
����������
�������

Citation: Doekemeijer, B.M.; Simley,

E.; Fleming, P. Comparison of the

Gaussian Wind Farm Model with

Historical Data of Three Offshore

Wind Farms. Energies 2022, 15, 1964.

https://doi.org/10.3390/en15061964

Academic Editor: Antonio Crespo

Received: 14 January 2022

Accepted: 5 March 2022

Published: 8 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Comparison of the Gaussian Wind Farm Model with Historical
Data of Three Offshore Wind Farms
Bart Matthijs Doekemeijer * , Eric Simley and Paul Fleming

National Wind Technology Center, National Renewable Energy Laboratory, 19001 W 119th Ave,
Arvada, CO 80007, USA; eric.simley@nrel.gov (E.S.); paul.fleming@nrel.gov (P.F.)
* Correspondence: bart.doekemeijer@nrel.gov

Abstract: A recent expert elicitation showed that model validation remains one of the largest barriers
for commercial wind farm control deployment. The Gaussian-shaped wake deficit model has grown
in popularity in wind farm field experiments, yet its validation for larger farms and throughout
annual operation remains limited. This article addresses this scientific gap, providing a model
comparison of the Gaussian wind farm model with historical data of three offshore wind farms. The
energy ratio is used to quantify the model’s accuracy. We assume a fixed turbulence intensity of
I∞ = 6% and a standard deviation on the inflow wind direction of σwd = 3◦ in our Gaussian model.
First, we demonstrate the non-uniqueness issue of I∞ and σwd, which display a waterbed effect when
considering the energy ratios. Second, we show excellent agreement between the Gaussian model
and historical data for most wind directions in the Offshore Windpark Egmond aan Zee (OWEZ) and
Westermost Rough wind farms (36 and 35 wind turbines, respectively) and wind turbines on the
outer edges of the Anholt wind farm (110 turbines). Turbines centrally positioned in the Anholt wind
farm show larger model discrepancies, likely due to deep-array effects that are not captured in the
model. A second source of discrepancy is hypothesized to be inflow heterogeneity. In future work,
the Gaussian wind farm model will be adapted to address those weaknesses.

Keywords: FLORIS; model validation; model comparison; offshore wind; wake steering; SCADA;
historical data; energy ratio; data post-processing; data analysis

1. Introduction

The commercial interest in wind farm control is growing substantially. Although
one leading wind turbine manufacturer already provides a wake-steering solution to its
customers [1], other original equipment manufacturers and wind farm owners have not yet
commercialized the concept. However, several leading wind turbine manufacturers and
wind farm developers are actively testing or have been involved with wind farm control
experiments, such as Envision Energy [2], TransAlta Renewables [3], NextEra Energy [4,5],
General Electric (GE) [6], Renewable Energy Systems (RES) [7], and Engie [8]. According
to two recent surveys among a mixed group of experts in academia and industry [9,10],
the main challenge preventing wide-scale adoption is validation. The success of a field
experiment is highly correlated with the accuracy of the wake model used to devise the
control strategy. As field experiments in the literature inconsistently show power gains
and losses caused by wake steering, the reliability of the wake models leveraged in these
experiments comes into question.

Wind farm control algorithms typically rely on an engineering wind farm flow model
to perform many computations at a low computational cost to iterate towards an optimal
control policy [11]. Engineering wind farm flow models have been compared to historical
wind farm data extensively in the literature. Crespo et al. [12] present an early literature
review on wake modeling methods, and present various comparisons of engineering
models to wind tunnel and field data, showing reasonable agreement with most models
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for an 8-turbine array. Rados et al. [13] compare six engineering models to historical data
of the Vindeby and Bockstigen offshore wind farms, showing significant variability in
the model predictions. Machielse et al. [14] compare their in-house engineering model
to field data of a onshore array of five 2.5 MW turbines, spaced 3.8 rotor diameters (D)
apart. Renkema [15] compare various engineering models to field data of the Prettin
wind farm, which is a small site with GE 1.5 MW turbines, and the Colorado Green wind
farm with 108 GE 1.5 MW turbines. The power ratio was calculated and the wake losses
were quantified. The authors find that the engineering model by Jensen [16] and the eddy
viscosity model by Ainslie [17] show the best agreement with the historical data. Barthelmie
et al. [18] compare the Wind Analysis and Application Program (WAsP) engineering model
to historical data of the Middelgrunden offshore wind farm with 20 Bonus 2 MW wind
turbines. Their wind farm flow model is largely derived from the works of Jensen [16]
and Katic et al. [19]. The authors find reasonable agreement between the model and the
historical data. However, with a turbine spacing of 2.4 D, it is difficult to generalize these
findings. Barthelmie et al. [20] compare a variety of wind farm models to the historical
data of the Horns Rev offshore wind farm with 80 turbines. They compare the power ratio
for various 5–8 turbine arrays. Then, Barthelmie et al. [21] compare various engineering
models to historical data of the Nysted wind farm with 72 turbines and the Horns Rev
wind farm. The power ratios are compared for various turbine arrays and a generalized
wind farm efficiency is calculated and compared. The large-eddy simulation model seems
to outperform the engineering models, which may suggest that the wake superposition
principle in the engineering models may lead a loss in model accuracy in large offshore
wind farms. Beaucage et al. [22] used the same datasets of the Nysted and Horns Rev
wind farm to compare against six commercial and research wake models. They look at
turbine arrays of 8 and 10 turbines. The authors split the data by unstable, near-neutral,
and stable atmospheric conditions and also look at both 5 deg and 30 deg wind direction
sectors. The authors find that the Jensen and Eddy Viscosity model work well until
2–3 turbines downstream, and further in the array tend to overestimate wake recovery.
Gaumond et al. [23] propose a different way in comparing engineering models to historical
data by using a weighted combination of model simulations to deal with wind direction
variability and uncertainty. The authors compare three engineering models to historical
data of the Horns Rev offshore wind farm. The inclusion of wind direction variability
in model simulations significantly improves agreement between the engineering model
and historical data. Nygaard [24] compare their Jensen [16]-based model to historical data
of 5 large offshore wind farms, being the 51-turbine Walney I wind farm, the 51-turbine
Walney II wind farm, the 175-turbine London Array farm, the 111-turbine Anholt farm,
and the Nysted wind farm. Their engineering model only deviates significantly from the
London Array wind farm and shows good agreement with data of the other four farms.
The same author compares the Jensen [16] model to historical data of 10 offshore wind
farms in pursuit of model uncertainty quantification in Nygaard [25]. Across the 10 farms,
the results suggest an average model uncertainty that is 15% of the wake loss. Tian et al. [26]
proposed a new engineering model based on the Jensen [16] model. The authors compare
their new model with historical data with 18 0.3 MW turbines of the Sexbierum wind
farm, and with a single turbine of the Nibe wind farm. The results show that the new
model better agrees with the wake deficit and shape behind a single turbine at various
distances downstream, from 2.5 D to 8 D. Walker et al. [27] compare four engineering
models to historical data of five wind farms. The authors look at the power ratio for
various turbine arrays and narrow wind direction sectors. Additionally, they look at
the wind-farm-wide energy yield for various wind directions and wind speeds, and a
measure for the AEP. Like most articles in the literature, the authors do not identify
specific strengths or weaknesses in the model, but rather provide a high-level insight into
each model’s accuracy. The authors find that no model exceeds a maximum wake loss
error of 22%, and therefore propose to reduce the commonly assumed uncertainty of 50%
to be reduced to 25% in engineering-model-based wind farm energy yield predictions,
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in agreement with Nygaard [25]. Archer et al. [28] compare six engineering wind farm
flow models to historical data of the Lillgrund offshore wind farm with 48 Siemens 2.3 MW
turbines, the Anholt offshore wind farm with 111 Siemens 3.6 MW turbines, and the
Nørrekær onshore wind farm with 13 Siemens 2.3 MW turbines. These wind farms vary
in regular and irregular layouts, and densely to sparsely spaced. Generally, they find that
the Jensen [16] model and their own Gaussian-based wake deficit model demonstrate the
best agreement with the historical data. The authors consider the model performance
for specific, aligned, and near-aligned wind turbine arrays at different wind directions.
However, a broader picture of performance over the full wind rose is missing, and certain
partial overlap and irregularly spaced situations are not considered. The authors find
that the more packed the wind farm is, the less accurate the engineering models are.
Furthermore, the engineering models are more likely to underpredict wake depth, perhaps
related to the wake superposition approach by Katic et al. [19] that the engineering models
rely on. Nygaard and Newcombe [29] compare the Jensen [16] model and a top–down
model to dual-Doppler radar measurements of the 35-turbine Westermost Rough offshore
wind farm. The results show that strong coastal gradients complicate the comparison
study, and the results are inconsistent in whether the models overestimate wake recovery
far downstream. Nygaard et al. [30] propose two new engineering models to deal with
large wake clusters and wind farm blockage, respectively. The models are compared
with historical data of the Westermost Rough wind farm, showing improved performance
over the Jensen [16] model, though discrepancies remain. Hamilton et al. [31] compare
various engineering wake models to historical data of the Lillgrund offshore wind farm.
The authors demonstrated that different analytical models and model choices agree better
with historical data in different atmospheric conditions and farm depths. This analysis
was limited to a single wind farm with uncommonly close turbine spacing of 3.2 D to
4.3 D. The results generally showed a high accuracy for the first few rows of turbines,
after which accuracy gradually dropped with wind farm depth. It must be noted that
most of these articles assume the default model parameters in their comparisons. Thus, it
remains uncertain if different models would have performed better had they been tuned to
historical data prior to the analysis.

