2018; Xie et al., 2016; Xie et al., 2020; Xie et al., 2019), PSPI has the potential to be improved 
further. 
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2 Methodology 
This Section describes the data imputation methods and short-term solar forecasting models used in this study. 

2.1 Data Imputation Methods 
As stated earlier, many solar energy project phases require high-quality and continuous solar resource data. 
Consequently, it is important to impute missing data to improve the modeling. In this study, we used nine 
methods to test 15 well-maintained SRRA stations with 15 minutes of temporal resolution. Various data 
imputation methodologies can be applied based on the extent and type of missing data. To find the optimum data 
imputation methodology, researchers implemented these nine methods, described in Denhard et al.(2021):  

• Kalman filtering and smoothing for structural time series fitted by maximum likelihood (Section 3, labeled as 
Kalman) 

• Kalman filtering and smoothing for structural time series with additional parameters (Section 3, labeled as 
Kalman_StructTS) 

• Kalman filtering and smoothing for the state-space representation of an ARIMA model (Section 3, labeled as 
ARIMA) 

• Linear interpolation (Section 3, labeled as Linear) 

• Spline interpolation (Section 3, labeled as Spline) 

• Stine interpolation (Section 3, labeled as Stine) 

• Simple moving average (Section 3, labeled as Simple_mvg_avg) 

• Linear weighted moving average (Section 3, labeled as Linear_wted_mvg_avg) 

• Exponential weighted moving average (Section 3, labeled as Exp_wted_mvg_avg). 

The data imputation methods consider available clearness indices, Kt. Then, for the data gaps, Kt were estimated 
using the nine data imputation methods. The clearness index of GHI is defined as the ratio, between measured 
GHI and extraterrestrial (top-of-atmosphere) GHI (ETR). 

𝐸𝐸𝐸𝐸𝐸𝐸 = ETRN ∗  cos(Z) (1) 

where ETRN = direct extraterrestrial, and Z = solar zenith angle.  

Six artificial data gaps were created by following the procedure described in Denhard et al. (2021)—containing 
singular missing data (denoted by bin1), strings of one to two consecutive missing data (bin2), strings of one to 
three consecutive missing data (bin3), strings of one to four consecutive missing data (bin4), strings of one to five 
consecutive missing data (bin5), and strings of one to six consecutive missing data (bin6). The artificial data gaps 
correspond to the measurement data, except for the original gaps. Consequently, these synthetic gaps were 
generated by removing corresponding measured data. Creating these six artificial data gap scenarios helps to 
better evaluate the performance of the nine methods in each gap. The gap-filled data evaluation using various 
statistical metrics was carried out by applying the actual site measurement data without gaps. The methodology of 
the gap-fill approach implemented in this study is shown in Figure 1. 

Furthermore, the data sets that were filled using the data imputation statistical models, were checked for 
“physically plausible limits.” If the data were outside of these limits, these outliers were filled using a Bird clear 
sky model (Bird and Hulstrom, 1981), using criteria described in Figure 1. 
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Figure 1 : Flow chart of the data imputation process for solar irradiance data. 

2.2 Short-term Forecasting of Solar Radiation 

Following the simulation of GHI contributed from direct radiation, diffuse radiation from the first-order cloud 
scattering and that related to multiple scattering between cloud and land surface, the cloud fraction for a single 
cloud layer atmosphere can be derived as: 

𝑓𝑓 =
𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐹𝐹𝑎𝑎𝑐𝑐𝑐𝑐

𝛼𝛼𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 − 𝛼𝛼𝑐𝑐𝐹𝐹↑𝐸𝐸2
(2𝑎𝑎) 

where 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 is clear-sky solar radiation, 𝐹𝐹𝑎𝑎𝑐𝑐𝑐𝑐 is the solar radiation for the surface observation, 𝛼𝛼𝑐𝑐 is cloud albedo, 𝛼𝛼 
is the total of cloud albedo and cloud absorptance, 𝐹𝐹↑ is the upwelling solar radiation reflected by the land 
surface, and T is the transmittance of the atmosphere for diffuse radiation. With the observation or simulation of 
direct solar radiation, cloud fraction can be also derived as: 

𝑓𝑓 =
𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐,𝑑𝑑 − 𝐹𝐹𝑎𝑎𝑐𝑐𝑐𝑐,𝑑𝑑

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐,𝑑𝑑(1 − 𝑒𝑒−𝜏𝜏/𝜇𝜇0)
(2𝑏𝑏) 

where 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐,𝑑𝑑 is the direct solar radiation in the clear-sky condition, 𝐹𝐹𝑎𝑎𝑐𝑐𝑐𝑐,𝑑𝑑 is the direct solar radiation observed as 
the land surface, 𝜏𝜏 is the optical thickness of the cloud, and 𝜇𝜇0 represents the consine value of the solar zenith 
angle. Following a two-stream approximation suggested by Sagan and Pollack (1967), cloud optical thickness can 
be linked with an expression of cloud albedo, the asymmetry factor of the cloud particles, and solar zenith angle: 

