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Secure Control Regions for Distributed Stochastic Systems with
Application to Distributed Energy Resource Dispatch

Joshua Comden, Ahmed S. Zamzam, and Andrey Bernstein

Abstract— With the increasing connectedness and interde-
pendence of systems that are stochastic in nature, the issue
of how to manage and coordinate them for safe operation
has evidently become more important. In many networked
system architectures, the system-wide output must be delicately
managed, often within a prescribed set of bounds. In this paper,
a novel control framework is proposed where the bounds on
the outputs are translated into independent bounds on the
controllable inputs of each subsystem. The main benefit of
this framework is that respecting the individual control bounds
suffices to guarantee that the system-wide outputs will remain
within safe boundaries. Because the systems are assumed to
be stochastic, the bounds on the output are introduced as
probabilistic chance constraints. The benefits of this framework
are demonstrated by applying it to the control of distributed
energy resources in a distribution network where the main
goal is to keep the voltage magnitudes within their prescribed
bounds. The control bounds are evaluated using real data on
an IEEE test system.

I. INTRODUCTION

This paper considers the problem of controlling a net-
worked stochastic system so that each of its outputs is
probabilistically guaranteed to be within a given set of
bounds. More specifically, we consider the following stochas-
tic model:

y=Ax+b (1

where x € R” is the vector of the controllable system inputs,
y € R™ is the vector of the system outputs, and [A  b] €
R™*(+1) is a matrix of random variables. The goal is to
control the system inputs, X, so that the system outputs, y,
stay between the given bounds, y € R™ and y € R™, under
the following probabilistic conditions:

Pr(ngyj)zl—gj, vVie{l,...,m} (2a)
Pr(y; <y;) >1-a;, Vje{l,....m} (2b)
where a; € (0,1) :Vj € {1,...,m} and @; € (0,1) : Vj €

{1,...,m} are the elementwise allowable probabilities of
violation for the lower and upper bounds, respectively.
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Many stochastic control schemes involve measuring and
reacting globally to near-instantaneous realizations of the
random variables. For some networked stochastic systems,
however, this could require expensive, ultrareliable, low-
latency communication equipment, whereas low-cost slower
communication equipment might already be in place or more
feasible to implement. Our approach will be to design a
control scheme for the latter equipment scenario of not being
able to near-instantaneously measure and react globally.
Specifically, our goal is to find bounds, {x,X} € R™, on
the controllable inputs, x, so that the conditions given in (2)
are satisfied for any x between their elementwise lower, x,
and upper, X, bounds.

The main benefit of this decision structure is that after
the bounds (x,X) are calculated, each element of the input,
X, can be optimized or controlled independently without
communication for some other objective, especially a local
objective. In fact, if the bounds (x,X) are set for long time
intervals, a future set of bounds could be decided upon while
another is in place, making the system resistant to the effects
of communication failures.

In the robust optimization community, there is a special
class of problems called grey or interval optimization that
treats all decision variables and system parameters as inter-
vals that can take any value between their lower and upper
bounds [1]. The system parameter intervals are meant to
capture uncertainty in the system, and the decision variable
intervals are meant to represent ranges of decisions that
would result in bounded costs. This method has been ap-
plied to waste management [2], hydropower scheduling [3],
economic dispatch [4], and heat transfer problems [5].

Also, similar to the objective of the framework described
in our paper, there is other work on decomposing opti-
mization problems into different timescales. For example,
the work by [6], [7] splits an optimal control problem into
fast-acting decentralized controllers and a slow, centralized
controller that coordinates the decentralized ones. The benefit
of our framework is that we do not impose any special
structure of the fast controller other than respecting the
control bounds.

In this paper, we make the following contributions:

« We formulate a novel general chance-constrained con-
trol bound problem of a networked stochastic system
(Section [M).

e We reformulate the infinite set of chance constraints
stated in the general control bound problem to a finite
set (Section [I1I)).

o« We apply the general control bound problem to the
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control of distributed energy resources (DERs) in a
distribution network to keep the voltage magnitudes
within a given range (Section [IV).

o We calculate and evaluate the control bounds of DERs
with real-world data and show that the control bounds
are able to respect the chance constraints used to bound
the voltage magnitudes across a distribution network