More recently, on the topic of wind farm flow control, Fleming et al. [2] performed a
wake steering field experiment using a sector-based modification of the Jensen [16] wake
deficit model and the wake deflection model by Jiménez et al. [32]. The authors compare
the model predictions against field measurements of two-turbine pairs. They generally find
reasonable agreement in wake deficit and wake displacement at the downstream turbines.
Then, the authors perform a similar field experiment study in Fleming et al. [4,5], but now
with a Gaussian-shaped wake model that includes the effect of counter-rotating vortices,
the so-called Gaussian-Curl-Hybrid (GCH) model, according to the works of Bastankhah
and Porté-Agel [33], Martínez-Tossas et al. [34], and King et al. [35]. The authors again
look at two-turbine pairs, where a single upstream turbine is misaligned with the flow to
increase the yield of the pair. The results show that the GCH model agrees well with the
measurements in terms of the wake loss experienced by waked turbines. The authors also
suggest that there is a real need for models to capture a “secondary steering” effect, which
is included in the model by the authors. Then, Fleming et al. [7] use the GCH model for
another onshore field experiment for wake steering, again looking at two-turbine pairs at 6
D and 8 D distances, while the experimental data shows large uncertainty bounds, the GCH
model seems to capture the general wake loss trends well. Ahmad et al. [36] demonstrates
a wake steering field campaign in which the optimal yaw setpoints were designed using
a Jensen [16]-based model that additionally accounts for turbulence intensity. Evidence
that confirms the reliability of this engineering model is not presented. Howland et al. [3]
propose a model based on aerodynamic lifting line theory and follows similar assumptions
on the Gaussian shape of the wake and the principle of wake superposition. The authors
find good agreement between their simplified model and 5 years of historical field mea-
surements from a 6-turbine wind farm. They also find reasonable agreement between the
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model and field data in wake steering operation, though the results show significantly more
deviations than the five years of historical data. van der Hoek et al. [37] demonstrate a
field experiment on axial induction control in arrays of 5 and 6 turbines at the Goole Fields
onshore wind farm. They compare their in-house FarmFlow engineering model, which is
based on a steady-state, three-dimensional, parabolized simplification of the Navier–Stokes
equations. Without tuning the model to historical data, the model predictions show reason-
able agreement with the measurements. Doekemeijer et al. [6] present a field experiment
for wake steering on 2- and 3-turbine pairs at the Sedini onshore wind farm. The authors
use the simplified wind farm flow model from Bastankhah and Porté-Agel [33]. They show
reasonable agreement between their model and field measurements for the wake locations,
yet the wake depth shows significant discrepancies. Bossanyi and Ruisi [38] present a
field experiment for axial induction control on the same site as Doekemeijer et al. [6], but a
different set of turbines. The authors compare a set of engineering models based on the
Ainslie [17] model and the model by Bastankhah and Porté-Agel [33] to historical data of
the site. The models all compare fairly equally, though the stability-dependent Ainslie [17]
model by the authors shows marginally better agreement with the historical data for day-
time and nighttime, though discrepancies remain. Simley et al. [8] use the same GCH
model as Fleming et al. [7] for a wake steering field experiment at a commercial wind farm,
again looking at two-turbine interactions, now at 4 D spacing. The authors conclude that
the simplified model agrees reasonably well with the field measurements.

Reflecting on the literature, it appears that the GCH model by Bastankhah and Porté-
Agel [33], Martínez-Tossas et al. [34] and King et al. [35] is the most prevalent engineering
model in wake steering field experiments. In non-wake-steering operation, the GCH model
falls back to the Gaussian wind farm flow model by Bastankhah and Porté-Agel [33]. This
wake deficit model was initially calibrated through wind tunnel measurements in the
original article [33], and has since received limited validation in comparison to historical
data in the literature. The articles by Fleming et al. [4,5], Doekemeijer et al. [6], Fleming
et al. [7], Simley et al. [8] assessed the engineering model’s accuracy in comparison to field
data in two- and three-turbine arrays. Archer et al. [28] compare the model to historical
data of 3 wind farms, varying in number of turbines from 13 to 111, in regularly and
irregularly spaced farms, and in spacing between the turbines from closely spaced at 3.3 D
to more regularly spaced at 5 D. Their results show that the Gaussian model by Bastankhah
and Porté-Agel [33] generally over-predicts the power production of waked turbines.
The authors also show that the model typically is outperformed by the Jensen [16] model
and the authors’ own Gaussian wake deficit model. The authors do not explain where
the model discrepancies originate from. Finally, Hamilton et al. [31] compare historical
data of the densely spaced Lillgrund wind farm to the Gaussian wake deficit model.
The authors limit their analysis to steady historical data and remove any measurements
during transient atmospheric conditions. The authors find reasonable agreement with the
field data, but also find that different wake models and wake superposition models work
better for different scenarios.

