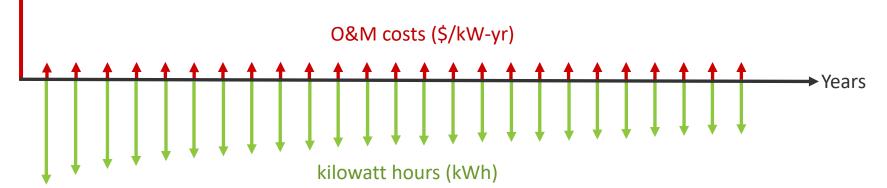


Updates to the Instant Online PV LCOE Calculator Tool

Brittany L. Smith

National Renewable Energy Laboratory

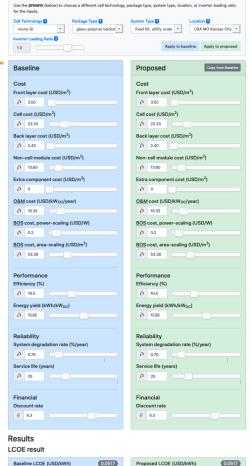
DuraMAT Webinar August 9, 2021



Levelized Cost of Energy

LCOE (
$$\$/kWh$$
) = Total Costs over Service Life ($\$$)
Total Energy Produced over Service Life (kWh)

Installed System Cost (\$/W)



- PV technology-specific
- Editable preset fields targeted towards research applications
- Instant comparison of proposed changes to a baseline system

Presets for Inputs



- PV technology-specific
- Editable preset fields targeted towards research applications
- Instant comparison of proposed changes to a baseline system

System Advisor Model (SAM): https://sam.nrel.gov/

- + Different financial models
- Detailed options for module and system designs
- + Can model solar + storage

- Learning curve
- Difficult to quickly evaluate research directions without introducing confounding factors

Presets for Inputs

Calculator access:

- pvlcoe.nrel.gov
- nrel.github.io/PVLCOE/
- github.com/NREL/PVLCOE
- datahub.duramat.org/dataset/lcoe-calculator-tool

Previous Calculator Tutorials:

- duramat.org/assets/pdfs/duramat-webinar-sept2020.pdf
- nrel.gov/solar/solar-levelized-cost.html

Use the presets (below) to choose a different cell technology, package type, system type, location, or inverter loading ratio

LCOE result

Additional results

Baseline LCOE (USD/kWh)

Presets for Inputs

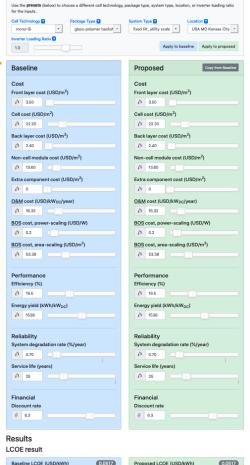
Baseline

Module price (USD/W)
Total installed system cost (USD/W)

0.7

Proposed LCOE (USD/kWh)

Calculator access:


- pvlcoe.nrel.gov
- nrel.github.io/PVLCOE/
- github.com/NREL/PVLCOE
- datahub.duramat.org/dataset/lcoe-calculator-tool

Calculator architects:

Tim Silverman Mike Deceglie Sophie Andrews **Kelsey Horowitz**

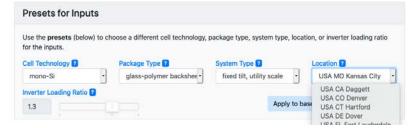
Previous Calculator Tutorials:

- duramat.org/assets/pdfs/duramat-webinar-sept2020.pdf
- nrel.gov/solar/solar-levelized-cost.html

Presets for Inputs

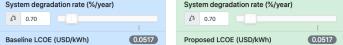
Proposed Module price (USD/W) Total installed system cost (USD/W) Total installed system cost (USD/W)

