

a

 (\mathbf{B})

Photo from iStock 547147412

Comparison of Select Food Waste Utilization Options

This document provides a comparison of several food waste utilization options: landfill gas capture, anaerobic digestion, and composting, across various metrics. These options are the most prevalent pathways for energy and resource recovery. Other options, not considered here, include food donation, animal feed, incineration, and gasification. The table below describes the differences or similarities between these processes and provides information about products, the number of current projects in the United States, capital and operation and maintenance (O&M) costs, job development potential, emissions, and incentives associated with each pathway, as well as other parameters, such as level of complexity, land requirement, and revenue type. Sources for the data in the table are listed in the references at the end of the document.

	Landfill Gas Capture			Anaerobic Digestion	Composting	
Process	Anaerobic (without air): a biological process in an enclose biodegradable material in the absence of oxygen				ed environment where microorganisms break down	Aerobic (with air): a biological process in open air environment where microorganisms break down biodegradable material in the presence of oxygen
Product	 Biogas is an intermediate product used to produce: Electricity Heat Renewable natural gas (RNG) for use as a transportation or injected into the natural gas pipelines. 				n fuel (compressed natural gas/liquefied natural gas) Other products include digestate (solid and liquid) that can be used as fertilizer, animal bedding, building materials, pellets, for crop irrigation, etc.	Compost is the product.
Number of Projects in the United States	 550 sites (2021) 93 direct use in thermal applications 386 sites creating electricity 71 sites creating RNG 11 sites under construction (most RNG) 57 sites planned (most RNG) 			 209 sites processing food waste (2019) 68 stand-alone facilities 59 on-farm co-digesters 82 co-digestion systems at water resource recovery facilities Most facilities produce heat and/or power and several produce RNG. 	 3,013 total sites (2020) 10% of these site process food waste either alone or combined with other organic materials. About 31% of facilities have not specified their feedstock; thus, more sites likely accept food waste. About 51% of sites use yard waste either alone or combined with other organic materials. The remaining sites use biosolids and manure either alone or combined with other organic materials. Most sites use multiple organics. 	
Capital Cost	Projects With No	o GCCS Insta	lled (million	USD)*	Capacity in tons/year: modeled cost (million USD)* 2,500: \$3.0 5,000: \$4.7 	Capacity in tons/year: examples of costs (million USD)* 1,800: \$1.7 (ASP) 5,200: \$2.6 (ASP)
	Waste in Place (million tons)	Direct Use	Electricity	RNG		
	< 5	\$4.3	\$7.3	\$12.5	• 25,000: \$12.3 • 50,000: \$18.6	• 30,000: \$4.3 (Windrow)
	5–10	\$6.9	\$15.7	\$19.5	• 100,000: \$28.2	 40,000: \$8.9 (ASP) 180,000: \$25 (ASP)
	10–20	n/a**	\$23.3	\$29.3	• 200,000: \$42.7	ASP is aerated static pile. Numbers are adjusted to \$2020.
	> 20	n/a**	\$33.4	\$47.0	Biogas production only, no upgrading costs included.	
	Projects With GCCS Installed (million USD)*				Numbers are adjusted to \$2020.	
	Waste in Place (million tons)	Direct Use	Electricity	RNG		
	< 5	\$2.5	\$5.6	\$10.7		
	5–10	\$3.6	\$12.4	\$16.1		
	10–20	n/a**	\$19.1	\$25.1		
	> 20	n/a**	\$25.7	\$39.4		
	*GCCS is gas collection and control system. Modeled cost data are for 2020. **n/a – not applicable. Outside of the recommended project size for direct use projects in the LFGcost-Web model.					

Landfill Gas Capture

Waste in Place Direct

(million tons)

< 5

model.