(Section [V).
II. PROBLEM FORMULATION

Consider a system comprising of /K subsystems. Let the
input of each subsystem, k, be denoted by x; € R",
then define x := [x| x}]T € R", ie., we have
Z,I::l ng = n. Likewise, we partition and label the bounds
on the controllable inputs (x,X) so that the bounds on
the input of the k-th subsystem are denoted by (x;,X).
Consider the following stochastic optimization problem to
decide the independent control bounds for each subsystem:

K
Zwkfk(zkaik)

n):aix (3a)
s.t. Pr(gj <Ajx+ bj) >1-aqj,
Vx € [x,X],Vj € {1,...,m} (3b)
Pr(A;x+b; <7;) > 1—a,
Vx € [x,X],Vj € {1,...,m} (3c)
x<X (3d)

where A; denotes the j-th row of the matrix A, and
[A; b;]" € R™D s a vector of random variables.

The functions fj Vk € {1,...,K} are used to
characterize a measure of the flexibility in each input that
the optimization problem seeks to maximize. In addition,
the weights, wy, determine how much flexibility each sub-
system gets. A common choice of fi is fi(x,Xk) =
>t In(@y,; — ay,;), which implies that (3a) maximizes
the volume of the hyperrectangle (X; — x;,). Also, if there
is an operating point, X op, that is desired to be within the
bounds, then setting fi(x;,Xk) = — ZJ 1 (max{0, z; ; —
Zp,op,j + + max{0, Ly op; — Tk,;}) Will promote the bounds
(x,X) to surround Xqp.

After solving Problem (@) for the control bounds (x,X),
each subsystem, &, will then independently be able to operate
its controllable inputs, xj, anywhere between x; and Xy
while satisfying the global chance constraints (2). Moreover,
if the control bounds are intended to be used for multiple
instances of time, then each subsystem can move x; between
the control bounds over time as conditions and objectives
change.

III. CHANCE CONSTRAINT REFORMULATION

The chance constraints in Problem (3)) represent an infinite
set of constraints because they must hold for every x between
the control bounds (x,X). This presents a significant obstacle
to implementing these constraints. The following proposition
reduces the infinite set to a single chance constraint for each

g-

2

Proposition 1. Let a € R™ be a vector of random variables.
The following set of infinite set of chance constraints:

Pr(a’x<0)>1-a, Vx€[xX| (4)
is equivalent to the following chance constraint:
Pr((@) x+ (@) x<0)>1-a 5)

where a; = min{0,a;} and a} := max{0,a;} separate
out the negative and positive elements of a into two vectors
of their negative and positive realizations.

Proof. The infinite set of chance constraints described by
Equation (@) are satisfied if and only if the worst-case chance
constraint among them is satisfied:
Pr(a x<0)y >1-—
zin {Pra’x <0)} a.
which occurs when the LHS of the inequality inside the
probability operator is maximized:

(xren[i)i] {a x} < O)

min {Pr(a x<0)} =Pr

XE[x,X]

Also, we have that:

max {a X} Z

xExx

max a;x;
xi €[z, T

o) )"
because the optimization problem is element-wise separable
where each element is maximized at either the lower or
upper bound of the interval depending on whether a; is
negative or positive. Putting this final expression into the
chance constraint gives us the resultant. O

X

Applying Proposition [I] to the infinite sets of chance
chance constraints (3b)) and (3c)) turns them into the following
finite set:

Pr(y, < AjX+Afx+b) > 1—a; Vje{l,...,m}

(62)
Pr(A7x+ATX+b; <7;) >1—a; Vje{l,....,m}.

(6b)
IV. APPLICATION TO DISTRIBUTED ENERGY RESOURCE

CONTROL

In this section, we apply the general formulation (3) to
the control of DERs in a power distribution network. The
increased deployment of DERs in a distribution network has
made it challenging to control certain state variables of the
network. The typical example is voltage regulation, wherein
the goal is to operate DERs such that the nodal voltage
magnitudes lie within safe bounds. The main challenge is that
certain DERSs, such as solar panels and wind turbines, add
more volatility and uncertainty to the nodal power demand.
Moreover, storage devices (e.g., batteries and thermal storage
loads) add extra control capabilities that increase the number
of dimensions and the complexity of the control decision
space.
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Communication-based approaches for real-time DER con-
trol might be impractical because the communication net-
work that is typically deployed between smart meters and the
utility does not allow for continuous bidirectional streaming
of measurement data and control signals [8], [9]. Instead,
smart meters are often able to send their measurement data
in large batches at different time instances; thus, we adopt
the general temporal decomposition framework, where the
utility sends control signals and collects measurement data
at a slow timescale to and from faster-acting DERs [10].