Example Use



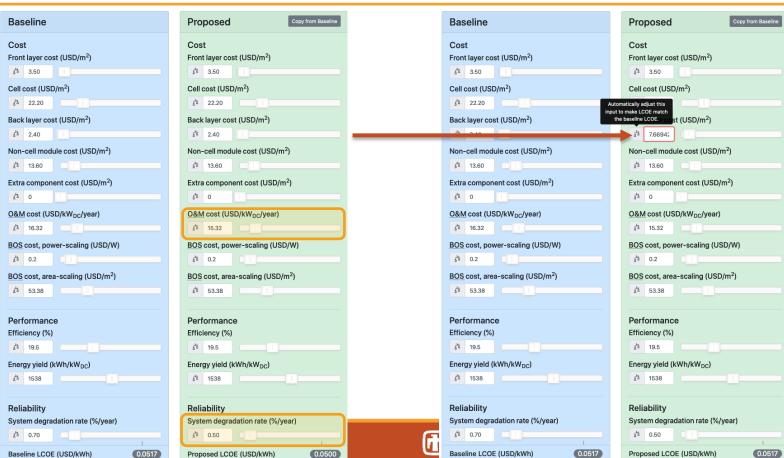
Presets Menus

Presets for Input	ts			
Use the presets (below for the inputs.) to choose a different cell technology	gy, package type, system type,	location, or inverter loading ratio	
Cell Technology 2	Package Type 🔞	System Type 2	Location 2	
✓ mono-Si multi-Si CdTe	glass-polymer backshee	fixed tilt, utility scale	- USA MO Kansas City -	
1.3		Apply	to baseline Apply to proposed	
	for the inputs.		ckage type, system type, location, or i	inverter loading ratio
	mono-Si	glass-polymer backshe	√ fixed tilt, utility scale single-axis tracked, utility scale	MO Kansas City -
	Inverter Loading Ratio ?		roof-mounted, residential scale roof-mounted, commercial scale fixed tilt, commercial scale	Apply to proposed

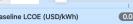


How much could this hypothetical backsheet cost?

How much could this hypothetical backsheet cost?



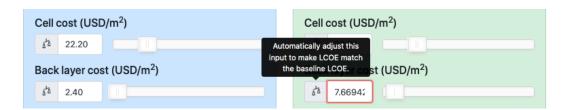
How much could this hypothetical backsheet cost?



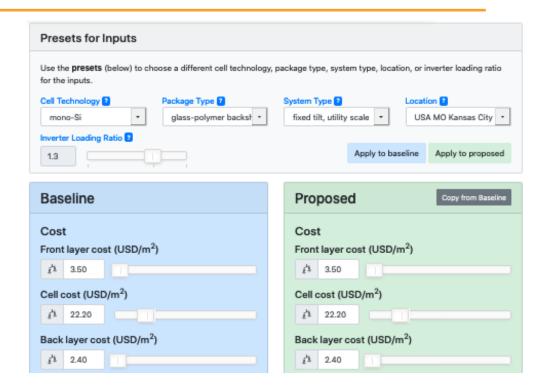
0.0517

Proposed LCOE (USD/kWh)

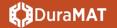
Updates to the Calculator in 2021



Breakeven buttons



- Breakeven buttons
- Reconfigured preset menu



- Breakeven buttons
- Reconfigured preset menu
- Inverter Loading Ratio

Inverter Loading Ratio affects both BOS costs and energy yield

Presets for Inputs						
Use the presets (below) to choose a different cell technology, package type, system type, location, or inverter loading ratio for the inputs.						
Cell Technology ? mono-Si	Package Type glass-polymer backshee	System Type ? fixed tilt, utility scale	Location 2 USA MO Kansas City			
Inverter Loading Ratio ?		Apply to	baseline Apply to proposed			

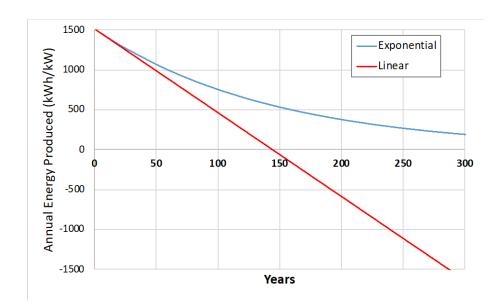
- Breakeven buttons
- Reconfigured preset menu
- Inverter Loading Ratio
- Commercial system types

Presets for Inputs						
Use the presets (below) to choose a different cell technology, package type, system type, location, or inverter loading ratio for the inputs.						
Cell Technology ?	Package Type 🔞	System Type 2 Locati	on 🔞			
mono-Si -	glass-polymer backshe •	√ fixed tilt, utility scale single-axis tracked, utility scale	MO Kansas City -			
Inverter Loading Ratio ?		roof-mounted, residential scale				
1.3		roof-mounted, commercial scale fixed tilt, commercial scale	Apply to proposed			