Operation and Maintenance (O&M) Cost

Jobs

Projects With No GCCS Installed (thousand USD)*

Use

\$426

Electricity RNG

\$1,632

\$939

Anaero	bic	Diae	stion

- 2,500: \$85
- 5,000: \$171
- 25,000: \$854 • 50,000: \$1,707

Composting

Capacity in tons/year: example costs (thousand USD)*

- 1,800: \$247 (ASP)
- 25,000: \$362 (Windrow)
- 30,000: \$437—\$765 (Windrow)
- 40,000: \$1,000 (ASP)

5–10	\$890	\$2,375	\$3,971	• 50,000.\$1,707 • 100,000.\$3,415	• 40,000. \$ 1,000 (ASP) ASP is gerated static nile. Numbers are adjusted to \$2020.
10–20	n/a**	\$3,732	\$6,230	• 200,000: \$6,830	Asia is defated static pile. Numbers are adjusted to \$2020.
> 20	n/a**	\$5,792	\$9,167	Biogas production only; no upgrading costs included.	
Projects With G	CCS Installed	d (thousand l	JSD)*	Numbers are adjusted to \$2020.	
Waste in Place (million tons)	Direct Use	Electricity	RNG		
< 5	\$156	\$670	\$1,361		
5–10	\$312	\$1,797	\$3,393		
10–20	n/a**	\$2,923	\$5,420		
> 20	n/a**	\$4,018	\$7,393		
cost data are fo **n/a – not app project size for c model.	r 2020. licable. Outsi direct use proj	de of the reco jects in the LF(mmended Gcost-Web		
Construction*				Job development potential: 1.03 jobs per 1,000 tons.*	Capacity (tons/year): full-time equivalent jobs:*
Waste in Place (million tons)	Direct Use	Electricity	RNG	2020 data	< 5,000: 1-8 5,000-20,000: 2-10
< 5	11	23	38		• > 20,000: 5–26
5–10	15	51	52		2015 0010
10–20	n/a**	79	75		
> 20	n/a**	106	112		
Operation*					
Waste in Place (million tons)	Direct Use	Electricity	RNG		
< 5	1	5	8		
5–10	2	13	18		
10–20	n/a**	20	28		
> 20	n/a**	28	37		
*2020 data **n/a – not app project size for c	licable. Outsi lirect use proj	de of the reco jects in the LF(mmended Gcost-Web		

	Landfill Gas Capture	Anaerobic Digestion	Composting
Emissions	 Net GHG Emissions from Landfilling (MTCO₂E/ton)* Landfills without Landfill Gas Recovery: 1.39 Landfills with Landfill Gas Recovery and Flaring: 0.54 Landfills with Landfill Gas Recovery and Electricity Generation: 0.42 *Estimates are for 2020. MTCO₂E/ton - metric tons of CO₂ equivalent per short ton 	 Net GHG Emissions (MTCO₂E/ton)* Dry AD with digestate curing: -0.04 Dry AD with direct land application: -0.10 Wet AD with digestate curing: -0.06 Wet AD with direct land application: -0.14 *Estimates are for 2020. Negative values denote net GHG emission reductions or carbon storage from a materials management practice. 	Net GHG Emissions (MTCO₂E/ton)* • -0.12 *Estimates are for 2020. Negative values denote net GHG emission reductions or carbon storage from a materials management practice.
Incentives	 Federal: renewable fuel standard Regional/State: renewable energy certificates State: California and Oregon low-carbon fuel standards personal tax credit, corporate tax credit, state grant progreen power purchasing Utility: rebates, net metering, performance-based incerting 	 State and Local programs, incentives, rebates, free services and materials, for example: New York State Food Waste Reduction and Diversion Reimbursement Program Austin, Texas, Zero Waste Event Rebate Richmond, California, free residential composting Denver, Colorado, free public schools composting. 	
Other	No source separation required	Source separation required	Source separation required
	 The systems produce about half the amount of biogas from a given volume of organic material processed in anaerobic digesters 	 Optimized to maximize the conversion of organic material to biogas 	No biogas production
	 Energy input is required in the process and can be supplied by own production 	 Energy input is required in the process and can be supplied by own production 	 Energy input is required in the process but can't be supplied by own production
	 Revenue from tipping fees, selling electricity or RNG, and relevant incentives 	 Revenue from tipping fees, selling electricity or RNG, and relevant incentives. Additional revenue from digestate sale. 	 Revenue from tipping fees, compost sale, and relevant incentives
	Moderate to high complexity	 Moderate to high complexity (modern systems have become easier to operate and maintain) 	 Low (windrow), moderate (ASP), or high (in-vessel) complexity
	High level of training needed to run the system	High level of training needed to run the system	Lower level of training needed to run the system
	 High standards of maintenance and management are required 	 High standards of maintenance and management are required 	High standards of maintenance and management are required
	 A properly designed and operated system is very safe. Strict gas-handling standards must be maintained. 	 A properly designed and operated system is very safe. Strict gas-handling standards must be maintained. 	 A properly designed and operated system is very safe. Safety risks associated with operating large, mobile machinery.
	Land area: 1–2,290 acres	 Land area: 3–6 acres. Modern systems are streamlined to reduce footprint. 	• Land area: 15–20 acres for windrow, 6–8 acres for ASP, and 3–6 acres for in-vessel composting