This article presents several novel contributions to the literature. To this date, no
literature exists in which the Gaussian wake deficit model from Bastankhah and Porté-
Agel [33] is compared to historical field data with the objective of informing on further
model development. Namely, the current literature is either focused on small [4–8] or
uncommonly dense wind turbine arrays [31], or only looks at the high-level accuracy of the
model [28]. Additionally, the majority of comparisons of engineering models to historical
data have been for narrow wind direction sectors or particular scenarios, rather than for
the entire annual operation cycle of the farm. Finally, there has been a significant lack
of the inclusion of inflow and measurement uncertainty in the validation of engineering
models. This article bridges these gaps by comparing the Gaussian wind farm flow model
from Bastankhah and Porté-Agel [33] to historical data of three large offshore wind farms.
We consider the important effect of wind direction variability following the approach of
Gaumond et al. [23] and include in our analysis the transients in the atmosphere, in contrast
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to Hamilton et al. [31]. Further, the article at hand uses the energy ratio method to identify
situations in which the engineering model diverges significantly from the historical data,
identifying fundamental aerodynamic effects that may lack in the model. By doing so,
we pave a clear path forward for future model development. Additionally, this article
represents multiple years of work on the historical data processing, validation methods,
and metrics (e.g., the energy ratio) for model validation. The methods are now contained
in an open-source repository [39], which is an equally important contribution.

The article is organized as follows: Section 2 presents the three offshore wind farms
from which historical data are compared. Section 3 discusses how the raw data are pro-
cessed. Then, Section 4 explains the energy ratio metric and how it is used both for wind
direction calibration and for model validation. Section 5 presents the engineering wind
farm flow model in more detail. Section 6 shows the energy ratios for various turbines for
each of the three wind farms, demonstrating the model strengths and weaknesses. Finally,
the article is concluded in Section 7.

2. Wind Farms and Measurement Campaigns

Historical data of three offshore wind farms are used for validation in this article.
Essential information of the three farms is summarized in Table 1. The farm layouts are
shown in Figure 1.

Table 1. Essential information for the three offshore wind farms.

Farm Name Anholt OWEZ Westermost Rough

No. of turbines 111 36 35
Rotor diameter, D (m) 120.0 90.0 154.0
Turbine capacity (MW) 3.6 3.0 6.0
Min. turbine spacing (D) 5 7 6

,


,


Figure 1. Layouts of the three wind farms: Anholt, Egmond Aan Zee (OWEZ), and Wester-
most Rough.
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The first and largest of the three wind farms is the Anholt offshore wind farm off the
coast of Denmark. It comprises 111 Siemens SWT-3.6-120 wind turbines, each with a rated
power of 3.6 MW. Supervisory control and data acquisition (SCADA) data for this wind
farm were recorded from January 2013 to June 2015 at 10 min intervals. Wind direction
measurements were not recorded; instead, the wind direction at each turbine was assumed
to be equal to the nacelle heading in the remainder of the analysis.

The second wind farm is the Windpark Egmond aan Zee (OWEZ) wind farm off the
coast of the Netherlands. It consists of 36 Vestas V90 wind turbines, each with a rated
power of 3.0 MW. SCADA data for this wind farm were recorded from December 2006 to
December 2010 at 10 min intervals. Wind direction measurements were not recorded;
instead, the wind direction at each turbine was assumed to be equal to the nacelle heading
in the remainder of the analysis.

The third wind farm is the Westermost Rough wind farm off the coast of the United
Kingdom. It comprises 35 Siemens wind turbines, each with a rated power of 6.0 MW.
SCADA data for this wind farm were recorded from January 2016 to December 2017 at
10 min intervals. Wind direction measurements were not recorded; instead, the wind
direction at each turbine was assumed to be equal to the nacelle heading in the remainder
of the analysis.

The wind turbines in those farms were operated under normal conditions during data
recording. Therefore, wake steering by yaw misalignment cannot be validated with those
data sets. Instead, their function is primarily related to the validation of the velocity deficit,
recovery, and non-yaw-induced wake displacement (e.g., secondary steering) effects.

3. Data Preprocessing

Historical data often contain measurements that are contaminated by faulty sensors,
turbine downtime, or communication issues. The historical data from the three farms in
this article are no different in this aspect. Therefore, this section presents how the SCADA
data are processed. First, on a sensor level, the sensor-stuck type of faults were filtered
for. Second, on a turbine level, data points far from a turbine’s nominal performance
curve were classified as outliers and removed. Third, on a farm level, calibration shifts
in the nacelle orientation measurement were detected and, for turbines without shifts in
nacelle orientation calibration, the nacelle orientations were calibrated to true north. Each
processing step is briefly described next.

3.1. Filtering for Self-Flagged Data, Downtime, and Sensor Faults

First, the data are filtered based on a sensor level. Wind farms commonly have a
parameter unique to a turbine or farm indicating the operational status of the wind turbine.
For example, the data set from the Anholt wind farm contains a parameter defining how
long a turbine has been in operation for the measurement period, which by default is
600.0 s. Any data point reporting a value below 599.0 for this parameter was omitted from
the data set.

Second, turbine measurements in which the turbine of interest is reporting a negative
wind speed or negative power production are removed from the data set. Those turbines
may either be offline for maintenance or the wind speed is simply below the turbine’s cut-in
wind speed. In the former case, no valuable information can be derived for model validation.
In the latter case, in which the wind speed is low, noise is expected to dominate the
measurements, and therefore those data points hold little value and can safely be removed.

Third, a common issue in historical data is when a sensor reports the same value for a
large number of consecutive measurements. This behavior is highly improbable for sensors
measuring physical parameters such as wind direction and wind speed. In this article,
for both the measured wind speed and the wind direction, a turbine’s set of measurements
was classified as faulty when six consecutive wind speed or wind direction measurements
have a standard deviation smaller than 0.001.
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Investigating the dependence of flagged data and their time stamps often reveals
periods of turbine downtime—for example, for maintenance reasons. Several periods of
downtime were identified in the data sets.

3.2. Filtering for Wind Turbine Performance Curve Outliers

After filtering for faulty sensor readings, the remaining data were filtered by con-
sidering individual turbine wind speed and power production measurements. Turbine
curtailment is common in historical data and must be addressed before comparing the data
with a wind farm model. The general procedure is as follows:

1. Data points with a power production more than 5 kW above the rated power were
classified as faulty and removed.

2. Curtailment periods and other data outliers are removed by iteratively estimating the
mean power curve, defined by coordinates xnom (m/s) and ynom (kW), and removing
data entries more than a certain distance to the left or right of this curve. The left bound
is defined by the curve xlb = 0.92 xnom − 0.25 and ylb = 1.01 ynom + 10.0. The right
bound is defined by the curve xrb = 1.08 xnom + 0.25 and yrb = 0.99 ynom − 10.0.

