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Super-resolving microscopy images of Li-ion electrodes for
fine-feature quantification using generative adversarial
networks
Orkun Furat 1✉, Donal P. Finegan 2✉, Zhenzhen Yang3, Tom Kirstein1, Kandler Smith 2 and Volker Schmidt1

For a deeper understanding of the functional behavior of energy materials, it is necessary to investigate their microstructure, e.g.,
via imaging techniques like scanning electron microscopy (SEM). However, active materials are often heterogeneous, necessitating
quantification of features over large volumes to achieve representativity which often requires reduced resolution for large fields of
view. Cracks within Li-ion electrode particles are an example of fine features, representative quantification of which requires large
volumes of tens of particles. To overcome the trade-off between the imaged volume of the material and the resolution achieved,
we deploy generative adversarial networks (GAN), namely SRGANs, to super-resolve SEM images of cracked cathode materials.
A quantitative analysis indicates that SRGANs outperform various other networks for crack detection within aged cathode particles.
This makes GANs viable for performing super-resolution on microscopy images for mitigating the trade-off between resolution and
field of view, thus enabling representative quantification of fine features.
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INTRODUCTION
Imaging techniques like, for example, scanning electron micro-
scopy (SEM), electron backscatter diffraction (EBSD), and X-ray
microtomography (micro-CT) have emerged as powerful tools for
characterizing the microstructure of various kinds of materials1–4,
for investigating structure–property relationships5,6, and for
analyzing the influence of manufacturing parameters on the
resulting materials’ microstructures7. In addition, methods from
machine learning have developed rapidly in recent years,
especially for computer vision tasks. These developments include
methods for image classification8,9, segmentation10–12, and
synthesis13–16. Increasingly intensive, these methods are adapted
and applied for solving similar tasks within the field of materials
science. For example, modified versions of the convolutional
neural network (CNN) architecture, so-called U-nets, which have
been developed for the segmentation of biomedical image data in
Ronneberger et al. (2015)12, found numerous applications within
materials science for image segmentation tasks1,17–22. Break-
throughs in this direction are of great importance, since the
quality of segmentation results has a significant impact on
subsequent analyses like the statistical characterization of
materials1–3, the calibration of stochastic geometry models for
the generation of digital twins, i.e., the generation of virtual but
realistic microstructures23–25, and conducting numerical simula-
tions of effective materials properties26,27.
Moreover, methods from machine learning are not limited to

segmentation tasks within materials science. In fact, neural
networks are able to perform the previously mentioned sub-
sequent analyses steps as well. For example, Mianroodi et al.
(2021)28 reported that a trained U-net architecture can predict a
microstructure’s local stress fields faster than spectral solvers of
the associated partial differential equations. Furthermore, meth-
ods from machine learning have been used for the generation of

digital twins of real microstructures29–31. These studies deployed
so-called generative adversarial networks (GANs) which are
typically trained in an unsupervised way and have first been
deployed for image synthesis tasks13. Supervised versions of GANs
have been used for performing super-resolution, i.e., for enhan-
cing the resolution of digital images32–34. Furthermore, GANs can
be trained also in unsupervised scenarios, i.e., when training data
consists of non-matching pairs of low-resolution and high-
resolution images35,36. Besides GANs, there are further methods
from machine learning for performing super-resolution37–39—for
an exhaustive survey on super-resolution methods, the reader is
referred to Wang et al. (2021)40.
In the field of materials science, super-resolution of microscopy

image data is of great interest, since imaging techniques are often
time-consuming and there is a trade-off between the imaged
area/volume of the material and the resolution achieved. More
precisely, imaging performed with a small pixel/voxel size (i.e.,
high-resolution) can capture more details of a material’s micro-
structure which, however, leads to a smaller area/volume of the
material being imaged. Therefore, due to local material hetero-
geneities, single images obtained by high-resolution imaging may
not be statistically representative41. On the other hand, low-
resolution imaging can capture larger areas/volumes, yet, fine
details of the microstructure may not be visible.
This dilemma of balancing field of view and resolution is

particularly prevalent in the field of Li-ion batteries where
electrodes have multi-scale architectural heterogeneities, each
requiring analysis of representative volumes for accurate char-
acterization42. For example, electrode particles have distributions
of shapes and sizes, necessitating a field of view large enough to
capture a volume of particles that provides representative
characterization of their morphology43. For extremely small
features that greatly vary across relatively large volumes, both a
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large field of view and high resolution is needed. Cracks within
electrode particles are an example of such extremely small
(<500 nm) features44. It is expected that cracks will vary for
different particle architectures, therefore likely requiring similar
representative volumes for particle characterization but requiring
higher resolution. Therefore, crack characterization within elec-
trode particles requires both large field of view and high
resolution, which in the case of SEM is both time-consuming
and expensive.
This issue can be remedied, by super-resolving experimentally

measured low-resolution images, which would lead to detailed
image data of larger areas/volumes. For example, in Hagita et al.
(2018)45 and de Haan et al. (2019)46, GANs were used for super-
resolving SEM image data of silica and gold nanoparticles,
respectively, whereas in Jung et al. (2021)47 a CNN was used for
super-resolving EBSD image data. Specifically, the approaches in
Hagita et al. (2018)45 and Jung et al. (2021)47 used downsampled
high-resolution images in order to obtain low-resolution versions
of the former as training data. In this context, however,
downsampling of high-resolution images does not always model
experimentally measured low-resolution images accurately48.
Therefore, networks which have been trained on synthetic low-
resolution images may not perform as well on experimentally
measured low-resolution images49.
In the present paper, we deploy a slightly modified version of