	Landfill Gas Capture	Anaerobic Digestion	Composting
Other (cont.)	Increased community traffic	Increased community traffic	Increased community traffic
	NIMBY concerns	NIMBY concerns	NIMBY concerns
	Reduction of landfill odor	• Enclosed systems designed to contain odor. However, if run inefficiently, may cause odor (e.g., digester spills)	 Heavy odor associated with windrow composting; odor control possible with ASP; no odor issues with in-vessel composting

Suggested Citation

Milbrandt, Anelia. 2021. *Comparison of Select Food Waste Utilization Options*. Golden, CO: National Renewable Energy Laboratory. NREL/BR-6A20-81024. https://www.nrel.gov/docs/fy22osti/81024.pdf.

Acknowledgements

Jacq Streur, Arpit Bhatt, Yimin Zhang, Edward Settle (National Renewable Energy Laboratory) Lauren Aepli (U.S. Environmental Protection Agency [EPA] Landfill Methane Outreach Program [LMOP])

References

Number of Projects in the United States

- Landfill gas projects: EPA LMOP as of March 2021, https://www.epa.gov/lmop/ landfill-gas-energy-project-data
- Anaerobic digestion: EPA "Anaerobic Digestion Facilities Processing Food Waste in the United States (2017 and 2018)", January 2021, https://www.epa.gov/sites/ default/files/2021-02/documents/2021_final_ad_report_feb_2_with_links.pdf
- **Composting:** Composting Facility List, US and Territories, 2020, Region 9, https://geopub.epa.gov/ExcessFoodMap/

Capital Cost

- Landfill gas projects: EPA LMOP, LFGcost-Web Version 3.5, https://www.epa. gov/Imop/lfgcost-web-landfill-gas-energy-cost-model
- Anaerobic digestion of food waste: Bhatt, A., Tao, L. "Economic Perspectives of Biogas Production via Anaerobic Digestion". *Bioengineering*. 2020, 7(3), 74

 Composting: https://www.wmicentral.com/news/latest_news/plsdun-cancels-meeting-to-discuss-digester/article_5ea6d695-4e85-513d-9c41-264b06590374.html; https://dec.vermont.gov/sites/dec/files/wmp/ SolidWaste/Documents/Final_APPENDIXC_Composting_ADTech_10_2013. pdf; https://assets.bouldercounty.org/wp-content/uploads/2017/02/RCD_ CompostingCapacityAnalysis.pdf; https://secureservercdn.net/198.71.233.185/ epm.300.myftpupload.com/wp-content/uploads/2020/10/haaren_thesis.pdf; https://www.biocycle.net/food-composting-infrastructure-2/

Operation and Maintenance (O&M) Cost

- Landfill gas projects: EPA LMOP, LFGcost-Web Version 3.5, https://www.epa. gov/Imop/Ifgcost-web-landfill-gas-energy-cost-model
- Anaerobic digestion of food waste: Bhatt, A., Tao, L. "Economic Perspectives of Biogas Production via Anaerobic Digestion". *Bioengineering*. 2020, 7(3), 74

