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Renewable energy development can bolster local economies through job creation, local tax revenues,
and reduced energy costs; however, communities most in need of economic development and
employment opportunities often see lower levels of renewable energy deployment. We sought to
identify areas where disadvantaged community indicators and high generation potential from cost-
effective renewable energy opportunities intersect and deployment could lead to economic develop-
ment and job creation. Through a geospatial intersection of energy burden, environmental hazard, and
sociodemographic data with technical generation potential and the levelized cost of energy for
multiple renewable energy technologies, we calculated county-level correlations and identified trends
across disadvantaged community indicators and renewable energy deployment potential. Data sources
and tools included the Low-Income Energy Affordability Data (LEAD) tool, the Environmental Justice
Screening and Mapping (EJSCREEN) tool, the State and Local Planning for Energy (SLOPE) platform,
and the Renewable Energy Integration and Optimization (REopt�) model. Metrics include levelized
costs and generation potential for utility-scale photovoltaics (PV), rooftop PV (residential and
commercial), distributed PV plus storage, land-based wind, geothermal, and hydropower development.
This research and the associated county-level data set are intended to inform national- and state-level
energy-related assistance programs, economic development efforts, and infrastructure programs
seeking to prioritize investments in disadvantaged communities.
Introduction
The U.S. clean energy transition is at an inflection point. Declin-
ing costs and technological breakthroughs in renewable energy
are driving the market toward a future in which energy genera-
tion and consumption are completely transformed. At the same
time, climate change is accelerating, prompting urgency in scal-
ing up clean energy transitions. Moreover, significant rural-
urban and racial disparities persist, reflected in indicators of
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wealth, environmental hazard exposure, and renewable energy
adoption [1-8]. Providing disadvantaged communities (DACs)
with data on the most cost competitive and highest generation
potential renewable energy technologies in their county can
enable more strategic energy planning and local development
efforts. Similarly, prioritizing renewable energy investments in
communities with a high prevalence of environmental hazard
exposure and other DAC indicators can enhance equity in the
transition to a clean energy economy and broaden access to
renewable energy benefits.
his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 1
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The U.S. has ambitious climate goals, including a “carbon
pollution-free power sector by 2035, a net-zero economy by
2050,” and a 50% reduction in greenhouse gas emissions by
2030 [9,10]. In addition, the Biden administration’s Justice40 ini-
tiative aims to “deliver 40% of the overall benefits of climate
investments to disadvantaged communities and inform equita-
ble research, development, and deployment” [11]. In response,
the U.S. Department of Energy (DOE) created a beta Energy Jus-
tice Dashboard and dedicated $15.5 million to increasing solar
development in underserved areas [12,13]. To generate data that
can inform decision making and investment prioritization in
working toward these directives, we sought to use energy justice
concepts to identify where DAC indicators overlap with high-
potential, cost-effective renewable energy development
opportunities.

The concept of energy justice arose from both the environ-
mental justice and climate justice movements, which emerged
in the 1980s and early 21st century respectively [14]. Energy jus-
tice is a framework in which energy resources are readily avail-
able, affordable, and environmentally sustainable [15].
Incorporated into the framework are the environmental justice
concepts of intragenerational and intergenerational distributive
justice (the equitable distribution of environmental burdens
and benefits across current and future generations) and procedu-
ral justice (transparency in decision making and the meaningful
participation of all stakeholders, especially those who have his-
torically been marginalized and excluded from the decision-
making process) [15,16]. Energy justice is rarely a priority in
energy development, as local communities in general, and non-
white communities in particular, are often marginalized in
energy-siting decision making [16,17]. Further, investment prior-
itizations, such as subsidies, are currently accessed predomi-
nantly by higher-income individuals, who are less likely to
experience environmental hazard exposures and other DAC indi-
cators, than lower-income individuals [18,19].

There is evidence of distributive and procedural injustices in
the distribution of wealth and environmental hazard exposure
in the United States across the rural-urban continuum and
between racial groups. For example, the Great Recession of
2007 to 2009 exacerbated the persistent racial wealth gap [7,8].
Rural areas have also yet to recover from the Great Recession
and have seen income and employment increase more slowly
than in urban areas [20]. Poverty rates in metropolitan counties
in the United States are increasing at a faster pace than rural
and micropolitan counties, though rural counties still experience
the country’s highest rates of poverty [6]. These income dispari-
ties are compounded because low-income households generally
have higher energy burdens than more affluent households,
meaning that a higher proportion of their income is spent on
household energy [2,4,21]. Racial disparities in energy burden,
even when controlling for income, also exist, with Black and His-
panic households having higher energy burdens than non-
Hispanic, white households in some parts of the country
[2,4,22]. Similarly, rural areas have higher energy burdens than
urban areas across the United States [4,23]. Further, not only
do households with a higher energy burden experience increased
financial strain, high energy burden is also associated with
adverse health impacts. Outdated building infrastructure that
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often leads to a higher energy burden can also lead to or exacer-
bate existing health problems, such as respiratory illness. More-
over, high energy burdens can result in low-income
households foregoing medical treatment to pay for energy
expenses, which can lead to poorer overall health and premature
mortality [21,24].