3. The performance curve was inspected manually to ensure no outliers were missed.

An example of this filtering process is shown in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized wind speed (-)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
po

we
r p

ro
du

ct
io

n 
(-)

Useful data (81.3%)
Faulty; classified as faulty in previous step (17.0%)
Faulty; exceeding rated power (1.2%)

Faulty: outlier w.r.t. mean curve (0.5%)
Mean power curve
Bounds for mean power curve

Figure 2. Performance curve for an imaginary wind turbine with artificially generated data, demon-
strating the filtering process. The green dots indicate outliers and a curtailment region between
normalized wind speeds 0.4 and 0.75, where the power is curtailed to 70% of the wind turbine’s rated
value. Additionally, data points above rated wind speed but far below rated power are removed.
Data marked in orange are all data with a power more than 5 kW above the rated value and are
also removed.

4. The Energy Ratio as a Calibration and Validation Metric

A common way to compare wind farm models with historical data is through some
sort of normalized power deficit. For example, Nygaard [25] defines a loss factor as being
the wind farm’s net power production divided by the farm’s gross power production if no
wakes were present. The gross power production (without wakes) is extrapolated from
the power production of the upstream turbines. However, this metric does not account
for individual turbine wake losses, and is therefore insufficient for model validation when
that model is to be applied for wind farm control. In this article, the “energy ratio” metric
is used.

4.1. The Energy Ratio Defined

In this article, we use a simplification of the energy ratio method as defined by Fleming
et al. [4,5]. Essentially, the data are binned along a reference wind direction. The reference
wind direction measurements may be derived from one or multiple wind turbines, a lidar,
or a meteorological mast. In our case, we derive the wind directions from neighboring
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turbines. Then, for each bin, the energy ratio for a particular test turbine is calculated
as follows:

R =
∑N

i=1
~Ptest

i

∑N
i=1

~Pref
i

. (1)

In this equation, ~Ptest ∈ RN and ~Pref ∈ RM are vectors of length N, containing the
power measurements of the test turbine and the power measurements of the reference
turbine(s), respectively. In this article, ~Pref is defined as the average power production of a
set of upstream wind turbines—for example, the five turbines closest to the test turbine or
all upstream turbines within a specified radius of the test turbine (e.g., 5 km). This energy
ratio metric is equal to the one used in Fleming et al. [4], yet simplified under the condition
that each measurement data point contains a valid measurement for both ~Ptest and ~Pref.

Physically, R represents the relative power production due to wake impingement (i.e.,
loss) on the test turbine for a particular wind direction bin. Because measurements at low
wind speeds contribute little to R yet are paired with high noise levels, measurements
with ambient wind speeds below 6 m/s are excluded in the calculation of R in this article.
The ambient wind speed is derived as the average wind speed either from all upstream
turbines within a specified radius (typically 5 km) or from a number of closest upstream
turbines (e.g., the five closest upstream turbines). Additionally, measurements with ambient
wind speeds above 10 m/s are excluded because the power ratio converges to 1.0 the closer
the wind speed is to the rated value, which holds little value in model validation.

4.2. Calibrating Wind Direction Measurements to True North Using the Energy Ratio

Commercial wind turbines are typically not calibrated to true north, but instead rely
on measurements of the relative nacelle misalignment to yaw the turbine into the wind.
However, model validation requires the historical data and the model to assume the same
zero point and sign convention for the wind direction. Therefore, the wind direction
measurements of the turbines are calibrated to true north by comparing the energy ratios
for a particular turbine for various corrections on the reference wind direction measurement.
The following cost function is optimized:

∆φbias = arg∆φ max
(
~r
(
~Rscada(φ− ∆φ), ~Rmodel(φ)

))
, (2)

where~r is the Pearson correlation coefficient equaling 1.0 if the two functions are identical.
Vectors ~Rscada and ~Rmodel contain the energy ratios for all wind direction bins for the
historical data and for the model predictions, respectively. Note that previous work has
followed a simpler but similar method, aligning the wind direction at which the largest
wake deficit occurs with the angle between two neighboring turbines. However, the method
in this article is more systematic, as it covers the Northing calibration using the entire wind
rose, which is more resilient to noisy data. Additionally, this method is able to account for
veer and other effects that may be included in the mathematical model.

An example of Equation (2) converging is shown in Figure 3. This figure demonstrates
that multiple power losses due to wake interaction can be observed in the data set and
can be used for the Northing calibration. Additionally, note that the predicted impact of
wakes (FLORIS) is much larger at wind directions of 120◦ and 180◦ compared with the
historical data (SCADA). Note that this does not necessarily point to a flaw in FLORIS, as
is discussed in Section 4.3.

It is important to note that this calibration method fails if the nacelle calibration changes
one or multiple times within the data set. Jumps in the nacelle calibration are detected by
comparing the average offset between turbine wind direction measurements within the
farm. If the average offset between nacelle positions is consistent throughout the entire time
series, then both turbines do not experience any jumps in their calibration. However, if this
is not the case, then one or both turbines are likely to have experienced changes in their
calibration. Iteratively, turbines with inconsistent calibration can be detected and excluded
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as sources for wind direction measurements. Across the three wind farms, a handful of
turbines are found to have an inconsistent calibration. The wind directions of those turbines
are therefore to be excluded in model validation and are invalid to use as a reference wind
direction for the energy ratios.

0 50 100 150 200 250 300 350
                                                        Wind direction (deg)                                                       Layout
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SCADA (calibrated)
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SCADA (+30 deg offset)

0

90

180

270

Figure 3. Example of the Northing calibration by optimizing the Pearson correlation coefficient
between FLORIS predictions and the SCADA data for various bias correction values. The example
shows the energy ratio curves for the Anholt wind farm, test Turbine 32. The reference turbines are
the upstream turbines within a 5 km radius, and the reference wind direction measurement (which
is calibrated) is the average of the wind direction measurements reported by Turbines 30 and 31.
The layout schematic on the right shows the location of Turbine 32 in the wind farm.

4.3. Binning Choices and Their Relation to Temporal and Spatial Effects in the Wind Farm

The choice of the bin width and bin overlap (data points falling in multiple bins) affects
the energy ratio curves in an important manner. Gaumond et al. [23] propose the use of a
large bin width of 30◦ to account for the spatial and temporal wind direction variability
and for the slow response time of wind turbine yaw controllers. Because each data point is
a 10-minute-averaged representation of a time period, the actual data often would cover
multiple bins. Fleming et al. [4] calculated the energy ratio for wind directions from 100◦ to
180◦ in steps of 2◦, but with bin widths of 4◦. They state that introducing overlap between
bins (i.e., using wider bins) clarifies trends in the available data, which is in agreement with
the findings of Gaumond et al. [23]. An example demonstrating the difference between
narrow and wide bins in shown in Figure 4.
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Figure 4. The effect of different bin widths (3◦ vs. 30◦) on the energy ratio curves for test Turbine 32 of
the Anholt wind farm. The reference turbines are all upstream turbines within a 5 km radius, and the
reference wind direction is the measured wind direction at Turbines 30 and 31. The energy ratios are
calculated every 3◦. Wider bins provide more overlap and smoother wake profiles (e.g., near 145◦).
Yet wider bins also blend out wake profiles otherwise observed in the data (e.g., between 200◦ and
300◦). The layout schematic on the right shows the location of Turbine 32 in the wind farm.
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A significant difficulty with using large bin widths is that only a broad validation can
be made to the wake losses. Separate wake profiles become harder to distinguish, such as
for wind directions between 200◦ and 300◦ in Figure 4. However, an accurate prediction
of the wake deficits and locations is vital for wake steering. Therefore, neither method
provides a comprehensive comparison metric; rather, both a small and a large bin width
should be considered in model validation.

