Economic and Environmental Sustainability of an Integrated Direct Air Capture System with Advanced Algal Biofuel Production

Kylee Harris1*, Eric C. D. Tan1, Valerie M. Thomas2, Jaden Johnston2, Shavonn D’Souza2, Christopher W. Jones2, Eric W. Ping3, Miles Sakwa-Novak3, Yanhui Yuan3, Ron Chance3

1National Renewable Energy Laboratory, Golden, CO
2Georgia Institute of Technology, Atlanta, GA
3Global Thermostat LLC, Commerce City, CO

Algae Biomass Summit
October 7th, 2021 (Virtual)
Background and Motivation

- Promote the decarbonization of the atmosphere
- Decouple algae production facilities from anthropogenic CO₂ sources
- Identify key economic drivers
- Minimize cost and greenhouse gas emissions through process integration and optimization
Direct Air Capture (DAC) Technology

- Modular design

- Low temperature CO$_2$ recovery
 - Amine-coated structured monolith
 - A novel temperature/vacuum swing adsorption (TVSA) process

- No point source CO$_2$ required

DOE BETO 2019 Project Peer Review, Denver, CO. “Direct Air Capture of CO2 and Delivery to Photobioreactors for Algal Biofuel Production” https://www.energy.gov/sites/prod/files/2019/03/f60/BETOPeerReview-Program2019%20%28003%29_G.pdf
Algenol Photobioreactor (PBR) Technology

- 2,000-acre model for biorefinery
- 16MM gal ethanol/year
 - 20 tonnes/hr CO₂ required
- Genetically engineered cyanobacteria for ethanol production
- 70% of photosynthetically-fixed carbon diverted to ethanol pathway
- 85% CO₂ conversion to ethanol or biomass

Techno-Economic Analysis (TEA) Methodology

- Assumed nth-plant economics
- Processes modeled in Aspen Plus using experimental data, literature data, and vendor performance information
- Capital and operating costs acquired from quoted information by Algenol and Global Thermostat, Aspen Capital Cost Estimator V10 (ACCE), and NREL internal costing libraries
- TEA material and energy flows used to generate life-cycle inventory (LCI) for LCA
Key Considerations:

- 2,000-acre algae farm can be divided into uniform subplots
- Heat and mass integration is critical for reducing energy requirements and process costs
- Each processing step can be viewed as individual modules, which can be scaled and relocated as needed
- Previous work determined large-scale circulation of dilute flue gases is not economically viable
- Smaller, modularized units will not benefit from economies of scale
TEA Results

<table>
<thead>
<tr>
<th>DAC Operating Hours</th>
<th>12</th>
<th>24</th>
<th>12</th>
<th>24</th>
<th>12</th>
<th>24</th>
<th>12</th>
<th>24</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Compressed/Stored</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Flue Gas CO₂ Utilized</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Option 0</th>
<th>Option 1</th>
<th>Option 2a</th>
<th>Option 2b</th>
<th>Option 2a – nth plant DAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFSP ($/gal EtOH)</td>
<td>$10.68</td>
<td>$9.33</td>
<td>$9.10</td>
<td>$8.78</td>
<td>$8.93</td>
<td>$8.25</td>
</tr>
<tr>
<td>%MFSP Reduction</td>
<td>-</td>
<td>12.6%</td>
<td>14.8%</td>
<td>17.8%</td>
<td>16.4%</td>
<td>22.8%</td>
</tr>
<tr>
<td>EtOH annual production (MMGal/yr)</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>FCI (MM$)</td>
<td>860.5</td>
<td>724.1</td>
<td>695.2</td>
<td>694.6</td>
<td>719.9</td>
<td>654.3</td>
</tr>
<tr>
<td>Total operating costs (MM$/yr)</td>
<td>53.6</td>
<td>51.5</td>
<td>51.8</td>
<td>47.2</td>
<td>45.7</td>
<td>44.8</td>
</tr>
<tr>
<td>CO₂ from DAC (tonne/hr)</td>
<td>40.0</td>
<td>20.0</td>
<td>17.9</td>
<td>12.9</td>
<td>18.9</td>
<td>14.9</td>
</tr>
<tr>
<td>DAC operating hours (hr/day)</td>
<td>12</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Percent of total CO₂ demand from DAC</td>
<td>100%</td>
<td>100%</td>
<td>90%</td>
<td>64%</td>
<td>47%</td>
<td>75%</td>
</tr>
<tr>
<td>Weighted CO₂ cost ($/tonne)*</td>
<td>$407</td>
<td>$275</td>
<td>$232</td>
<td>$226</td>
<td>$275</td>
<td>$165</td>
</tr>
</tbody>
</table>

*Assumes CO₂ from flue gas is free
TEA Results

Reductions in MFSP attributed to two primary process considerations:

1) CO₂ storage at night reduces the capital expenses associated with DAC (increasing on-stream time)
2) Distributed DAC scenarios (2a and 2b) make use of boiler and DAC CHP flue gas CO₂ (free)
Carbon Footprint: Need $\frac{CO_{2e} \text{emitted}}{CO_{2c} \text{aptured}} < 1$

<table>
<thead>
<tr>
<th>Lifecycle GHG Emissions (g CO$_2$e/MJ EtOH)1</th>
<th>Baseline</th>
<th>Option 0</th>
<th>Option 1</th>
<th>Option 2A</th>
<th>Option 2A (nth)</th>
<th>Option 2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>104</td>
<td>105</td>
<td></td>
<td>73.8</td>
<td>47.6</td>
<td>71.0</td>
</tr>
</tbody>
</table>

Gasoline: **91.3** g CO$_2$e/MJ
US Standard2 → Biofuel: **45.6** g CO$_2$e/MJ

<table>
<thead>
<tr>
<th>MFSP ($/Gal)</th>
<th>Baseline</th>
<th>Option 0</th>
<th>Option 1</th>
<th>Option 2A</th>
<th>Option 2A (nth)</th>
<th>Option 2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.67</td>
<td>9.33</td>
<td>9.10</td>
<td>8.78</td>
<td>8.25</td>
<td>8.93</td>
<td></td>
</tr>
</tbody>
</table>

Direct air capture technology eliminates the constraint of co-locating algal biofuel production with point-source CO₂.
- Localized utilization of captured CO₂ versus long distance CO₂ pipelines
- Ambient air contains fewer contaminants than flue gas

Heat and mass integration decreases plant expenses via reduced energy consumption.
- Flue gas utilization reduces DAC demand and reduced overall cost through use of “free carbon”
- High capital utilization (process uptime) is crucial for minimizing DAC costs

Further process optimization is being pursued.
- Goal to reduce waste heat and CO₂ generation though further integration
- Assessing increased oxidative stability and lifetime of monoliths to lower operating expenses and increase regeneration capabilities
Questions?

Speaker Information
Kylee Harris
Kylee.Harris@nrel.gov

DOE’s Bioenergy Technologies Office (BETO)
http://www.eere.energy.gov/biomass

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.