the GAN described in Ledig et al. (2017)33, the so-called super-
resolution GAN (SRGAN), for performing super-resolution on SEM
image data of differently aged LiNi1−x−yMnyCoxO2 (NMC) particles
within cathodes for Li-ion batteries. The aging of such particles
leads to the formation of cracks, which are fine features being
heterogeneously present throughout particles within the cathode
material. Thus, large areas/volumes have to be imaged in order to
obtain representative data. This makes low-resolution image data
of aged cathode particles an ideal case for studying the viability of
super-resolution architecture SRGAN. For training the SRGAN, we
use pairs of experimentally measured low-resolution SEM images
and corresponding (experimentally measured) high-resolution
images where the resolution of the latter is α= 2.5 times higher
than the former. Note that the network architecture described in
the present paper can easily be adapted for performing super-
resolution for different values of α. We compare the super-
resolution results obtained by the SRGAN with those obtained by
trained versions of the networks described in de Haan et al.
(2019)46 and Jung et al. (2021)47 which have been used for super-
resolving microscopy image data. This quantitative comparison
indicates that, in the context of super-resolving SEM image data of
NMC particles, the trained SRGAN outperforms the networks
studied so far in literature.
Additionally, we train another GAN using the approach

described in Yuan et al. (2018)35. Therefore, during training we
consider a scenario in which experimentally measured low- and
high-resolution images are available—however, in which we do
not have matching (i.e., registered) pairs of such images. This
network is trained with downsampled versions of the experimen-
tally measured high-resolution images. Nevertheless, during
training the network receives experimentally measured low-
resolution images as well, such that it can learn features which
are specific to experimental low-resolution images and not
present in downsampled images. In direct comparison, the GAN
trained with this approach outperforms networks which have
solely been trained with downsampled high-resolution images.
This indicates that GANs can be used to reliably enhance the
resolution of experimentally measured image data in order to
obtain more detailed, yet statistically representative microscopy
image data—even when no registered image pairs with low- and
high-resolutions are available. For example, this approach could
be of interest for super-resolving low-resolution microscopy

images within existing datasets which have been measured
without corresponding high-resolution images.
Since the SEM image data considered in the present paper

depicts differently aged/cracked cathode particles, this dataset will
serve as the basis for investigating the influence of aging
parameters on the crack formation within cathode particles in
future studies. Therefore, in the present paper, we additionally
study to what extent super-resolution supports the analysis of
crack formation. More precisely, we segment the cracks within
super-resolved image data which we compare to cracks deter-
mined from high-resolution images. We observe a significant
improvement for crack segmentation results when using super-
resolved images in comparison to upsampled low-resolution
images, see the discussion section for more details. This indicates
that super-resolving SEM image data of cathode materials can
significantly support the analysis of battery aging processes.
Moreover, super-resolution using machine learning methods is
not limited to SEM image data of cathode materials. The networks
discussed in the present paper could easily be deployed onto
image data obtained by different measurement techniques like,
for example, atomic force microscopy50.
Thus, this technique is expected to have a plethora of

applications in materials science and particularly Li-ion electrode
characterization where understanding the distributions of small
components and features such as conductive carbon, cracks, and
unwanted deposits are critical to understanding the performance
and degradation of cells.

RESULTS
Architecture of the generative adversarial network
In this section, we describe the network architecture which we
deploy for increasing the resolution of SEM image data of cathode
materials for Li-ion batteries, see the sample details given below. We
use the so-called SRGAN architecture described in Ledig et al.
(2017)33 which is based on a GAN. More precisely, the considered
GAN consists of two neural networks, i.e., a generator GθG ¼ G and a
discriminator DθD ¼ D, where θG 2 RnG and θD 2 RnD for some nG,
nD > 0 denote the weights of the generator and the discriminator,
respectively. The former receives a (single-channel) low-resolution
SEM image ILR: {1,…, h} × {1,…,w} × {1}→ [0, 1] with height h > 1
and width w > 1 as input for which it computes a high-resolution
versionbIHR ¼ GðILRÞ : f1; ¼ ; αhg ´ f1; ¼ ; αwg ´ f1g ! ½0; 1� of ILR
as output, where α > 1 is a scaling factor such that αh and αw are
integers. The high-resolution version bIHR of ILR should resemble the
corresponding (experimentally measured) high-resolution SEM
image IHR: {1,…, αh} × {1,…, αw} × {1}→ [0, 1]. Note that the high-
resolution image data considered in the present paper has been
denoised, meaning that the generator G performs both super-
resolution and denoising, see the methods section for more details
on the image data.
On the other hand, the discriminator D is supposed to

distinguish between experimentally measured high-resolution
images and those computed by the generator G, where the
discriminator’s output has to be as high as possible for the high-
resolution image IHR, and as low as possible for bIHR computed by
the generator, i.e., D(IHR)= 1 and DðbIHRÞ ¼ 0. Moreover, both
networks G and D are in contest with each other, i.e., during
training the generator G tries to produce high-resolution versions
of low-resolution SEM images which are evaluated by the
discriminator D as experimentally measured ones.
Now, we describe the architectures of the considered neural