4.4. The Effect of Model Uncertainty, Turbulence Intensity, and Veer on the Energy Ratio

Gaumond et al. [23] also propose using a weighted average of multiple model simula-
tions for each data point to accommodate for the large time constant in the yaw controller,
spatial variability of the wind direction inside the farm, and temporal variability of the
wind direction within the measurement averaging period of 10 min. Similar solutions to
account for yaw and wind direction variability are proposed in the literature [40–42], but are
mainly focused on wake steering. The choice of turbulence intensity and spatial variability
of the wind direction in FLORIS exclusively change the energy ratio of the model-generated
data, and do not affect the energy ratios of the SCADA data. Generally, the inclusion of
model uncertainty, increasing turbulence intensity, and increasing wind veer have very
similar effects: wake effects are smeared out along the wind direction, and the maximum
wake deficit decreases.

The effects are demonstrated in Figure 5, where σwd is the standard deviation of
the incoming wind direction evaluated as described by Simley et al. [42], and I∞ is the
ambient turbulence intensity assumed in FLORIS. Figure 5 shows that the wind direction
variability σwd leads to a smoothing effect of the energy ratios along the wind direction.
Turbulence intensity, I∞, has a similar effect but emphasizes the depth of the troughs
(largest losses) in the energy ratio curve. The effect of veer has not been tested within
FLORIS but fundamentally should further diffuse the wake profile, which should have a
similar effect as wind direction variability and turbulence intensity. However, note that
veer has a strong correlation with atmospheric stability. Thus, while an increased wind
veer diffuses the wake profile, the increased stability in the atmosphere and the lower
turbulence intensity it may be paired with could lead to a net increase in wake losses.
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Figure 5. The effect of different atmospheric turbulence intensities and inflow wind direction standard
deviations on the energy ratio of test Turbine 32 in the Anholt wind farm. The choice of atmospheric
turbulence intensity and inflow wind direction variability in the FLORIS model exclusively change
the energy ratios of the model-generated data. The layout schematic on the right shows the location
of Turbine 32 in the wind farm.

Without a clear and common definition for each of those variables, tuning the parame-
ters inside the wake model is ineffectual. The right choice of σwd, I∞, and wind veer have
a deciding impact on the accuracy of the FLORIS model, more than the exact choice of
model parameters. Often, those parameters cannot be determined accurately for a com-
mercial wind farm—certainly if no historical data is available for the farm. Additionally,
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various choices for σwd and I∞ can often lead to nearly identical energy ratios, a so-called
waterbed effect, making it impossible to identify the right value for each, while different
combinations of choices for σwd and I∞ can lead to comparable energy ratios, their effect on
wake steering differs. Typically, a higher σwd with a lower I∞ will predict higher annual
energy production gains for wake steering than a low σwd and high I∞, despite yielding
comparable energy ratios. Hence, selecting those parameters is a nontrivial task. Kanev
and Bot [43] make an interesting proposal to linearly correlate the two parameters, while
worthwhile to pursue, this is out of our scope and not further explored in this article.
Instead, we assume σwd = 3.0◦ and I∞ = 0.06, which are common figures for offshore wind
farms in the literature [44,45]. This assumption is the same for the three farms. With the
exact definition of those variables being ambiguous and having diverging definitions in the
literature, one of the core objectives of the recently initiated International Energy Agency
Wind Technology Collaboration Program Task 44 is establishing a common definition [46].

4.5. Uncertainty Quantification

The historical data for the three wind farms was provided as 10 min averages of
high-resolution measurements. Additionally, the standard deviation within each 10 min
sample set was calculated for the nacelle headings and wind speeds. These may provide
some idea of the probability distribution of the quantity of interest, but were not used in
the analysis at hand. Additionally, one must keep in mind that the sensors on the turbines
are point measurements, and often are affected by the rotor aerodynamics. Hence, there
are relatively large bounds of uncertainty on turbine wind speed and vane measurements.
In the energy ratio analysis, the main quantities of interest are the turbine nacelle heading
and the turbine generator power, which both do not suffer from this sensor disturbance.

To provide quantitative bounds on the uncertainty in the analysis, confidence intervals
of 90% on the energy ratio curves are calculated through bootstrapping with a sample size
of 100, as described by Efron and Tibshirani [47].

5. Surrogate Modeling

The state-of-the-art wind farm model implemented in FLORIS [48] is used for analysis
in this work.

5.1. Model Parameters

The default model parameters were used for the analyses in this article to provide a
realistic benchmark situation in which one does not readily have data available for tuning
the wind farm model. Table A1 summarizes the parameter choices.

5.2. Heterogeneous Inflow Wind Speed Profile

Commonly, control-oriented wind farm models are simulated with a homogeneous
inflow wind direction and wind speed profile. However, in practice, those assumptions are
incorrect—wind farms typically experience a lower inflow wind near the center of the farm
compared with the outer edges because of wind farm blockage [30]. Additionally, other
wind farms and terrain effects upstream can cause different wind conditions for different
upstream turbines.

FLORIS currently does not include a blockage or a terrain model. Instead, hetero-
geneous inflow effects can be directly superimposed in the model by assigning unique
wind speeds for each upstream wind turbine. FLORIS supports modeling of heterogeneous
inflow conditions for the wind speed, wind direction, and turbulence intensity [49]. Ide-
ally, each measurement in the historical data set would be evaluated in FLORIS with the
correct inflow wind speed at every upstream turbine, such that their power productions
perfectly match with the SCADA measurements. However, with this many turbines and
the inconsistency in data point validity, a generalized inflow profile representative of the
farm’s annual inflow heterogeneity is derived.
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The heterogeneous inflow profiles are derived from the SCADA data by considering
the energy ratios of every upstream wind turbine relative to the average energy ratio of all
the upstream turbines for a narrow wind direction sector. The inflow profile for the Anholt
wind farm at a wind direction sector of 262.5◦ through 277.5◦ is displayed in Figure 6.
Figure 6 highlights that significant heterogeneity is present in the inflow of the Anholt
wind farm. Note that winds from the west and southwest come from the Danish coast,
which may explain some of the inflow heterogeneity. Additionally, blockage effects are
expected in Anholt because of the wind farm size. However, without further investigation,
the degree to which the coastal effects bring about these heterogeneous inflows and the
exact causes of the heterogeneous inflows remain uncertain.
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Figure 6. The energy ratios for all upstream wind turbines at the Anholt wind farm normalized to
the average of all turbines for a wind sector of 262.5◦ to 277.5◦, equal to wind coming from the west.
For this wind direction, turbines very south in the farm (e.g., T0, T1) generate 15% less energy than
the average of all upstream turbines, whereas turbines far north in the farm (e.g., T63, T64) generate
10% more. The shaded region represents 90% confidence intervals.