The main task in voltage regulation is to keep the voltage
magnitude at each bus in a distribution network between a set
of operational bounds. Consider a distribution network with
N buses labeled {1,..., N} and a slack bus labeled 0. The
active and reactive power injections for all the (non-slack)
buses are denoted by p € RY and q € RY, respectively.
The voltage magnitudes, denoted by v € RY, can be
approximately represented by the following equation:

v=Rp+Bq+a (7N

where R € RV*N B € RV*XN and a € RY are matrices
of system parameters. Equation is a linearization of
nonlinear power flow equations that we assume is stochastic
in nature. For example, the linearization method developed
by [11] uses the nodal admittance matrix to calculate the
parameters (R, B, a); however, there can be uncertainty in
calculating the admittance matrix because of uncertainties in
the resistance values of the distribution lines that are partially
caused by their dependence on temperature [12]. Thus, the
randomness in the resistance values of the lines results in
random system parameters (R, B, a).

We partition the power injections (p,q) into control-
lable parts (p, q°") comprising the controllable DERs and
uncontrollable parts (p"™,q""®) comprising uncontrollable
DERs and loads so that:

p= 1D°lr +p" (8a)
q=q"+q"™ (8b)
where we model (p""°, q"*) as vectors of random variables,

and we specify that the bus-wise controllable variables must
fit within a local control space, X;, specifically (p$", ¢5") €
X;:Vie{l...,N}.

Based on the control bound framework described in Sec-
tion [, our goal is to find the lower (p*,q®") and upper
(P, @) control bounds so that the voltage magnitudes, v,
at each bus stay within the lower v and upper v bounds
with a probability of at least 1 — « for any choice of control
variable (p®",q‘") between the bounds. More specifically,
with the use of quations (7) and (8)), we want to satisfy the
following infinite set of chance constraints:

Prv, < v;) 21— 5.vp € [p, 5] Vo € [0, q],

Vie{l,...,N} (9a)
PI'(UZ' S ii) Z 1— vpctr c [Bctr —ctr] vqctr c Lctr —ctr] ,
Vie{l,...,N} (9b)
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where the probability of violation, « € (0, 1), is split equally
between the upper and lower voltage magnitude bounds.
Using the chance constraint reformulation in Equation (6)),
the aforementioned chance constraints become:

PI‘(Qi < Ri—ﬁclr 4 Bi_thr 4 R;i-Eclr 4 B;&-gctr + w7)

21—%, Vie{l,...,N} (10a)
(R7 ctr + B;g‘:" + R;rﬁctr + quctr + w; S Ei)
21—%, Vie{l,...,N} (10b)

where w := Rp"™ + Bq"" + a is a vector of the random
variables containing the randomness from the uncontrollable
loads and the uncertain system parameters.

The randomness observed by the uncontrollable loads
(p"™©, ") can be defined at a finer temporal granularity
than that of the control bounds (p*,q",p",q"). For
example, if the control bounds are defined for a 15-min
interval, the randomness in the uncontrollable loads can be
defined for the 1-min intervals within it. Also, it means that
the controllable DERs could modulate (p®", q®) in response
to the observed local uncontrollable loads or objectives that
change faster than every 15 minutes as long as they remain
within their control bounds.

Note that this single-period problem for determining DER
control bounds can be extended to the multiperiod problem
if the necessary information is available. For example, the
control bounds could be defined in a day-ahead framework
if, for every time interval in a day, there is an associated
multivariate probability distribution that describes the uncon-
trollable power injections (p"*, @"*) and the system param-
eters (R, B, a), and there are sets, X; : Vi € {1,..., N}, that
bound the controllable power injections (p®", g ) Note that
in this case, the set &; is coupled in time (e.g., for thermal
loads and batteries), but the methods described by, e.g., [13],
[14], can handle this by computing a conservative inner
approximation of their Cartesian product. Consequently, the
obtained control bounds will be more conservative for larger
control horizons.

V. DISTRIBUTED ENERGY RESOURCE CONTROL
NUMERICAL SIMULATIONS

In this section, we demonstrate the efficacy of the lower
bounds (p*, q*") and upper bounds (p°*,q") on the con-
trollable power injections, which are computed using the
proposed method for a distribution network under a realistic

scenario.