networks G and D in detail. To accommodate our data and
hardware situation we slightly modify the original architecture of
SRGAN (cf. Fig. 4 in Ledig et al., 201733). Since the pixel size of the
low-resolution SEM data considered in the present paper is 2.5
times larger than the pixel size of the high-resolution data, we
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chose architectures which accommodate this, i.e., we set α= 2.5. As
generator G for our GAN architecture we use a SRResNet33 with 16
residual blocks. In order to increase the spatial resolution of feature
maps by a factor of α= 2.5 into each spatial dimension
the input is upsampled by a factor of 1.25 and a single PixleShuffle
layer51 prior to the output layer is used (see Fig. 1a). Note that we
made further modifications to the original SRGAN architecture by
replacing PReLU layers52 with ReLU layers53 and by omitting
BatchNormalization layers54. In this manner the generator of SRGAN
coincides with the architecture utilized in Jung et al. (2021)47 to
which we will compare the performance of SRGAN below.
Furthermore, by using ReLU layers instead of PReLU we additionally
decrease the number of network weights, thus, increasing
computational feasibility. The BatchNormalization layers were
removed since they can decrease the network’s accuracy for
performing super-resolution tasks55,56. Additionally, the removal of
BatchNormalization accommodates the small batch size utilized
during the training procedure described below57. Finally, we use a
sigmoid activation function for the convolutional output layer and
reduce the number of its feature maps from three to one such that
the network’s outputs are single channel images with values in the
interval [0, 1], i.e., the network’s outputs can be interpreted as
grayscale images. The discriminator D is a slightly modified version
(i.e., BatchNormalization layers were omitted) of the discriminator
used in Ledig et al. (2017)33 (see Fig. 1b).

Optimization of network parameters
In order to train a GAN to perform super-resolution we formulate
an optimization problem which consists of two components. The
first component measures how much an image bIHR computed by
the generator G deviates from the actual high-resolution image
IHR. For this purpose, in statistical learning, a common loss function
is the mean squared error (MSE) given by

MSEðI1; I2Þ ¼ 1
cwh

Xw
x¼1

Xh
y¼1

Xc
c0¼1

I1ðx; y; c0Þ � I2ðx; y; c0Þð Þ2; (1)

where I1; I2 : f1; ¼ ; hg ´ f1; ¼ ;wg ´ f1; ¼ ; cg ! R are images
with c channels, height h and width w. However, Ledig et al.
(2017)33 showed that for super-resolution tasks better results
can be achieved with the so-called perceptual loss PLi,j,v which is
given by

PLi;j;vðI1; I2Þ ¼ MSEðϕi;j;vðI1Þ;ϕi;j;vðI2ÞÞ; (2)

where ϕi,j,v(Ik) denotes the output of the ith convolution layer
before the jth maxpooling layer of the pre-trained Visual

Geometry Group (VGG) network58 with depth v∈ {16, 19} for the
input image Ik with k= 1, 2. Then, one objective during the
training of the generator G is the minimization of PLi,j,v(G(ILR), IHR)
for some specification of i, j and v. The other objective is to “trick”
the discriminator D to believe that the generator’s output G(ILR) is
an experimentally measured high-resolution image, i.e., the
minimization of log 1� DðGðILRÞÞð . On the other hand, the
discriminator D is supposed to distinguish between G(ILR) and
IHR, i.e., during training the objective is also to maximize
logDðIHRÞ þ logð1� DðGðILRÞÞÞ. Then, putting i= j= 2 and v=
19, the minimax problem for optimizing the GAN is given by

min
θG2ΘG

max
θD2ΘD

E PL2;2;19ðGθGðJLRÞ; JHRÞ
� �þ γ E½logDθDðJHRÞ�ð

þE½logð1� DθDðGθGðJLRÞÞÞ�Þ; (3)

where γ > 0 denotes the adversarial weight, and ΘG � RnG , ΘD �
RnD are the sets of admissible weights for the generator G and
discriminator D, respectively33. Furthermore, JLR denotes the
random low-resolution image obtained by taking a 96 × 96-sized
cutout from the training data at random, and JHR is the
corresponding random high-resolution image. Note that the
optimization problem given in Formula (3) requires pairs of low-
resolution and high-resolution images ILR and IHR (see Fig. 2). If no
experimentally measured pairs of such low-resolution and high-
resolution images are available, training can still be performed by
synthetically downsampling the high-resolution image IHR. For
example, using bilinear or bicubic interpolation we can obtain
downsampled versionseILR of IHR for training purposes59. Then, the
corresponding optimization problem is given by

min
θG2ΘG

max
θD2ΘD

E PL2;2;19ðGθGðeJLRÞ; JHRÞh i
þ γ E logDθDðJHRÞ½ � þE logð1� DθDðGθGðeJLRÞÞÞh i� �

;
(4)

where JHR denotes the random high-resolution image obtained by
taking a 240 × 240-sized cutout from the training data at random,
andeJLR denotes the downsampled version of JHR with size 96 × 96.
However, note that a network which is trained according to the

rule described in Formula (4) with artificially generated low-
resolution images, may not perform well on experimentally
measured low-resolution images, since artificially downsampled
images may not exhibit the same features (e.g. the same type of
noise) as experimentally measured images with the same
resolution48,49. For such unsupervised data scenerios, so-called
CycleGAN36 architectures can be considered for performing super-
resolution35,48,60.