𝜏𝜏 =
2𝛼𝛼𝑐𝑐𝜇𝜇0

(1 − 𝛼𝛼𝑐𝑐)(1 − 𝑔𝑔)
(3)

In this study, we predict short-term variation of solar radiation using PSPI (Kumler et al. 2019) and surface-based 
observations of solar radiation. In contrast to the conventional solar forecasting models using time-series analysis 
or machine learning techniques, PSPI is based on the simultaneous retrieval of cloud fraction and cloud albedo 
using the theory of atmospheric radiation (Liu et al. 2021; Xie and Liu 2013; Xie et al. 2014). 
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where g denotes the asymmetry factor of the cloud particles. Therefore, cloud fraction and cloud albedo are 
simultaneously solved from Eqs. (2 and 3). More details on solving the equations and determining the required 
parameters can be found in Xie and Liu (2013).  

Following the cloud retrieval technique, PSPI decomposes the forecasting of solar radiation into the computation 
of solar zenith angle and extraterrestrial solar radiation, the forecasting of cloud fraction and cloud albedo, and the 
computation of GHI. It first computes the solar zenith angle and extraterrestrial solar radiation from the solar 
position algorithm (SPA) (Reda and Andreas 2004). It then retrieves the cloud fraction and cloud albedo using the 
observations of GHI. Direct solar radiation is estimated using the Direct Insolation Simulation Code (DISC) 
model (Maxwell 1987) and the GHI observations. For short-term forecasting, the shape and structure of the 
clouds are assumed as persistent; thus, the cloud optical thickness is persistent in the future time steps. The 
predicted cloud albedo is computed using the cloud optical thickness and the projected solar zenith angle. The 
cloud fraction is predicted using an exponential weighted moving average given by: 

𝑓𝑓′ =
∑ (1 − 𝑎𝑎)𝑖𝑖𝑓𝑓𝑡𝑡−𝑖𝑖𝑡𝑡
𝑖𝑖=0
∑ (1 − 𝑎𝑎)𝑖𝑖𝑡𝑡
𝑖𝑖=0

(4) 

where i represents the time steps in the observations, 𝑓𝑓𝑡𝑡−𝑖𝑖 is the retrieved cloud fraction from the observations, 
and a is a constant smoothing factor. The GHIs in future time steps are finally given from the predicted cloud 
fraction and cloud albedo: 

𝐹𝐹𝑎𝑎𝑐𝑐𝑐𝑐 =
𝐹𝐹1

1 − 𝛼𝛼𝑠𝑠𝛼𝛼𝑐𝑐𝑓𝑓𝐸𝐸2
(5) 

where 𝛼𝛼𝑠𝑠 is surface albedo, and 𝐹𝐹1 is the first-order downwelling irradiance that is given by the cloud fraction, 
cloud albedo, and clear-sky solar irradiance. 

According to the discussion from Kumler et al. (2019), PSPI is combined with the Smart Persistence model to 
achieve better overall performance in all scenarios. For clear-sky conditions and cloud overcast conditions, the 
Smart Persistence model is used, while PSPI is employed to forecast the GHIs related to broken clouds. Kumler et 
al. (2019) also demonstrated that PSPI has a consistently better performance than the persistence model and the 
Smart Persistence model, although an assumption of persistent cloud structures is made. Thus, there is a potential 
to further improve the solar forecasting model when advanced techniques (e.g., machine learning), are used in the 
cloud forecasting. 
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3 Results 
3.1 Data Imputation Methods 
A data imputation analysis was performed using nine data imputation methods to fill gaps in ground-measured 
data. A bin-by-bin analysis was conducted in 15 SRRA stations for 2019. The data imputation methods are plotted 
as subplots from least to greatest error in the order that can be seen in Figures 2–7. In addition, for each method, a 
line plot displaying the station-wise mean absolute error (MAE), in descending order, has been plotted. In Figure 
2, the Stine data imputation method outperformed the other methods, while the simple moving average method 
underperformed. In Figure 3, the ARIMA method performed better than the other methods, and the maximum 
error in Bin2 was higher than in Bin1. 