Similar heterogeneity was observed in the OWEZ and Westermost Rough wind farms.
Notably, significant heterogeneity is found in the Westermost Rough wind farm for winds
from the south and west, as exemplified in Figure 7. This aligns with the relative position
of the English coast.
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Figure 7. The energy ratios for all upstream wind turbines at the Westermost Rough wind farm
normalized to the average of all turbines for a wind sector of 262.5◦ to 277.5◦, equal to wind coming
from the west. For this wind direction, turbines central in the farm (e.g., T3, T4) generate up to 5%
less energy than the average of all upstream turbines, whereas turbines far north in the farm (e.g.,
T27, T34) generate 5%–8% more. The shaded region represents 90% confidence intervals.

The relative energy ratios of the upstream turbines are calculated in steps of 2◦ with
bin widths of 15◦. Those ratios are converted into relative ambient wind speeds by taking
the cubic root. Those values are multiplied by the mean wind speed to generate the
heterogeneous inflow wind speed profile inserted into FLORIS.

6. Results

This section presents the energy ratio curves, after data preprocessing and the Northing
calibration, for various test turbines in the three offshore wind farms.

6.1. Validation with Historical Data of the Anholt Offshore Wind Farm

The energy ratio for Turbine 32 in the Anholt wind farm, positioned far south in the
farm, is shown in Figure 8. The reference power productions and wind speeds are derived
from the five closest upstream turbines. Figure 8 shows excellent agreement between
FLORIS and the SCADA data for most wind directions between 80◦ and 330◦, both in
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wake depth and in wake width. The FLORIS predictions with heterogeneous inflow are
better in a few situations, near wind directions of 80◦ and 200◦, yet are mostly equal to the
predictions with homogeneous inflows. This suggests that the heterogeneous inflow does
not play a dominant role in the wake losses and performance of Turbine 32, or that the
current model for heterogeneity is insufficient. The predicted energy ratios significantly
diverge from the historical data for wind directions less than 50◦ and greater than 330◦.
For those wind directions, the wind aligns with the direction that creates wake arrays with
the highest number of turbines. One such array is highlighted in Figure 9. This figure shows
how the wake losses build up as we step deeper into the wind farm. Notably, Figure 9
shows that rather than building slowly, the FLORIS-predicted energy ratios very quickly
diverge, at the second or third turbine in the array.
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Figure 8. Energy ratio curves for Turbine 32 in the Anholt wind farm, in which the reference turbines
are the five closest upstream turbines, and the reference wind direction is the average of the wind
direction measurements of neighboring Turbines 30, 31, 33, and 42. The shaded regions represent
90% confidence interval bounds obtained through bootstrapping. The layout schematic on the right
shows the location of Turbine 32 in the wind farm.
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Figure 9. Energy ratios of Turbines 104, 103, 57, 56, 55, 54, 39, 38, 37, 36, 35, 34, 33, and 32 for a
narrow wind direction sector of 348.3◦ to 3.3◦. Turbine 104 acts as the reference turbine, and the
reference wind direction is the average of the wind direction measurements of the array of turbines.
The shaded regions represent 90% confidence interval bounds obtained through bootstrapping.
The layout schematic on the right shows the location of Turbines 104, 103, 57, 56, 55, 54, 39, 38, 37, 36,
35, 34, 33, and 32 in the wind farm.
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Additionally, a curve-fitting optimization yields I∞ = 0.05 and σwd = 4.0◦. Consider-
ing the non-uniqueness issue and waterbed effect of those parameters, we can be confident
in the assumed values of I∞ = 0.06 and σwd = 3.0◦.

The energy ratio for Turbine 54, positioned in the center of the farm and surrounded
by turbines on all sides, is shown in Figure 10. Good agreement with historical data
is observed for wind directions between 10◦ and 110◦ and between 230◦ and 300◦ for
the predictions with heterogeneous inflow. The benefit of including heterogeneity in
the FLORIS simulations is significant when assessing Turbine 54. Generally, the model
is accurate and diverges for specific wind direction sectors, namely from 110◦ to 210◦,
and from 300◦ to 350◦. Those regions represent situations with wind coming from the north
or south, in which we expect a large number of wake interactions and wake accumulation
with multiple turbines aligned, all causing wake losses on the next downstream turbine.
This is very similar to the largest source of discrepancy for Turbine 32 (Figure 8).
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Figure 10. Energy ratio curves for Turbine 54 in the Anholt wind farm, in which the reference turbines
are the five closest upstream turbines, and the reference wind direction is the average of the wind
direction measurements of Turbines 40, 53, 56, and 100. The shaded regions represent 90% confidence
intervals obtained through bootstrapping. The layout schematic on the right shows the location of
Turbine 54 in the wind farm.

To further assess this deep-farm effect, we consider two turbine arrays on the outer
edges of the wind farm. Figures 11 and 12 show that historical data from arrays of ten
or more turbines, sometimes identified in the literature as “deep-array effects“, do not
consistently deviate from the model-predicted energy ratios. The two curves have a slight
mismatch, which is likely due to choosing a too low value for the turbulence intensity,
rather than to a fundamental modeling mismatch. Considering Figure 9, it seems more
likely that turbines deep in a wind farm (i.e., surrounded by many turbines) experience
larger wake losses than turbines on the outer edges of the wind farm. Turbines positioned
centrally in the farm have generally slower wind in their vicinity, thereby diminishing
wake recovery. This model error was previously identified and addressed in the articles
by Bastankhah et al. [50] and Nygaard et al. [30]. Such effects are not currently considered
in the Gaussian model in FLORIS and are likely the explanation of the significant model
discrepancies for wind directions from the north and south.
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Figure 11. Energy ratios of Turbines 0 through 10 for the Anholt wind farm for a narrow wind
direction sector of 172.1◦ to 187.1◦. Turbine 0 acts as the reference turbine, and the reference wind
direction is the average of the wind direction measurements of the array of turbines. The shaded
regions represent 90% confidence interval bounds obtained through bootstrapping. The layout
schematic on the right shows the location of Turbines 0 through 10 in the wind farm.
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Figure 12. Energy ratios of Turbines 110 through 98 for the Anholt wind farm for a narrow wind
direction sector of 330.3◦ to 345.3◦. Turbine 110 acts as the reference turbine, and the reference wind
direction is the average of the wind direction measurements of the array of turbines. The shaded
regions represent 90% confidence interval bounds obtained through bootstrapping. The layout
schematic on the right shows the location of Turbines 110 through 98 in the wind farm.