Fig. 1 Network architectures. Modified versions of the architectures described in Ledig et al. (2017)33 for the generator G (a) and
discriminator D (b) considered in the present paper. The labels above convolutional layers (Conv) indicate the kernel size (k), the number of
feature maps (n) and the stride (s). For example, the label k9n64s1 indicates a convolutional layer with kernel size k= 9, number of feature
maps n= 64, and stride s= 1.
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Simulation-based training procedures
We now describe the training of various neural networks for
performing super-resolution tasks. In particular, we train two
different versions of the network architecture described in the
previous sections, which is based on the GAN considered in
Ledig et al. (2017)33. Furthermore, we train the GAN architec-
ture described in de Haan et al. (2018)46 and two variants of the
architecture presented in Jung et al. (2021)47. Then, in the
next section, we quantitatively compare the super-resolution
results obtained by the architectures considered in the present
paper with those described in de Haan et al. (2018)46 and Jung
et al. (2021)47.
First, we describe the training of the SRGAN architecture

described above (see Fig. 1) by solving the optimization problem
given in Formula (3) where we set the adversarial weight γ equal
to 2.0. Before training, we split the available 33 pairs of
experimentally measured low-resolution and corresponding
high-resolution images (see the “Methods” section below for
details) into training, validation and test sets, each consisting of
24, 5 and 4 pairs of images, respectively. Then, the network
weights are initialized using the Glorot scheme61, followed by
solving the optimization problem given in Formula (3) using the
stochastic gradient descent method Adam62 with a learning rate
of 10−4. More precisely, in each training step, 32 (rotated)
cutouts of size 96 × 96 are taken at random from the low-
resolution images in the training data set accompanied with the
corresponding high-resolution cutouts with size 240 × 240. These
images are used to estimate the expected values within the
objective function of the minimax problem given in Formula (3)
and the corresponding gradient with respect to the network
weights θG and θD. Due to memory limitations, in each training
step the gradient is computed by determining 32 gradients for
each individual cutout followed by averaging. Note that, using
the averaged gradient, the weights of the generator GθG and the
discriminator DθD are updated alternatingly in each step of the
optimization procedure.
To avoid overfitting, every 20 steps the performance of the

generator is evaluated with respect to the PL2,2,19 loss on 92
pairs of cutouts taken at random from the validation set.
Note that each validation step is performed on the same
set of 92 pairs of cutout images. If the performance on the
validation data set does not improve within 10 consecutive
performance checks, the training procedure is stopped
and the network’s weights are reset to the best performing
version, which we denote by SRGAN. The networks were
implemented using the Python package TensorFlow63 and
trained in <10 h on a GPU (system specifications—RAM: 32 GB;
CPU: AMD Ryzen 5 3600 with six 3.6 GHz cores; GPU: NVIDIA
GeForce RTX 3060).
Analogously, we train the architectures described in de Haan

et al. (2018)46 and Jung et al. (2021)47 with their respective loss
functions (cf. Eqs. (2)–(4) in de Haan et al. (2018)46 and Table 2 in
Jung et al. (2021)47), where we denote the corresponding trained

networks by U-NetGAN and SRResNet1, respectively. Note that the
latter one is not a GAN architecture, i.e., the update step for the
discriminator is skipped during training. Furthermore, the
architecture described in Jung et al. (2021)47 had to be slightly
modified to accommodate our super-resolution task of increasing
the spatial resolution by a factor of 2.5 in each dimension. More
precisely, we upsample the input by a factor of 1.25 and use just a
single PixelShuffle layer for upsampling. Thus, the SRResNet1
architecture coincides with the architecture of the generator
of SRGAN.
In addition to the training of the three architectures described

above—for which we utilize training data comprised of
matching pairs of experimentally measured low-resolution and
high-resolution image data—we train two further networks for
which we do not utilize such matching pairs. Here, we train
another variant of the SRResNet architecture. Therefore, similarly
to the training procedure described in Jung et al. (2021)47 we
create batches by taking 240 × 240 sized cutouts at random from
the high-resolution training data, from which we compute
synthetic low-resolution images by downsampling. We denote
the corresponding trained network by SRResNet2. Recall that
training on downsampled high-resolution images can lead to a
poor performance when applying the trained network to actual
low-resolution data48,49. Thus, in addition, we utilize GANs,
namely the CinCGAN architecture, to overcome this issue, cf. Fig.
2 in Yuan et al. (2018)35. This architecture consists of two GANs,
where the task of the first GAN is to denoise low-resolution
images such that they resemble downsampled versions of high-
resolution images. The task of the second GAN is to super-
resolve the output of the first GAN. To accommodate our data
situation, we slightly modify the original CinCGAN architecture
by replacing the network denoted by SR in Yuan et al. (2018)35

with the architecture visualized in Fig. 1a, such that our CinCGAN
architecture increases the spatial resolution of low-resolution
images by the factor α= 2.5. An overview of the network
architectures, the optimization problems and the considered
training data for the five networks is given in Table 1. Some
super-resolution results obtained by the trained networks are
depicted in Fig. 3.