Degradation Rate Relationship

Exponential Relationship:

$$e_n = e_{yield}(1-r)^{(n-1)}$$

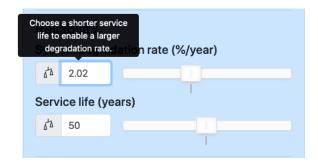

Linear Relationship:

$$e_n = e_{yield}[1 - r(n-1)]$$

r is the degradation rate n is the year of operation e is the energy produced

For a system with:

- 0.7% degradation rate
- 1500 kWh/kW first year energy yield



Limits on Numerical Ranges

Restricted service life range & added dead zone to slider to keep energy non-negative and prevent continuous costs on a PV system that does not generate energy.

Physically-motivated limits on:

- efficiency (0-100%)
- energy yield > 0
- degradation rate > 0%

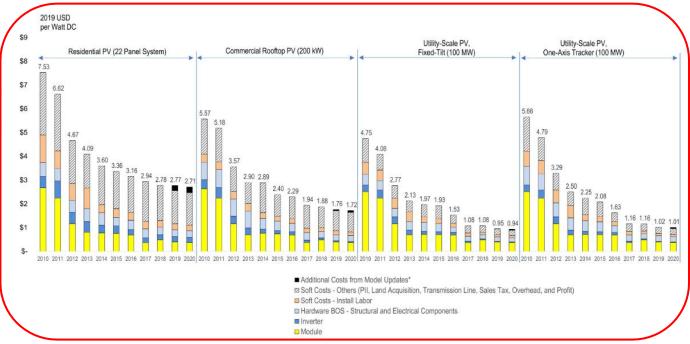
Discount Rate Comparison

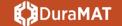
• Sync / unsync discount rates (instead of breakeven button)

Updated Default Preset Values

Updated from 2017 data:

- System costs
- O&M costs
- Module-level costs
- Module efficiency values

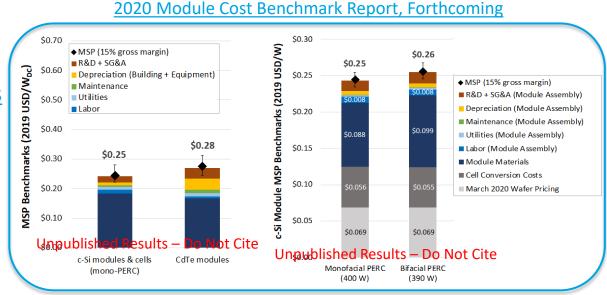



Updated Default Preset Values

Updated from 2017 data: Q1 2020 US PV System Cost Benchmark - nrel.gov/docs/fy21osti/77324.pdf

- System costs
- O&M costs
- Module-level
- Module efficie

Also removed BOS cost dependence on location



Updated Default Preset Values

Updated from 2017 data:

- System costs
- O&M costs
- Module-level costs
- Module efficiency values

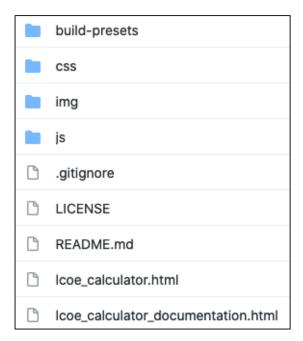
Energy Yield Values called directly from SAM

Previously, the calculator relied on a table of energy yield values built manually from SAM using the "Detailed PV Model"

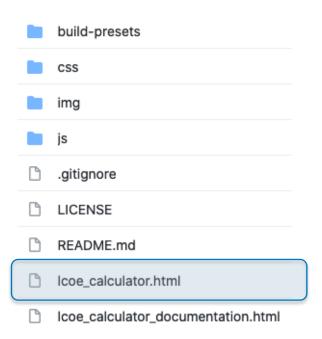
Now, PySAM package is used by calculator to call SAM directly. Relies on:

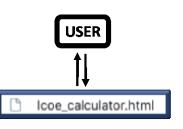
- PVWatts model
- NSRDB weather data

Customize a Local Version of the Calculator

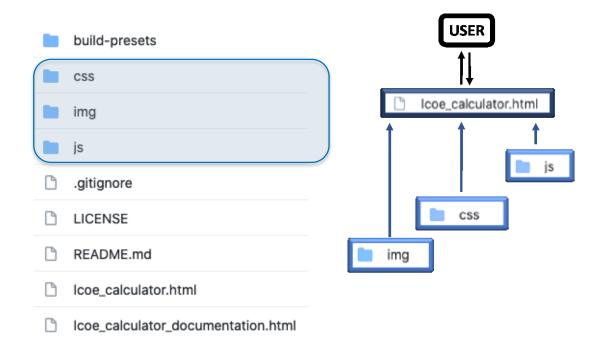




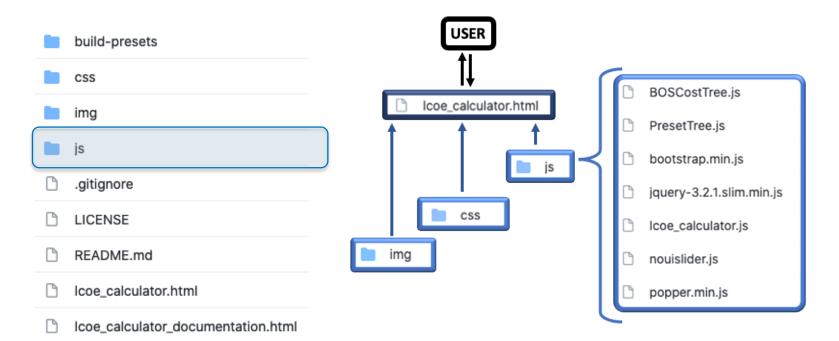




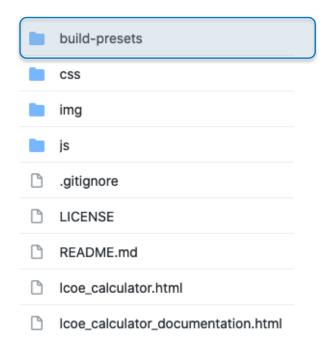




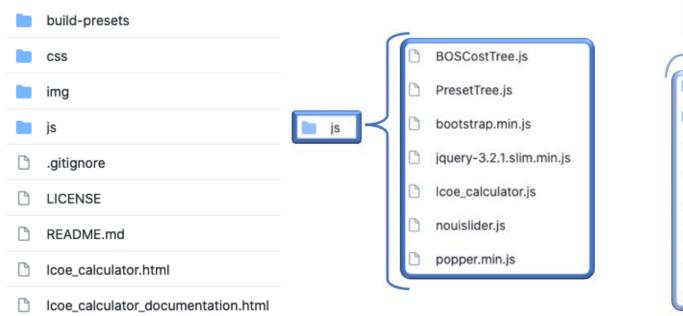


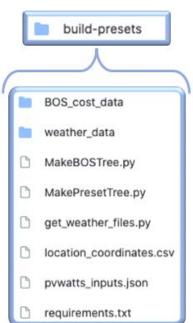




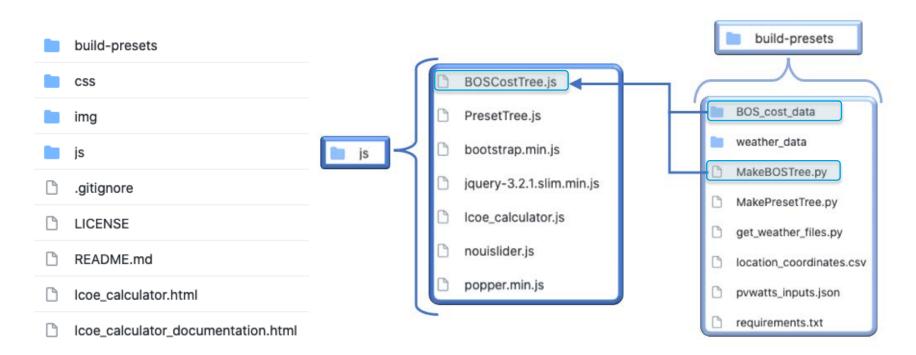


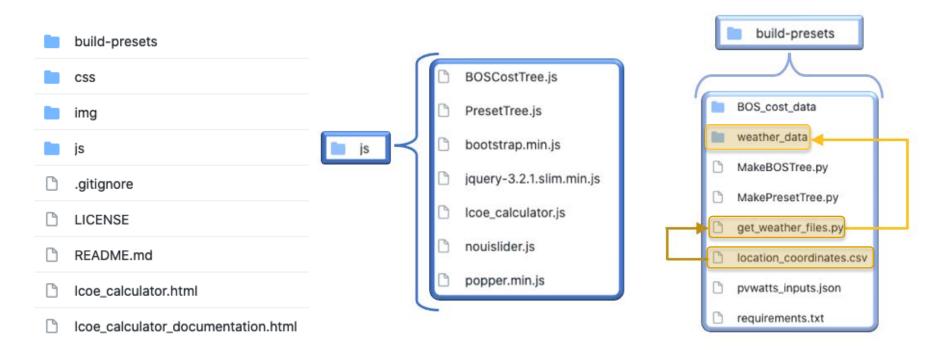
build-presets BOS_cost_data weather_data MakeBOSTree.py MakePresetTree.py get_weather_files.py location_coordinates.csv pvwatts_inputs.json requirements.txt



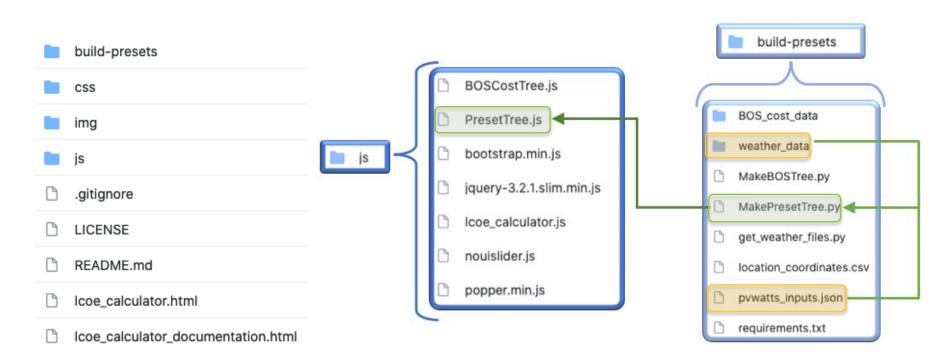














Editing Your Local Version

If you want...

More locations to choose from:

add coordinates to "location_coordinates.csv"

Changes to energy yield or SAM settings:

- Edit PVWatts inputs in "pvwatts_inputs.json"
- Edit SAM settings within "MakePresetTree.py"