A. Setup

Suppose that a system operator (utility) sends out
a day-ahead sequence of time-varying control bounds,
{p (1), g5 (£), 77" (1), @;" (1)} = Vt € T, to each bus i €
{1,... N }, where T contains all the time intervals of a
day. The controllable DERs located at each bus can operate
according to their individual objectives as long as their net
power injection remains within the control bounds. Because
the utility sets the control bounds to satisfy the chance
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constraints stated in Equation (I0), the day-ahead voltage
profile at each bus, ¢, is guaranteed to remain within its
bounds (v;,7;), with a probability of at least 1 — . We
assume that the utility receives the time-varying, day-ahead
control space, X;(t) : Vt € T, from each bus, i.

The time-series data used in the numerical simulations
were derived from the Pecan Street Dataport [15] and pro-
cessed by a research team at the Eaton Corporation for a
set of homes from Austin, Texas, at 1-min granularity, split
among the devices used in the homes. The devices were
partitioned into controllable devices (heating, ventilating,
and air conditioning; battery; curtailable photovoltaics (PV))
and all other uncontrollable devices. For each home, the
feasible control space was found by using a temperature
comfort range within the home and simulating the time-
varying minimum and maximum possible load that keeps
the home within the temperature range. The uncontrollable
devices from all the homes were aggregated together and
forecasted in a day-ahead manner. This was done for the 31
days prior to the day being analyzed in this section to get
the historical data of the forecasting errors. There were 2
days being analyzed: August 17, 2020, with 14 homes, and
December 8, 2020, with 18 homes.

We use the bootstrapping statistical method to generate
a synthetic data set from the processed home data in the
following manner. For spatial diversity of the feasible control
space during a particular day at each bus in the distribution
network, we randomly select homes with replacement and
sum together the upper and lower bounds, respectively, of
their feasible control spaces to form X;(t) : V¢ € T. The
number of homes selected is equal to the number of homes
available for that day so that the values are scaled appro-
priately with the aggregated uncontrollable devices from the
same number of homes. For temporal and historical diversity
of the uncontrollable loads at each bus, we randomly se-
lect days with replacement and concatenate their associated
forecasts and realizations of the aggregated uncontrollable
devices together. This gives a similar but diverse history for
each bus, which can be then used to find the means and
covariance matrix across the buses of the forecasting errors.

The power system used in the numerical simulations is the
IEEE 33-bus distribution network [16]. The loads from the
previously described data are scaled so that their mean aligns
with the default settings of the test case. To add uncertainty
and randomness in the power system model, we randomly
distribute the resistances of all the lines in a uniform distribu-
tion, £20% from their nominal values, as described by [12].
For each sampled network-wide realization of resistances, the
resulting impedances are converted into a nodal admittance
matrix. Using the linearization method from [11], we convert
the admittance matrix into the system parameters (R, B, a);
thus, from every network-wide realization of resistances,
we have a separate realization of the system parameters
(R, B, a), which is used to build an empirical distribution
from 1000 samples and find the mean and covariances
between the elements. For this simulation, we separately
linearize around v and Vv to get two sets of system parameters

4

(R,B,a): one for the chance constraints on the lower
bounds and one for the chance constraints on the upper
bounds. Although the probability distributions are based on
the linearized power flows, the resulting voltages used in
the evaluation of the control bounds are simulated using the
nonlinear ac power flow equations in PandaPower [17].

To find the control bounds, we solve the following opti-
mization problem for each time, ¢t € 7, at 15-min granular-

1ty:

N N
—Clr ctr —Ctr ctr
o ;hl(pi -1 )+;1n(qi — ") (1a)
st (T0) (11b)
{(", ¢, (B, T} € Xi(0),
Vie{l...,N} (llc

where the goal is to spread out the control flexibility widely
among the buses, the probability of violation v was set to
0.1, and the voltage bounds were set to 0.95 and 1.05 p.u.
at each bus. Because the chance constraints stated in
cannot be directly coded into a solver, we use the sample
mean and covariance matrix to form the distributionally
robust convex equivalents for which we assume the sample
mean and covariance are approximately the true versions
(See [18], Section 3.1). Note that the work by [19] can
deal with the uncertainty that comes from using the sample
mean and covariance in place of their unknown true versions.
As a benchmark, we compare the use of control bounds
to not having bounds on control, i.e., each bus can operate
anywhere in their feasible space, X;(t), at any time ¢.