Quantitative analysis of super-resolution results
To begin with, a visual comparison of super-resolution results
achieved by the five trained networks, described in the previous
section, is given in Fig. 3. Then, we quantitatively analyze the
super-resolution results (see Table 1). For that purpose, we
leverage the test data which consists of four pairs of low-
resolution and corresponding high-resolution images which have
not been used for network training. Therefore, we denote these

pairs of images by ðIð1ÞLR ; I
ð1Þ
HR Þ; ¼ ; ðIð4ÞLR ; I

ð4Þ
HR Þ. For each trained

network, we predict high-resolution versions bIð1ÞHR ; ¼ ;bIð4ÞHR of

Ið1ÞLR ; ¼ ; Ið4ÞLR . Then, the discrepancies between the predictionsbIð1ÞHR ; ¼ ;bIð4ÞHR and the high-resolution images Ið1ÞHR ; ¼ ; Ið4ÞHR are

Fig. 2 Scheme for training the SRGAN. Training procedure according to the optimization problem given in Formula (3) when matching pairs
of experimentally measured low-resolution images ILR with corresponding high-resolution versions IHR are available.
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computed using various loss functions. In particular, we consider
the average of the mean squared error (MSE) given by

MSE ¼ 1
4

X4
k¼1

MSE bIðkÞHR ; I
ðkÞ
HR

� �
: (5)

Moreover, we evaluate the predictions by computing two different
types of VGG losses, i.e., we compute

PL2;2;v ¼ 1
4

X4
k¼1

PL2;2;v bIðkÞHR ; I
ðkÞ
HR

� �
; (6)

for v= 16, 19. The resulting values of MSE, PL2;2;16 and PL2;2;19,
which have been obtained for the trained networks, are listed in
Table 2. In addition, to evaluate the discrepancy between
predicted and experimentally measured high-resolution images,
we consider the mean structural similarity index (MSSIM) as
defined in Wang et al. (2004)64. The values, which are obtained for

the corresponding averages

MSSIM ¼ 1
4

X4
k¼1

MSSIM bIðkÞHR ; I
ðkÞ
HR

� �
; (7)

are listed in Table 2. Note that in contrast to the values of MSE,
PL2;2;16 and PL2;2;19, larger values of MSSIM indicate better results.
Thus, altogether, SRGAN leads to better predictions than the
remaining four networks, see also the “Discussion” section.

Super-resolution for improved crack detection
In the previous section, we investigated the performance of super-
resolution results obtained by the trained networks by direct
comparison to the grayscale high-resolution images. Recall, that
the SEM image data considered in the present paper depicts
differently aged cathode particles where the aging leads to cracks
within the particles. Thus, for investigating the influence of aging

Fig. 3 Visual comparison of super-resolution results. For four different cutouts (rows 1–4), super-resolution results are shown which have
been obtained by five trained networks. Experimentally measured (noisy) low-resolution images which serve as input are depicted in the first
column. The corresponding (denoised) high-resolution images are shown in the second column. They serve as ground truth. The super-
resolution results obtained by U-NetGAN, SRResNet1, SRGAN, SRResNet2, and CinCGAN are depicted in columns 3–7, respectively.
Magnifications with a zoom factor 2 of the dashed blue squares are visualized in the blue solid-lined squares.

Table 1. Overview of the training specifications for the neural networks considered in the present paper.

Name U-NetGAN SRResNet1 SRGAN SRResNet2 CinCGAN

Generator
architecture

Modified U-Net SRResNet SRResNet SRResNet SRResNet

Discriminator Yes No Yes No Yes

Optimization
problem

cf. Eqs. (2)–(4) in de
Haan et al. (2019)46

Minimization of the
mean absolute error

Optimization problem
given in Eq. (3)

Minimization of the
mean absolute error

cf. Eqs. (5) and (10) in Yuan
et al. (2018)35

Training data Matching pairs of low-
resolution and high-
resolution images

Matching pairs of low-
resolution and high-
resolution images

Matching pairs of low-
resolution and high-
resolution images

High-resolution images
with synthetically
downsampled low-
resolution images

Non-matching low-
resolution and high-
resolution images and
synthetically downsampled
low-resolution images
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on the crack formation, the cracks have to be identified reliably
from SEM image data. Therefore, in this section we investigate
how super-resolution of low-resolution SEM image data improves
subsequent procedures for the crack segmentation.
For that purpose, let IHR : f1; ¼ ; hg ´ f1; ¼ ;wg ! R be a

high-resolution image within the test data set which consists of
four pairs of low- and high-resolution images (see Fig. 4a). Using a
modified version of the method described in Westhoff et al.
(2018)65 we compute a segmentation map SHR: {1,…, h} × {1,…,
w}→ {0, 1, 2} which is given by

SHRðxÞ ¼
0; if x is associated with the background ;

1; if x is associated with a crack ;

2; if x is associated with a particle ;

8><>: (8)

for each x∈ {1,…, h} × {1,…,w}. Figure 4b visualizes the segmen-
tation map SHR of the high-resolution image IHR depicted in Fig. 4a.
For more details on the segmentation procedure, see the
Supplementary Note 1 and Supplementary Fig. 1.
For technical reasons, we extend the domain of SHR to the

(continuous) rectangle ½1; h� ´ ½1;w� � R2 using nearest-neighbor
interpolation by

SHRðxÞ ¼ SHRðdx1c; dx2cÞ (9)

for each x= (x1, x2)∈ [1, h] × [1,w], where ⌈xi⌋ denotes the closest
integer to xi with ⌈xi⌋= xi−0.5 if 2xi is an odd integer25. Then, we
can determine the set of points associated with cracks by