All this is documented in more detail in the repository README file

Changes to cell technologies, package types, system types, non-BOS costs, efficiencies, or degradation rates:

Add menu items or edit values in "MakePresetTree.py"

Changes to BOS costs:

Edit contents of the /BOS_cost_data/ folder within the /build-presets/ folder

Citation

If you use results from this calculator in a publication or proposal, please cite:

SJ Andrews, BL Smith, MG Deceglie, KA Horowitz, and TJ Silverman. "NREL Comparative PV LCOE Calculator." Version 2.0.1, August 2021

Note: We recommend including the URL for a specific commit if citing results from an unreleased version.

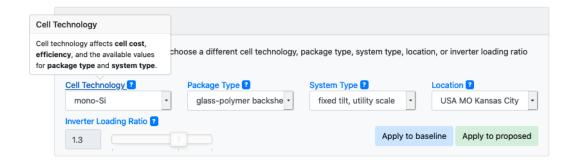
Thank You

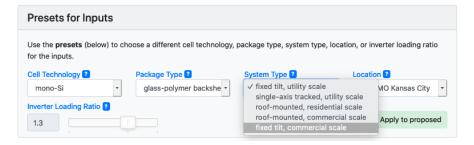
www.duramat.org

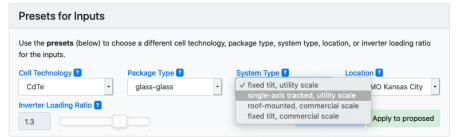
This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

