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What is needed for cost-effective, high efficiency solar cells?

High efficiency architectures
• Absorb as many photons as possible
• Minimize voltage losses
• Spectral insensitivity?

Low-cost growth and fabrication
• Inexpensive source material
• High throughput
• Good source utilization

Low-cost substrates
• Remove and reuse the substrate
• Grow on something very 

inexpensive

Hydride Vapor Phase Epitaxy

SiOX Mask

GaAs
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X-Sectional SEM
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Bandgaps for a three-junction cell

GaAs is slightly too high a bandgap for AM1.5g (and AM0)

(Bottom cell optimized for each point)

1.9/1.4/1.0 eV
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Bandgaps for a three-junction cell

(Bottom cell optimized for each point)

Can we get the same material quality as 
GaAs, but with a lower bandgap alloy?

GaAs is slightly too high a bandgap for AM1.5g (and AM0)
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How to extend the absorption edge?

1. GaInAsN
2. Metamorphic epitaxy
3. Quantum wells

GaAs-GaN alloys GaAs-InAs alloys

Material would be lattice-matched

GaInAsN tends to have a short 
diffusion length, leading to a poor 
quantum efficiency



NREL    |    6

How to extend the absorption edge?

GaAs-InAs alloys

1. GaInAsN
2. Metamorphic epitaxy
3. Quantum wells

France et al., MRS bulletin 41, 202 (2016)
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How to extend the absorption edge?

GaAs-GaP alloys GaAs-InAs alloys

Barrier: GaAs0.68P0.32, ~1.81 eV, 50 Å

Well: Ga0.89In0.11As, ~1.27 eV, 85 Å

1. GaInAsN
2. Metamorphic epitaxy
3. Quantum wells
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Triple junction cell architecture

Courtesy of Al Hicks, NREL
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Energy levels in a quantum well

“Band edge” 
= 

Raw bandgap in the well
(1.27 eV for Ga0.894In0.106As)

+
Effects of strain  ( 1.31 eV)

+
Effects of 2D quantum confinement  
( 1.35 eV)

+
Effects of well asymmetry due to 
voltage bias (quantum confined 
Stark effect  very small effect)

(schematic, not drawn to scale)
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Transport in quantum wells

Sayed and Bedair, JPV 9, 402 (2019)

Thermionic 
emission out of 
wells

Tunneling 
through the 
barriers

Ekins-Daukes et al., APL 
75, 4195 (1999)



Steiner et al., Adv. Energy 
Materials 2002874 (2020)


Transport is dominated by drift in the electric field, 
rather than diffusion.
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GaAs-QW PV characteristics

Quantum efficiency

GaAs-QW state of the art (c. 2020)

The loss in voltage corresponds mostly to the shift 
in band edge

Absorption edge at ~1.34 eV
∆Eg ~ 70 meV
∆Jsc ~  2 mA/cm2

Current-voltage

Woc ~ 0.31 V
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How can we maximize the absorption in the quantum wells ?

 Thin the barriers, so that a larger fraction of each QW is made of absorbing well material.

𝑎𝑎0 = 𝐴𝐴𝑤𝑤𝑡𝑡𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎𝑏𝑏
2+𝐴𝐴𝑏𝑏𝑡𝑡𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎𝑤𝑤2

𝐴𝐴𝑤𝑤𝑡𝑡𝑤𝑤𝑎𝑎𝑏𝑏
2+𝐴𝐴𝑏𝑏𝑡𝑡𝑏𝑏𝑎𝑎𝑤𝑤2

= 5.653 Å

aw,b = lattice constant (well, barrier)
tw,b = thickness
Aw,b = elastic constants

4 variables, 
3 degrees 
of freedom

ThermionicThermionic + Tunnelling

Thick barrier
17/8.5/17 nm
33%

Thin barrier
5/8.5/5 nm
63%
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in situ stress – thick barriers

Single layer GaAsP Single layer GaInAs

relaxation

Red and blue data show orthogonal [110] directions
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in situ stress – thin barriers

Stress ≤ 0.11 GPa in QW layers

• Careful calibration of GaAsP reactant flows 
• Constant flow of AsH3 and TMGa
• Simple switching of PH3 and TMIn

Very low average stress in LMM 
GaInAs bottom cell 
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Effect of AsH3 flow in the GaInAs well material

High AsH3 (MS766)

Low AsH3 (MS722)

High mag: interfaces
Med mag: lateral composition modulation
Low mag: phase separation with low AsH3
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EDS Comparison Group III

TEM images from Jenny Selvidge, UCSB

Low AsH3 High AsH3
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EDS Comparison Group V

TEM images from Jenny Selvidge, UCSB

Low AsH3 High AsH3
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Limit elastic relaxation by increasing AsH3 flow

Increased AsH3 flow during InGaAs QWs limits indium surface mobility

Barriers: 36 Å, GaAs0.4P0.6 Number of wells = 168
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Constant i-region thickness (2 um)

Vary the barrier thickness and the number of wells

Barrier thickness Px # wells Well Fraction Total Well

MS612 170 Å 0.1 80 33% 680 nm

MS622 100 0.2 110 46% 935

MS886 60 0.35 140 59% 1190

MS800 36 0.6 168 70% 1428

MT169 20 1.0 184 84% 1564
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Variable i-region thickness

Vary the number of wells and the depletion layer thickness

Barriers: 60 Å, GaAs0.65P0.35
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Clear increase in sub-bandgap absorption and collection
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Fabrication of inverted PV devices

GaAs Substrate

1.8 eV GaInP

1.4 eV GaAs + QW

Transparent GaInP grade

Metamorphic 1.0 eV InGaAsG
row

th direction

Mirror and Back Contact
Handle

GaAs Substrate

1.8 eV GaInP

1.4 eV GaAs + QW

Transparent GaInP grade

Metamorphic 1.0 eV InGaAs

GaAs Substrate

1.8 eV GaInP

1.4 eV GaAs + QW

Transparent GaInP grade

Metamorphic 1.0 eV InGaAs

Handle can be:
• silicon or glass
• something flexible
• another solar cell

Substrate can be etched away, or 
removed and reused

Gives easy access to the device backside for applying advanced contacts
Enables a range of device designs
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Annealing of front-junction GaInP

Inverted GaInP cells

Vary presence of TJ

Vary anneal temp. 
and time

• P-type absorber is important for optical thickness
• Voltage gets slightly worse under standard anneal
• Voltage improves by ~100 mV under anneal after 

point-defect injection
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Hypothesis: point defect passivation

1. Zn doping introduces a point defect X into the GaInP base
2. The TJ injects a complementary point defect Y
3. After anneal, defect Y passivates defect X 

Examples: X = Ga vacancy,      Y = Ga interstitial
X = Zn interstitial,   Y = Ga vacancy

Growth direction

Dopant or defect
concentration Se dopant

Zn dopant
Defect X
Defect Y
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Subcell analysis: AM1.5G and AM0

Woc = Eg/q - Voc : GaInP =  0.41 V  / GaAs-QW = 0.35 V  / LMM GaInAs = 0.35 V
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Record three-Junction GaInP / GaAs+MQW / GaInAs cells

M
T845

184 QWs, ~1560 nm of GaInAs
No DBR behind the QWs

New world record! 

1.88     1.33 0.92 eV

France et al., Joule, to appear May 18
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Record three-Junction GaInP / GaAs+MQW / GaInAs cells

New world record! France et al., Joule, to appear May 18
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