 
Figure 2 : Result of data imputation methods for Bin1. 
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Figure 3 :  Result of gap-filling methods for Bin2. 
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Figure 4 : Result of gap-filling methods for Bin3. 
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Figure 5 : Result of gap-filling methods for Bin4. 
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Figure 6 :  Result of gap-filling methods for Bin5. 
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Figure 7 : Result of gap-filling methods for Bin6. 
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The maximum error increases from Bin1 to Bin6 as the number of consecutive gaps in each bin increases from 
Figure 2 to Figure 7. The MAE of nine gap-filling methods is also observed to range from 6– 62 W/m2. In Bin1, 
Bin2, and Bin6, the Stine method has a lower error. In other bins, the ARIMA, Kalman, and exponential weighted 
average methods have lower errors. Table 1 displays the method-wise bin-wise average error of all 15 stations.  

According to these results, all of the gap-filling methods have good performance. The Kalman gap-filling method, 
in particular, outperforms the others, while the Kalman_StructTS, Linear, Stine, and ARIMA methods are nearly 
as good. Figure 8 shows the outcome of gap-filled methods and measured data on a typical day. 

 

Figure 8 : Result of gap-filling methods on a typical day. 
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Table 1 : Result of Gap-Filling Methods in Terms of MAE 

 

Table 2 : Result of Method-wise Ranking in each Station 

 

Table 2 shows the ranking of gap-filling methods for all stations. The ranking number is shown in ascending order 
from least to greatest error. It is evident from Table 2 that the Stine method in eight stations, the Kalman method 
in four stations, and the ARIMA method in three stations performed the best. In nine stations, the Kalman method 
is the second-best method; in 10 stations, the Kalman strucTS method is third best. It was also observed that 
Linear, Stine, Spline ARIMA performed almost equally good. 

  

Method Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Overall 

Kalman 18.82 21.52 26.86 27.78 29.02 32.61 26.10 

Kalman_StructTS 18.82 21.52 26.86 27.78 29.08 32.61 26.11 

Linear 18.83 21.49 26.88 27.82 29.05 32.58 26.11 

Stine 18.87 21.47 26.87 27.81 29.08 32.68 26.13 

ARIMA 18.96 21.70 27.00 28.04 29.16 32.66 26.25 

Exp_wted_mvg_avg 19.93 22.91 27.82 29.85 32.46 35.95 28.15 

Linear_wted_mvg_avg 21.22 24.01 28.14 30.46 33.24 36.48 28.93 

Simple_mvg_avg  22.83 25.32 28.77 31.23 34.33 37.47 29.99 

Spline 20.87 24.45 32.92 35.75 36.63 42.01 32.11 

S. 
No 

Station 
Name 

 
ARIMA 

Exp_wted_ 
mvg_avg Kalman 

Kalman 
_structTS Linear 

Linear_wted 
_mvg_avg 

Simple_ 
mvg_avg Spline Stine 

1 AbuRoad 2 6 3 4 5 7 9 8 1 

2 Amarsagar 5 7 1 3 4 8 9 6 2 

3 Bhubaneshwar 5 9 2 3 4 6 7 8 1 

4 ChitraDurga 1 6 2 3 4 7 8 9 5 

5 Erode 5 6 2 3 4 7 8 9 1 

6 Jabalpur 5 6 2 3 4 7 8 9 1 

7 Kadiri 6 5 1 2 3 7 8 9 4 

8 KotadaPitha 5 6 1 2 3 7 8 9 4 

9 Leh 1 6 2 3 4 7 8 9 5 

10 Mahabubnagar 5 6 1 2 3 7 8 9 4 

11 Pandharpur 5 6 2 3 4 7 8 9 1 

12 PortBlair 1 6 3 4 2 7 8 9 5 

13 Rajahmundry 5 6 2 3 4 8 9 7 1 

14 Shegaon 5 6 2 3 4 7 8 9 1 

15 Trichy 5 6 2 3 4 7 8 9 1 
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Table 3 : Result of Station-wise Ranking of all Gap-Filling Methods for Bin6 

 

Table 3 shows the station-wise ranking of all data imputation methods for Bin6. Because we're interested in larger 
bin gaps, the data imputation methods have been evaluated in Bin6. In each method, we ranked the station 
performance. The ranking number is shown in ascending order from least to greatest error. It is evident from 
Table 3, in Bin6, that all data imputation methods—except ARIMA—performed similarly in all stations. From the 
selected stations, AbuRoad has the least error, and Trichy has the highest error. 

According to these results, the Exp wted mvg avg, Linear wted mvg avg, Simple mvg avg, and Spline methods 
performed poorly in all stations when compared to the remaining methods.  

3.2 Solar Forecasting 
A study was conducted to evaluate the performance of the PSPI and Smart Persistence forecasting models in 15 
SRRA stations for 2019. Figures 9–14 depict the models’ performance over various forecast horizons. The hourly 
performance of the forecasting models was plotted as subplots in each figure, and a line graph for station versus 
error metrics (MAE) was plotted in each subplot. The figures show that the PSPI model outperforms the smart 
persistence model and the error of radiation forecast increases as the forecast horizon increases.  