CHR ¼ fx 2 ½1; h� ´ ½1;w� : SHRðxÞ ¼ 1g: (10)

Analogously, for a super-resolution versionbIHR of IHR we compute
the segmentation map bSHR and the set bCHR of points associated
with cracks determined from bIHR (see Fig. 4d). In order to
investigate to what extent super-resolution improves crack
segmentation results, we determine the set of points associated
with cracks from the corresponding low-resolution image ILR
without performing super-resolution. More precisely, we upsam-
ple ILR by a factor of 2.5 using bilinear interpolation59 followed by
denoising (see the “Methods” section for more details on the
denoising procedure). Then, the upsampled and denoised image
is segmented such that we obtain the corresponding segmenta-
tion map bSHR and the set bCHR of points which are associated with
cracks (see Fig. 4c)
In order to quantify the similarity between cracks bCHR

determined from super-resolution/upsampled images and the
ground truth CHR we consider the Jaccard index which is given by

JðbCHR; CHRÞ ¼ ν2ðbCHR \ CHRÞ
ν2ðbCHR ∪ CHRÞ

; (11)

where ν2(C) denotes the area of a set C ⊂ [1, h] × [1, w]66. Note
that the values of the Jaccard index are normalized, i.e., the
value JðbCHR; CHRÞ belongs to the interval [0, 1] and large values
indicate a good match between the sets bCHR and CHR. The
values of the Jaccard index for cracks segmented from
upsampled low-resolution images (as reference) and from

super-resolution images computed by the trained networks
U-NetGAN, SRResNet1, SRGAN, SRResNet2, and CinCGAN are
listed in Table 3.
Additionally, we investigate how well quantities for characteriz-

ing crack formation in particles can be estimated using super-
resolved image data. More precisely, we compute the specific
crack density ρ from the segmented high-resolution image data
which is given by

ρ ¼ ν2ðCHRÞ
ν2ðCHR ∪ PHRÞ ; (12)

where PHR denotes the set of points associated with the solid
phase of particles, i.e., PHR= {x ∈ [1, h] × [1,w]: SHR(x)= 2}. From
the high-resolution image data we determine the specific crack
density to be ρ= 0.123. Analogously, we estimate the specific
crack density bρ from upsampled/super-resolved low-resolution
data, see Table 3 for the relative errors with respect to ρ.
Additionally, we compute descriptors which characterize the

cracks in order to quantify the improvement of segmentation
results when utilizing super-resolved image data. First, we
determine connected components in CHR, i.e., we determine
m ≥ 1 connected components C1,…, Cm⊂ CHR with CHR ¼

Sm
i¼1 Ci .

Then, for each component Ci we compute the area-equivalent
diameter di by

di ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
ν2ðCiÞ
π

r
; i ¼ 1; ¼ ;m: (13)

Then, we determine the probability density f: [0,∞)→ [0,∞) of
the area-equivalent diameter of cracks computed from the high-
resolution image data, by fitting a log-normal distribution67 with
density fσ,μ to the area-equivalent diameters d1,…, dm using
maximum-likelihood estimation68, see the Supplementary Note 2
for further details. Note that the probability density fσ,μ is given by

f σ;μðxÞ ¼ 1

σ
ffiffiffiffiffiffi
2π

p
x
exp �ðlog x � μÞ2

2σ2

 !
; (14)

where σ, μ > 0 are model parameters. The corresponding log-
normal fit for the probability density of crack diameters
computed from high-resolution image data is visualized in
Fig. 5a (blue line). Analogously, the corresponding probability
densities bf are determined for cracks computed from
upsampled/super-resolved low-resolution images, see Fig. 5a
(For a visualization of histograms and corresponding log-normal
fits, see Supplementary Fig. 2). Note that for the computation of
the probability densities f and bf we disregarded area-equivalent
diameters <50 nm as the corresponding connected components
are indistinguishable from noise. Then, the discrepancy between
the probability density bf and the corresponding ground truth f
can be quantified by

kf �bfk ¼
Z 1

0
jf ðxÞ �bf ðxÞjdx: (15)

The values of kf �bfk for probability densities of crack sizes
determined from upsampled low-resolution images (as reference)
and from super-resolution images computed by the trained
networks U-NetGAN, SRResNet1, SRGAN, SRResNet2, and CinCGAN
are listed in Table 3. Altogether, SRGAN performs best with respect
to crack segmentation, see also the discussion provided in the
next section.

DISCUSSION
The super-resolution results achieved by the five networks
considered in the present paper are visualized in Fig. 3. They
indicate that the networks perform quite well, especially when
evaluated on low-resolution images with low amount of noise (see
Fig. 3) (second, third and fourth rows). However, the network

Table 2. Quantitative comparison of super-resolution results, where
the values of MSE, PL2;2;16, PL2;2;19, and MSSIM obtained for SRGAN
(marked in boldface) indicate that SRGAN leads to better predictions
than the remaining four networks.