6.2. Validation with Historical Data of the Westermost Rough Offshore Wind Farm

The Westermost Rough wind farm has 35 wind turbines and is thereby the smallest
wind farm discussed in this article. However, Westermost Rough is the most recently
constructed farm and includes newer offshore wind turbines, each with a rated power
of 6.0 MW. This section presents the energy ratios for Turbines 16 and 25. These two
turbines are positioned in the central southwest and central northeast part of the farm,
respectively, both adjacent to other turbines in all directions, and are thereby likely to
experience significant wake effects for the entire wind rose.

Figure 13 shows the energy ratios for Turbine 16. We find excellent agreement between
FLORIS and the historical data for nearly the entire wind rose, with exceptions being the
sectors between 350◦ and 40◦, and between 260◦ and 310◦. The general trend is that wakes
are underpredicted by the FLORIS model, both with and without heterogeneity in the inflow.
This may have to do with the fact that the English coast is about 8 km to the southwest of the
wind farm. Wind coming from this direction often has higher turbulence than winds from
the sea, and are likely to induce more wake recovery, which could explain the divergence at
the wind direction sector near 280◦. Additionally, a second source of discrepancy may be the
relatively large “opening” in the farm. For example, the distance between Turbines 27 and
16 is 29 D, which is very large for wind farm control applications, yet typically not large
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enough for the flow to fully recover. FLORIS has not previously been used for such large
turbine spacing. Additionally, Nygaard et al. [30] confirmed that the Jensen wake model
underestimates the wake depth very far downstream (see Figure 3 therein), which would
agree with our observations for wind directions near 0◦ in Figure 13. Nygaard et al. [30]
propose that such wake models are inaccurate over large distances because mixing at such
distance is predominantly driven by atmospheric turbulence, and thus is not comparable to
mixing over small distances, which is predominantly driven by turbine-induced turbulence.
Such effects can be validated by zooming in on a single array of turbines and their wake
losses, as in Figure 14. This figure and Figure 13 show that large inter-turbine spacing is not
necessarily, or at least not consistently, a source of discrepancy. The FLORIS model with
homogeneous inflows is very accurate for this irregularly spaced turbine array. Note that
the FLORIS model with heterogeneous inflow has significant divergence, and that suggests
that the heterogeneity in Westermost Rough for this wind direction sector is irregular
and/or hard to predict with the current data set.
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Figure 13. Energy ratio curves for Turbine 16 in the Westermost Rough wind farm, where the
reference turbines are all upstream turbines within a 5 km radius, and the reference wind direction is
the average of the nacelle headings of Turbines 9, 8, 15, and 25. The shaded regions represent 90%
confidence intervals obtained through bootstrapping. The layout schematic on the right shows the
location of Turbine 16 in the wind farm.
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Figure 14. Energy ratios of Turbines 0, 8, 16, 25, and 33 for the Westermost Rough wind farm for
a narrow wind direction sector of 189.5◦ to 204.5◦. Turbine 0 acts as the reference turbine, and the
reference wind direction is the average of the wind direction measurements of the array of turbines.
The shaded regions represent 90% confidence interval bounds obtained through bootstrapping.
The layout schematic on the right shows the location of Turbines 0, 8, 16, 25, and 33 in the wind farm.
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Furthermore, it is interesting to note that the effects of the neighboring Humber Gate-
way wind farm as described in Nygaard et al. [30] do not come forward in Figure 13,
and FLORIS is accurate despite not modeling this wind farm. It is likely that the wake
generated by the Humber Gateway farm presents itself in a similar manner as a freestream
wind speed change upstream of the Westermost Rough wind farm. Furthermore, a curve-
fitting optimization yields a minimal root mean square error with σwd = 5.5◦ and I∞ = 0.03.
The estimated value for I∞ seems particularly low, even for offshore conditions. In con-
junction with the high estimated value for σwd, it is likely that this is a manifestation of the
waterbed effect.

Figure 15 shows the FLORIS predictions and historical data for the energy ratios of
Turbine 25. The curves generally align very well for wind directions below 120◦ and above
220◦. The wake recovery is underpredicted for 220–250◦, likely due to coastal effects. Model
discrepancies are significant between 100◦ and 200◦. The largest wake deficit occurs when
the wakes of Turbines 21, 22, 23, and 24 align and overlap Turbine 25. This situation is
highlighted in Figure 16. This figure shows a consistently underestimated wake depth,
which suggests a mismatch in the assumed ambient turbulence intensity. Additionally,
the wake depth in the top plot of Figure 15 is predicted well for the wind direction of 150◦,
yet the wake width is underestimated, and therefore the plot with the larger bin width
(bottom plot) shows a much too shallow wake in the FLORIS predictions. This is consistent
with the observations of Nygaard et al. [30]. It is uncertain why the predicted wake width
differs significantly with the historical data at 150◦ while it matches very well for other
directions (e.g., at 0–100◦ and 250–360◦). One possible explanation is the significant “gap”
in the farm, yet the results for Turbine 16 suggest that the gap is not necessarily a source
of error. Investigating a second turbine array with a large inter-turbine gap (Figure 17)
confirms that a large inter-turbine spacing by itself is not the reason for model divergence.
A secondary explanation for the model discrepancies is coastal effects and their relationship
with the heterogeneity of the inflow conditions. Figures 14 and 17 highlight the difficulty
in accurately deriving and modeling those heterogeneous effects.
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Figure 15. Energy ratio curves for Turbine 25 in the Westermost Rough wind farm, where the
reference turbines are all upstream turbines within a 5 km radius, and the reference wind direction is
the average of the nacelle headings of Turbines 24, 27, 32, and 33. The shaded regions represent 90%
confidence intervals obtained through bootstrapping. The layout schematic on the right shows the
location of Turbine 25 in the wind farm.
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Figure 16. Energy ratios of Turbines 21 through 27 for the Westermost Rough wind farm for a
narrow wind direction sector of 139.1◦ to 154.1◦. Turbine 21 acts as the reference turbine, and the
reference wind direction is the average of the wind direction measurements of the array of turbines.
The shaded regions represent 90% confidence interval bounds obtained through bootstrapping.
The layout schematic on the right shows the location of Turbines 21 through 27 in the wind farm.
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Figure 17. Energy ratios of Turbines 4, 10, 16, and 21 for the Westermost Rough wind farm for a
narrow wind direction sector of 269.6◦ to 284.6◦. Turbine 4 acts as the reference turbine, and the
reference wind direction is the average of the wind direction measurements of the array of turbines.
The shaded regions represent 90% confidence interval bounds obtained through bootstrapping.
The layout schematic on the right shows the location of Turbines 4, 10, 16, and 21 in the wind farm.

6.3. Validation with Historical Data of the OWEZ Offshore Wind Farm

The OWEZ wind farm is significantly smaller than the Anholt wind farm, with only
36 wind turbines compared with Anholt’s 111 wind turbines. Additionally, OWEZ has
turbines spaced furthest apart at an average of 7.2 D, as presented in Table 1. The energy
ratios of test Turbine 13 and test Turbine 16 are shown in Figures 18 and 19, respectively.
These two turbines are positioned in the southwest and in the center of the farm, respectively.
The heterogeneous inflow curves showed larger inconsistencies due to a lack of valid data.
Therefore, no FLORIS simulations with heterogeneous inflow are presented for OWEZ.