 Composting: https://www.wmicentral.com/news/latest_news/plsd-un-cancels-meeting-to-discuss-digester/article_5ea6d695-4e85-513d-9c41-264b06590374. html; https://www.biocycle.net/municipal-yard-trimmings-composting-benefit-cost-analysis/; https://buffalonews.com/news/amherst-compost-facility-will-expand-its-hours/article_61d87f52-2456-53fc-a5a5-8a80dbecbd44. html; https://assets.bouldercounty.org/wp-content/uploads/2017/02/RCD_ CompostingCapacityAnalysis.pdf; https://secureservercdn.net/198.71.233.185/epm.300.myftpupload.com/wp-content/uploads/2020/10/haaren_thesis.pdf

Jobs

- Landfill gas projects: EPA LMOP, LFGcost-Web Version 3.5, https://www.epa. gov/Imop/Ifgcost-web-landfill-gas-energy-cost-model
- Anaerobic digestion: ReFED, Insights Engine Solutions Database, 2021, https://insights.refed.com/uploads/documents/refed-insights-engine-solution-database-methodology-vfinal2021-05-27.pdf?_cchid=ccf71f4eacfac581ad228da51c320fd1
- Composting: Institute for Local Self Reliance, Pay Dirt, Composting in Maryland to Reduce Waste, Create Jobs, & Protect the Bay, May 2013, https://ilsr.org/wpcontent/uploads/2013/05/ILSR-Pay-Dirt-Report-05-11-13.pdf

Emissions

• EPA Office of Resource Conservation and Recovery, Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM): Organics Materials Chapters, November 2020: https://www.epa. gov/sites/default/files/2020-12/documents/warm_organic_materials_v15_10-29-2020.pdf

Incentives

- Database of State Incentives for Renewables & Efficiency (DSIRE): https://www.
 dsireusa.org/
- New York State Food Waste Reduction and Diversion Reimbursement Program: https://www.rit.edu/affiliate/nysp2i/collaborations

- Austin, Texas, Zero Waste Event Rebate: http://www.austintexas.gov/
 zweventrebate
- Richmond, California, free residential composting: https://www.ci.richmond. ca.us/1718/Residents
- Denver, Colorado, free public schools composting: https://denvergov.org/ Government/Departments/Recycle-Compost-Trash/Resources/Denver-Public-School-Partnership#section-6

Other

- **Biogas production efficiency:** https://www.wastedive.com/news/disputed-ground-the-future-of-landfill-gas-to-energy/557706/
- Energy use: https://www.epa.gov/lmop/basic-information-about-landfill-gas; https://blog.anaerobic-digestion.com/anaerobic-digestion-vs-composting/
- **Training:** https://blog.anaerobic-digestion.com/anaerobic-digestion-vscomposting/
- **Maintenance:** https://extension.psu.edu/agricultural-anaerobic-digestersdesign-and-operation; https://www.epa.gov/anaerobic-digestion/frequentquestions-about-anaerobic-digestion; https://www.alpheus.co.uk/blog/whatabout-smell-myth-busting-anaerobic-digestion-food-processing
- Land area: https://www.calrecycle.ca.gov/swfacilities/techservices/ paleontology/lfpaleo; https://www.montgomerycountymd.gov/SWS/ Resources/Files/foodwaste/Strategic%20Plan%20to%20Advance%20 Composting%2C%20Compost%20Use%2C%20and%20Food%20Scraps%20 Diversion%20in%20Montgomery%20County%2C%20MD.pdf
- **Composting safety and health:** https://ecommons.cornell.edu/ bitstream/handle/1813/74264/Brown39_Composting_Safety_and_Health. pdf?sequence=1&isAllowed=y

National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO 80401 303-275-3000 • www.nrel.gov

NREL prints on paper that contains recycled content.

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

NREL/BR-6A20-81024 • November 2021