B. Results

Because of space limitations, we focus on simulations
based on the data from August 17, 2020, and we showcase
Bus 26 as indexed by [16] because it displays many features
found on the other buses. Figure [1| displays the normalized
control bound sizes of each bus during the day that are calcu-
lated as the difference between the upper and lower control
bounds. Depending on its location in the network, a bus
has more or less control flexibility, especially between the
hours of 10 through 18, when there is a significant amount
of available generation from solar. The simulations based on
data from December 8, 2020, show similar characteristics
but have less dynamic profiles.

A sample of the lower and upper control bounds are shown
in Figure [2] for both their active and reaction parts. For the
first 10 hours and last 4 hours of the day, the control bounds
have no restrictions and are equivalent to the feasible bounds
set by the control capabilities at the bus. At hours 10 through
16, the control bounds expand but are limited relative to the
potential expansion because every other bus in the network
can also expand from the available PV power; the natural log
in Problem (IT)) spreads the potential control space among
the buses.

Because there are infinite choices for each bus within its
control or feasible bounds, we simulate two extreme scenar-
ios for both the case when control bounds are implemented
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(a) Active load

norm ctr bnd size - reactive
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(b) Reactive load

Fig. 1: Control bound sizes of each bus vs. time, normalized
by their maximum feasible space size.

versus when they are not: (i) all controllable power injections
go to their minimum possible values, and (ii) all controllable
power injections go to their maximum possible values. These
two extreme scenarios under control bounds will push the
chance constraints (E[) to their limits, and under no control
bounds, they will show the potential consequences without
them.

Figure [3a] shows these extreme scenarios for a single
day, which includes the realized forecasting errors of the
uncontrollable loads and the random realizations of the line
resistances. Under the case with control bounds, the voltage
magnitudes stay within or very close to their limits of (0.95,
1.05) p.u., whereas the case without control bounds goes
below 0.90 p.u. and above 1.40 p.u. Observe that right before
hour 20, the feasible control spaces pushes the maximum
possible voltage magnitude down to almost its lower limit of
0.95 p.u., whereas the upper control bound holds the voltage
magnitude to be above 0.95 p.u. This is also shown in Figure
[2] where the control bounds almost collapse to a single point.

To evaluate the satisfaction of the chance constraints (E[),
Figure [3b] gives two histograms when the controllable loads
are all at their upper bounds (left) and all at their lower
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Fig. 2: Upper and lower control bounds vs. time of Bus 26
compared to their maximum and minimum feasible bounds.
The gray bars along the bottom of each plot show the
distance between the upper and lower control bounds.

bounds (right). The forecasting errors from all 32 days and
the random realizations of the line resistances were used
to generate the histograms. The red triangles locate the
S x 100 = 5-th percentile (left) or (1 — §) x 100 = 95-
th percentile (right) to signify whether the bounds inside
the chance constraints are being respected. In this case, they
are just outside of their bounds, which can be attributed to
the fact that the voltage magnitudes were simulated using
nonlinear power flow equations whereas their linearized
versions were used when calculating the control bounds.

VI. CONCLUSION

In this paper, we proposed a novel control framework to
manage the outputs of a networked stochastic system. The
operational bounds on the system-wide outputs are translated
into independent control bounds on each subsystem so that
each subsystem can operate independently. As long as each
subsystem keeps their controllable inputs within their control
bounds, the system-wide outputs are guaranteed to be within
their prescribed bounds with at least a specified probability.
The general framework was demonstrated by applying it
to the control of DERs in a distribution network to keep
the voltage magnitudes within the specified bounds. It was
further illustrated with numerical simulations of control
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(b) Histogram of voltages

Fig. 3: (a) Voltage magnitudes vs. time, (b) histogram of
voltage magnitudes at Bus 26 during the extreme cases
when all controls are at their upper or lower control bounds
compared to being at their maximum and minimum feasible
bounds. In (b), the red triangle points to the percentiles
associated with the chance constraints (9).

bounds using real-world data on an IEEE 33-bus distribution
network, and it confirms the efficacy on managing voltage
magnitudes. An important future direction would be to
formalize how to calculate the control bounds in a distributed
manner that would not require a centralized system operator.
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