Name U-NetGAN SRResNet1 SRGAN SRResNet2 CinCGAN

MSE 5.70e−03 5.91e−03 5.67e−03 6.03e−03 5.70e−03

PL2;2;19 2.33e+01 2.33e+01 2.21e+01 4.79e+01 2.32e+01

PL2;2;16 6.19e+01 6.25e+01 5.92e+01 1.24e+02 6.06e+01

MSSIM 8.85e−01 8.80e−01 8.88e−01 7.73e−01 8.86e−01
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SRResNet2 seems to perform worse than the other networks on
noisy data, see Fig. 3 (first row). The reason for this might be that,
as in Jung et al. (2021)47, it has been trained with pairs of high-
resolution images and corresponding downsampled versions, for
which the latter ones do not necessarily exhibit the same kind of
noise as experimentally measured low-resolution images. This is
also reflected quantitatively in Table 2 which indicates that the
other networks mostly outperform SRResNet2. This issue is
resolved by training networks with both experimentally measured
low- and high-resolution images.
For example, in the unsupervised scenario, i.e., when no

matching pairs of low-resolution and high-resolution images are
available, CinCGAN performs significantly better than SRResNet2
(see Table 2), where we can see that it even has a similar
performance as U-NetGAN which has been trained with matching
pairs of experimentally measured low- and high-resolution
images. This indicates that GANs are a viable option for
performing super-resolution on microscopy image data when no
matching pairs of low-resolution and high-resolution image are
available/obtainable for training purposes.
Among the networks which have been trained with matching

pairs of experimentally measured low-resolution and high-
resolution images (i.e., U-NetGAN, SRResNet1, and SRGAN) the
network SRGAN exhibits the best performance (see Table 2). It
even outperforms the other GAN architecture U-NetGAN. Apart

from differences in the network architecture, this can also be
attributed to differences in the optimization problem which has
been solved during the training procedure of U-NetGAN. More
precisely, the generator of U-NetGAN was trained to minimize the
L1 loss (i.e., mean absolute error)69 as well as the anisotropic total
variation loss70, cf. Eqs. (2)–(4) in de Haan et al. (2019)46; whereas
the generator of SRGAN was trained to minimize the perceptual
loss PL2;2;19. Nevertheless, SRGAN also performs best with respect
to the other considered performance measures (i.e., MSE, PL2;2;16
and MSSIM) which have not been optimized during training. In
summary, GANs trained to minimize the perceptual loss seem to
be a viable option for performing super-resolution of microscopy
image data.
Note that the quantitative results of Table 2 discussed so far, do

not reflect how well cracks within the super-resolved image data
can be quantitatively analyzed—which is, however, an important
aspect for investigating structural degradation in cathode
materials. More precisely, the discrepancy measures listed in
Table 2 are computed by averaging pixel-wise discrepancies, see,
for example, Eqs. (1) and (2). However, pixels associated with
cracks within the image data make up only a small fraction of all
pixels, such that inaccuracies of pixels associated with cracks in
super-resolved images only marginally affect these discrepancy
measures. For example, the quantitative comparison regarding
crack segmentation results listed in Table 3 indicates that the error

Fig. 4 Crack segmentation. High-resolution image IHR (a) and the corresponding segmentation map SHR computed from IHR (b) where black
color indicates the background, gray color the cracks and white color the particles. The corresponding segmentation map bSHR computed from
the upsampled low-resolution image (c) and from the images super-resolved by SRGAN (d), SRResNet2 (e), and CinCGAN (f). All figures use the
same length scale.
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of the crack size distribution determined from super-resolved
images by CinCGAN (which performs reasonably well according to
Table 2) is relatively large. In particular, Fig. 5b indicates that such
errors especially occur for small crack sizes, which, as mentioned
above, only marginally influence the results listed in Table 2.
Overall Table 3 indicates that super-resolving image data can

lead to a better segmentation of the crack phase within NMC
particles from SEM data than simply upsampling low-resolution
images. More precisely, the values of the Jaccard index listed in
Table 3 indicate that the application of SRGAN leads to a
significant improvement over upsampling of the low-resolution
image using bilinear interpolation, i.e., the Jaccard index is 0.556
for the upsampling method, whereas the application of SRGAN
leads to a Jaccard index of 0.679. Moreover, we observe that, with
a relative error of 0.036, the specific crack density ρ can be reliably
estimated using image data which has been super-resolved by
SRGAN. In comparison to this, the relative error using upsampled
low-resolution data is 0.136.
Furthermore, Fig. 5a shows that the crack size distribution

determined from the upsampled low-resolution data is, in
comparison to the distribution determined from high-resolution
data, shifted to the right, where the point-wise absolute errors are
visualized in Fig. 5b. This discrepancy between the size distribu-
tions of cracks determined from low-resolution and high-
resolution data can be reduced by super-resolving the low-
resolution data with SRGAN. More precisely, Fig. 5b shows that the
point-wise absolute errors of the probability density bf computed
from super-resolved data obtained with SRGAN are close to 0. This
is also reflected by the kf �bfk values in Table 3. Overall, SRGAN
outperforms the remaining networks considered in the present
paper with respect to the segmentation of cracks. Further
improvements of the results achieved with SRGAN could be
obtained by considering further discriminators which distinguish
between alternative representations (e.g., a representation in
some feature space) of super-resolved and high-resolution
images34. Note that the relatively poor result for the crack size
distribution achieved by SRResNet2 can be attributed to noisy
predictions of the network which affects the resulting segmenta-
tion, see Fig. 4e, f. More precisely, we observe that many cracks are

wrongly fragmented into multiple regions, which significantly
changes the crack size distribution. This indicates that, in order to
perform an in-depth analysis of crack formation in NMC particles,
SRResNet2 would require further calibration and/or additional
post-processing steps would have to be performed on the images
super-resolved by this network. Nevertheless, the super-resolution
results achieved by SRGAN suggest that it might be well suited for
further analyzes of crack formation in NMC particles.