According to Central Electricity Regulatory Commission (CERC) of India the guidelines were, intraday revisions 
are permitted every 1.5 hours, and schedule revisions must be submitted 1 hour before the intraday revision. As a 
result, in this analysis, we are interested in forecasting up to 2.5 hours ahead (150 mins). Table 4 shows the 
average error for each of the 15 SRRA stations. 

  

S. 
No 

Station 
Name 

 
ARIMA 

Exp_wted_ 
mvg_avg Kalman 

Kalman 
_structTS Linear 

Linear_wt
ed 

_mvg_av
g 

Simple_ 
mvg_av

g Spline Stine 

1 AbuRoad 2 1 1 1 1 1 1 1 1 

2 Amarsagar 1 3 3 3 3 3 3 3 3 

3 Bhubaneshwar 3 4 4 4 4 4 4 4 4 

4 ChitraDurga 4 11 11 11 11 11 11 11 11 

5 Erode 6 10 10 10 10 10 10 10 10 

6 Jabalpur 5 6 6 6 6 6 6 6 6 

7 Kadiri 7 13 13 13 13 13 13 13 13 

8 KotadaPitha 8 8 8 8 8 8 8 8 8 

9 Leh 9 14 14 14 14 14 14 14 14 

10 Mahabubnagar 11 12 12 12 12 12 12 12 12 

11 Pandharpur 10 9 9 9 9 9 9 9 9 

12 PortBlair 13 7 7 7 7 7 7 7 7 

13 Rajahmundry 12 5 5 5 5 5 5 5 5 

14 Shegaon 14 2 2 2 2 2 2 2 2 

15 Trichy 15 15 15 15 15 15 15 15 15 
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Table 4 : Result of Solar Radiation Forecast in Terms of MAE 

 15 mins ahead 60 mins ahead 150 mins ahead 

Hour PSPI 
Smart 

Persistence PSPI 
Smart 

Persistence PSPI 
Smart 

Persistence 

7 47.80 43.85     

8 52.31 54.92 77.43 129.27   

9 70.44 70.58 93.78 108.35 139.27 246.88 

10 88.24 86.64 112.35 119.54 144.14 204.55 

11 104.40 101.47 127.85 132.52 161.04 179.11 

12 112.78 110.20 140.84 144.44 173.23 179.22 

13 105.30 103.23 139.24 141.71 172.95 176.61 

14 87.99 86.47 124.34 127.15 165.92 170.26 

15 62.95 63.42 100.60 104.57 142.09 149.59 

16 38.74 40.05 73.37 77.24 107.95 118.47 

17 19.69 20.51 41.58 45.43 63.69 72.60 

18 9.82 9.70 16.03 18.99 23.63 29.75 

Average 66.70 65.92 95.22 104.47 130.10 153.52 

 

The PSPI and Smart Persistence models outperformed the other forecast horizons in the 15-min forecast horizon. 
As shown in Table 4, the forecasting model's error increases as the forecasting horizon lengthens. 

In all forecast horizons, the error of the PSPI model is higher in the 12th and 13th time horizons. 
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Figure 9 : Result of 15-minute-ahead solar radiation forecast. 
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Figure 10 : Result of 30-minute-ahead solar radiation forecast. 
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Figure 11 : Result of 60-minute-ahead solar radiation forecast. 
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Figure 12 : Result of 90-minute-ahead solar radiation forecast. 
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Figure 13 : Result of 120-minute-ahead solar radiation forecast. 
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Figure 14 : Result of 150-minute-ahead solar radiation forecast. 

When compared to other time horizons, the error of the Smart Persistence radiation forecast model is higher in the 
early hours. The average error of the PSPI and Smart Persistence models in the forecast horizons shown is 
between 65 and 153 W/m2. 
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4 Conclusions 
A short-term solar forecasting platform was developed using a physics-based solar forecasting model and data 
imputation methods, which was tested using data from 15 solar radiation stations from the SRRA network. Nine 
data imputation methods were validated at all stations. In a method-by-method comparison, the Kalman method 
outperformed other methods. In a station-by-station analysis, the Stine method performed best in eight stations. 
Overall, the Kalman method outperforms others. The Kalman strucTS, Linear, Stine, and ARIMA methods all 
performed equally well. After data imputation, it is now possible to produce continuous solar forecasts with the 
extended observations. According to the results and analysis, the PSPI forecast method outperforms the Smart 
Persistence model at all stations. The forecast model's error increases as the forecast horizons lengthen. The 
maximum error occurs between the 12th and 13th hours. 
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