At first impression, Figure 18 shows excellent agreement between FLORIS and the
SCADA data for the wake interactions. Wake losses are slightly overpredicted in certain
regions, such as in the region between 100◦ and 160◦, and slightly underpredicted for
other regions, such as for wind directions between 160◦ and 200◦, but these discrepancies
are marginal. Generally, the wake deficits and wake locations are very well described.
The wakes in the SCADA data are generally wider than according to FLORIS, suggesting
that the assumed wind direction variability σwd may be too low for the OWEZ wind farm.
Indeed, a curve-fitting optimization yields optimal values of σwd = 6.0◦ and I∞ = 0.04.
The value for σwd is higher than anticipated. Possible explanations for this are the waterbed
effect with I∞, direction measurement outliers, and inferior tracking of natural wind direc-
tion variations by the turbines. The last reason does not seem unreasonable, considering
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that this wind farm was commissioned in 2007, making it the oldest wind farm of the three
investigated in this article. Furthermore, Figure 19 shows excellent agreement for the entire
wind rose, with slight model discrepancies near wind directions of 50◦ and 100◦. This may
also be related to coastal effects from the Dutch shore, located to the West and Southwest
of the wind farm. However, as these discrepancies are subtle and appear inconsistent for
various arrays in the farm, it can not be attributed to a specific aerodynamic phenomena or
model discrepancy.
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Figure 18. Energy ratio curves for Turbine 13 in the OWEZ wind farm, where the reference turbines
are all upstream turbines within a 5 km radius, and the reference wind direction is the average of the
nacelle headings of Turbines 0, 1, 15, and 22. The shaded regions represent 90% confidence intervals
obtained through bootstrapping. The layout schematic on the right shows the location of Turbine
13 in the wind farm.
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Figure 19. Energy ratio curves for Turbine 16 in the OWEZ wind farm, where the reference turbines
are all upstream turbines within a 5 km radius, and the reference wind direction is the average of the
nacelle headings of turbines 3, 15, 17, and 24. The shaded regions represent 90% confidence intervals
obtained through bootstrapping. The layout schematic on the right shows the location of Turbine
16 in the wind farm.
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7. Conclusions

This article presented a validation study of the popular Gaussian wake model imple-
mented in NREL’s open-source FLORIS framework. This simplified wind farm model was
compared to historical SCADA data of three offshore wind farms located in the North Sea
in Europe. The wind farms vary in spacing from 4.9 D to 7.2 D and vary in number of wind
turbines from 35 to 111. The historical data were preprocessed to remove the sensor-stuck
type of faults, turbine curtailment, outliers on the performance curves, and data that were
self-classified as bad. Moreover, using the energy ratio method, bias in the wind direction
measurements of each turbine could be estimated and the turbines calibrated to true north.
This method was shown to yield consistently reliable results and is able to outperform the
standard method of aligning a turbine’s largest wake deficit with the direction between its
closest neighboring turbine.

The model contains various input parameters, such as the wind direction variabil-
ity and uncertainty, σwd, and the ambient turbulence intensity, I∞. Because of a lack of
information and consensus on the definitions of these parameters, they were picked based
on common values in the literature and fixed at σwd = 3.0◦ and I∞ = 0.06. In a field
experiment setting, it is suggested that these two parameters are tuned to better match the
model with the historical data, or possibly even estimate these parameters in real time [51].
Additionally, the default set of wake-deficit and additive-turbulence model parameters was
used for the remainder of the study. Heterogeneity in the inflow wind speeds was derived
from the SCADA data, and FLORIS evaluations were made with both heterogeneous and
homogeneous inflows due to a lack of maturity of the heterogeneity submodel in FLORIS.
The inflow heterogeneity derived from the historical data of the OWEZ wind farm showed
significant inconsistencies and was not used in the remainder of the analysis.

The model predictions and the historical data were compared using the energy ratio
metric. Generally, excellent agreement was found between the Gaussian wake model
and historical data for most wind directions. Both the wake depth and the wake width
are predicted accurately for all three wind farms. There are two areas where the model
predictions diverge from the historical data. The first area where the Gaussian wake
model diverges from historical data is for deep array effects, as observed in the Anholt
wind farm. In the situation in which multiple wakes overlap and wind turbines are
centrally positioned in the wind farm, FLORIS consistently underpredicts the wake depth.
Additionally, a second discrepancy cannot be pinpointed, but is likely related to inflow
heterogeneity (i.e., blockage effects, coastal effects, and effects of neighboring wind farms).
Additionally, the Westermost Rough wind farm has a large “gap” in the center of the
wind farm, which Nygaard et al. [30] suggested may be a reason for model divergence.
Our results contradict that hypothesis and show that the Gaussian model in FLORIS is
consistently accurate for such gap effects and large inter-turbine spacing.

Additionally, the issue of the “waterbed effect” was raised for σwd and I∞, posing a
non-uniqueness issue with these parameters. Different combinations of these parameters
may yield nearly identical energy ratio curves, yet have fundamentally different effects
when wake steering is considered. Suggestions are made to address this issue, but further
pursuit is outside the scope of this work.

The results in this article demonstrate that the Gaussian wake model is an excellent
choice for use in smaller offshore wind farms such as OWEZ and Westermost Rough.
The model shows excellent agreement with the default sensors on the wind turbines and
for turbines of different size and age. Note that the effect of wake deflection has not been
explicitly tested in this study. The turbines were all operated in conventional commercial
operation and thus all turbines were controlled to always be aligned with the inflow wind
direction. Hence, this study has focused on validating the wake deficit and shape for the
entire wind rose.

Future work should address the two aforementioned discrepancies in the Gaussian
wake model. Additionally, validation studies should be performed that include common
wind farm control techniques such as wake steering and axial induction control. Finally,
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historical data from land-based wind farms would provide very useful insights that the
current model lacks for unique conditions that do not arise in offshore applications. A com-
parison with such historical data would further provide insight into the strengths and flaws
of the current mathematical models used in wind farm control applications. Such a revised
model would then make an excellent candidate for wind farm control field experiments at
large offshore wind farms.
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Appendix A. FLORIS Choices

Table A1. Parameter and submodel choices in the FLORIS model [48].

Variable Relates to Value

velocity_model Wind speed deficit model gauss_legacy [33,52]
turbulence_model Turbulence intensity model gauss_legacy [33,53]
deflection_model Wake deflection model gauss [33,52]
combination_model Wake combination model sosfs [19]
use_secondary_steering Secondary steering model True [35]
ka Wake expansion 0.38
kb Wake expansion 0.004
ad Lateral wake deflection 0.0
bd Lateral wake deflection 0.0
alpha Transition point near-far wake 0.58
beta Transition point near-far wake 0.077
eps_gain Value to calculate lateral and vertical flow 0.2
ti_initial Turbine-induced turbulence [53] 0.1
ti_constant Turbine-induced turbulence [53] 0.5
ti_ai Turbine-induced turbulence [53] 0.8
ti_downstream Turbine-induced turbulence [53] −0.32
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