METHODS
Sample details and preparation
Single-sided electrodes were made in a dry room by Cell Analysis,
Modeling and Prototyping (CAMP) Facility at Argonne National Labora-
tory. The NMC cathode composition was given in Table 4 and were used
as received. The graphite anode composition and separator can be found
in Yang et al. (2021)71. The cathode and anode sheets were dried under
active vacuum at 120 °C overnight. The cathode electrodes were cut into
14.1 cm2 area for assembling single layer pouch full cells, paired with
graphite electrodes cut into 14.9 cm2 area sheets. The electrolyte
consisted of 1.2 M LiPF6 in ethylmethyl carbonate:ethylene carbonate
(EMC:EC, 7:3 by wt).
The cells were formed, characterized, and cycled using a MACCOR 4000

battery tester at 30 °C in a temperature-controlled chamber. The cells were
pre-formed at C/10 for three cycles followed by C/2 rate for three cycles
between 3.0 and 4.1 V. The cells were cycled at C/10 for two cycles and
then charged at 1C/6C/9C (CC-CV with 10min total time limit) and

Table 3. Quantitative comparison of crack segmentation results., where the values of JðbCHR;CHRÞ, jρ� bρj=ρ and kf �bfk obtained for SRGAN (marked
in boldface) indicate that SRGAN allows for a better segmentation of cracks than upsampling using bilinear interpolation or super-resolving using the
remaining four networks.

Name Bilinear interpolation U-NetGAN SRResNet1 SRGAN SRResNet2 CinCGAN

JðbCHR;CHRÞ 0.556 0.575 0.615 0.679 0.58 0.577

jρ� bρj=ρ 0.136 0.197 0.072 0.036 0.144 0.068

kf �bfk 0.23 0.074 0.216 0.053 0.614 0.23

Fig. 5 Distribution of crack sizes. Probability densities of area-equivalent diameters of cracks computed from high-resolution, upsampled
low-resolution and super-resolved image data (a), and point-wise absolute errors with respect to the probability density f computed from
high-resolution image data (b).

Table 4. Sample details on the composition of NMC532 used in
this work.

Toda Li(Ni0.5Mn0.3Co0.2)O2 90 wt%

Timcal C45 carbon 5wt%

Solvay 5130 pVdF binder 5 wt%

Coating thickness 42mm

Porosity 34.1%

Loading density 11.24mg cm−2
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discharged at C/2 (CC) for 25/225/600 cycles between 3.0 and 4.1 V.
Detailed cell testing information can be found in Tanim et al. (2021)72.

Imaging using scanning electron microscopy
Small pieces of the samples (1 × 1cm2) were cut out from the pristine and
fast-charge aged NMC532 cathodes. The samples were mounted in the
cross-sectional polisher and polished using 4 kV Ar+ ion beam for 4 h. The
resulting cross-section samples were imaged using JEOL JSM-6610LV SEM
instrument in the backscattering mode.

Data preprocessing
Before we train neural networks for performing super-resolution tasks, we
preprocess the 46 high-resolution and 102 low-resolution SEM images (see
Fig. 6a, d). Since the high-resolution images are noisy we smooth them by
deploying the non-local means denoising algorithm73 (see Fig. 6b).
Then, in a second step we normalize each (single-channel low-resolution

and denoised high-resolution) image I : f1; ¼ ; hg´ f1; ¼ ;wg´ f1g ! R
with height h and width w with respect to their mean value μ and standard
deviation σ, i.e., we compute the normalized version Inormalized of I by

Inormalized ¼ 1
σ
ðI � μÞ; (16)

where μ ¼ 1
hw

Pw
x¼1

Ph
y¼1 Iðx; y; 1Þ and σ2 ¼ 1

hw�1

Pw
x¼1

Ph
y¼1 ðIðx; y; 1Þ

�μÞ2: Afterwards, we rescale the pixel values of Inormalized such that they
belong to the interval [0, 1], i.e., we compute Iscaled by

Iscaledðx; y; 1Þ ¼
1; if Inormalizedðx; y; 1Þ � 3;

0; if Inormalizedðx; y; 1Þ � 3;
1
6 ðInormalizedðx; y; 1Þ þ 3Þ; else :

8><>:
(17)

The rescaling performed in Eq. (17) accommodates the neural network
described in the “Results” section above as its outputs also take values in
the interval [0, 1]. Note that some of the high-resolution images are
magnifications of low-resolution images. Thus, using image registration
techniques we can determine matching pairs of low-resolution and
high-resolution images. More precisely, we use the matchTemplate()

function of the Python package OpenCV74 to determine 33 pairs
of low-resolution images with corresponding high-resolution images
(see Fig. 6b, c).

DATA AVAILABILITY
The datasets generated during and/or analyzed during the current study are available
from the corresponding authors on reasonable request.

CODE AVAILABILITY
All formulations and algorithms necessary to reproduce the results of this study are
described in the Results and Methods sections and in Ledig et al. (2017)33, de Haan
et al. (2019)46, Jung et al. (2021)47 and Yuan et al. (2018)35.
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