NREL/PR-7A40-80842

Backup Slides







Preset Constraints

Make-Preset-Tree.py

```
This code uses the PVSAM wrapper for the SAM GUI to generate energy yield and create a new preset tree.
 3 It loops through every combination of cell technology, package type, system type, inverter loading ratio
     and location to determine the energy yield with those settings.
    Note: this script runs PySAM 3300 times (for each preset combination) and takes ~30 mins to finish running.
 8 import pandas as pd
    import PySAM.Pvwattsv7 as pvwatts
11 import alob
12 import PySAM.ResourceTools as tools
13 import PySAM.PySSC as pssc
14 from pathlib import Path # for platform independent paths
16 # to avoid rounding issues, the lat and lon returned by pysam are in this file
17 # locations maps a lat/lon pair to the string name of the location
18 locations = {}
19 df = pd.read_csv('location_coordinates.csv')
20 for index, row in df.iterrows():
        locations[row['ID']] = 'USA ' + \
             row['State'] + ' ' + row['Place']
24 # Define feasible system configurations
25 cell_technologies = ['mono-Si', 'multi-Si', 'CdTe']
26
27 package_types = {
         'mono-Si': ['glass-polymer backsheet', 'glass-glass'],
         'multi-Si': ['glass-polymer backsheet', 'glass-glass'],
30
         'CdTe': ['glass-glass']
31 }
         'mono-Si': ('fixed tilt, utility scale', 'single-axis tracked, utility scale', 'roof-mounted, residential scale', 'roof-mounted, commercial scale', 'fixed t
         'multi-Si': ('fixed tilt, utility scale', 'single-axis tracked, utility scale', 'roof-mounted, commercial scale', 'fixed tilt, commercial scale'),
36
         'CdTe': ('fixed tilt, utility scale', 'single-axis tracked, utility scale', 'roof-mounted, commercial scale', 'fixed tilt, commercial scale')
37 }
38
40 # Preset values for module parameters: costs are in USD per square meter, efficiency reported as a percentage
41 module_details = {
        'cost_front_layer': 3.5,
        'cost_cell': {'mono-Si': 22.2, 'multi-Si': 19.4, 'CdTe': 21.3},
44
        'cost_back_layer': {'glass-polymer backsheet': 2.4, 'glass-glass': 3},
        'cost noncell': 13.6.
46
         'efficiency': {'mono-Si': 19.5, 'multi-Si': 17.5, 'CdTe': 18.0},
47 }
48
50 # Preset values for operation & maintenance costs, reported in USD/kW(DC) per year
51 cost om = {
         'fixed tilt, utility scale': 16.32,
        'single-axis tracked, utility scale': 17.46,
        'roof-mounted, residential scale': 28.94
```

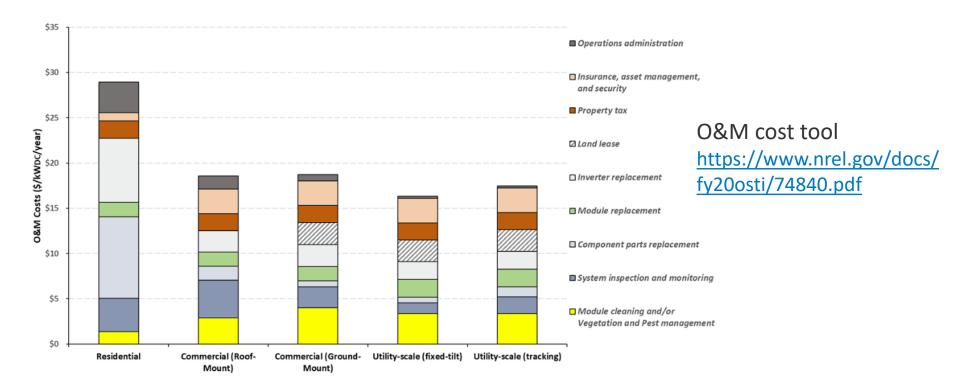

To keep energy non-negative, degradation rate and service life must satisfy the inequality:

$$(n - 0.5) / Rd < 1$$

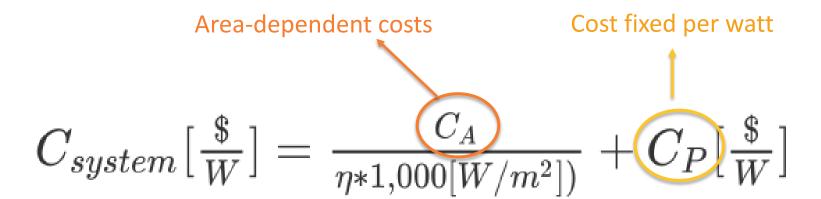
Where:

n is service life

Rd is degradation rate



O&M Costs



Curve-fitting: BOS Cost as a Function of Efficiency