Disparities in environmental hazard exposure, which is asso-
ciated with adverse human health impacts, also exist
[19,25,26]. Individuals living in urbanized areas are at higher risk
of exposure to fine particulate matter (PM2.5), a major environ-
mental health risk, than those living in rural areas [27]. In addi-
tion, not only do Black and Hispanic individuals and low-income
individuals have greater residence-based exposure to PM2.5, but
they are also at increased risk of PM2.5-related mortality than
non-Hispanic, white individuals and higher-income individuals
respectively, even across similar exposure levels [5,26,27,28,29].
There are also disparities in non-air-based pollution, such as lead
exposure. Although there is evidence that disparities in lead
exposure are declining, Black and Hispanic children and low-
income children have been found to have higher blood lead
levels than white children and higher-income children [30-34].
Given these distributional and procedural inequities, disadvan-
taged communities are thus defined herein as communities with
high prevalence of the socioeconomic factors and/or high expo-
sure to the environmental hazards described in Table 1.

The current transition to renewable energy technologies can
provide cleaner energy and bolster local economies through job
creation and local tax revenues. Communities with higher rates
of poverty, unemployment, and pollution exposure, however,
often see lower levels of renewable energy deployment. Residen-
tial photovoltaic (PV) adopters are more likely to have higher
incomes, be more educated, and live in white-majority census
geographies than non-adopters [1,35,36]. Communities defined
as DACs using CalEnviroScreen [37] tend to have lower levels
of residential PV adoption than non-DACs [38]. Additionally,
low-income households in the United States receive far fewer
clean energy tax credits than higher-income households [18].
Reames [3] intersected residential PV deployment potential,
defined as the “proportion of solar-suitable, single-family roof-
tops,” and actual residential PV deployment with several socioe-
conomic and demographic characteristics—including low-
income community status, percentage of the population with
less than a high school education, and percentage of nonwhite
individuals—in four cities across the United States [p. 3]. Reames
[3] found lower residential PV adoption among low-income indi-
viduals and among racial/ethnic minorities. He also found that,
although certain low-income communities have greater poten-
tial to deploy residential PV than higher-income communities,
PV adoption disparities still exist. In addition, Sigrin andMooney
[39] found that low-to-moderate income (LMI) residential build-
ings in the United States make up 43% of the U.S. population
and contain 42% of the residential rooftop PV technical poten-
tial (i.e., the maximum generation and capacity if PV was
installed on all suitable rooftops), further illustrating the gap in
deployment.

As the deployment of renewable energy technologies
increases, there is an opportunity to create a more equitable
energy system. Although previous work has examined select



TABLE 1

Data Sets Used to Intersect DACs with Renewable Energy Deployment Potential.

Data set Data resolution Metric Year

EJSCREEN Census block group Less than high school (HS) education 2013–2017
Low-income 2013–2017
Minority 2013–2017
Air toxics cancer risk 2014
Air toxics respiratory hazard index 2014
Diesel particulate matter (PM) 2014
PM2.5 concentration 2016
Ozone concentration 2016
Traffic proximity and volume 2017
Lead paint indicator 2013–2017
Proximity to risk management plan (RMP) facilities 2019
Proximity to treatment, storage, and disposal facilities (TSDF) 2019
Proximity to national priorities list (NPL) sites 2019
Wastewater discharge indicator 2017

LEAD Census tract Energy burden 2018
Rural Atlas County Employment in mining, quarrying, and O&G extraction 2015–2019

Farming-dependent counties 2015
Persistent-poverty counties 2015
Rural-urban continuum code 2013
Unemployment 2020

SLOPE County Technical generation potential for PV and wind 2020
Levelized cost of energy for PV, wind, geothermal, and hydropower 2020
Capital cost for geothermal and hydropower 2020

REopt Utility service area Cost savings estimates for solar-plus-storage 2019

Note. The metrics with 5-year ranges are single-value estimates generated by the American Community Survey that provide more statistical reliability to representations of small populations [46].
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sociodemographic factors across renewable energy deployment
and potential metrics, to the authors’ knowledge, our work is
the first to establish a data set that incorporates the potential
of multiple renewable energy technologies and both sociodemo-
graphic information and environmental hazard exposures,
allowing for easier and more accessible analysis across these met-
rics. Thus, recognizing the disproportionate access to renewable
energy benefits from disadvantaged communities, we sought to
map DAC indicators and other community characterization met-
rics in the contiguous United States to corresponding favorable
renewable energy opportunities to enable prioritization of DACs
in federal and state clean energy investments and programs. The
resulting data set of comparative generation potential and cost
metrics by county can also inform community-level energy plan-
ning and prioritization.
Method
Disadvantaged community indicators, including rural-urban
classifications, race, income, unemployment, and employment
in mining, quarrying, and oil and gas (O&G) extraction, were
geospatially intersected with deployment opportunity metrics
for utility-scale PV, residential rooftop PV, commercial rooftop
PV, distributed PV plus storage (solar-plus-storage), land-based
wind, geothermal, and hydropower. Using exploratory correla-
tional analyses, we identified patterns in renewable energy tech-
nical potential and cost for these seven renewable technologies
across the DAC metrics (see Section 3.1). We also conducted
two case studies to highlight the ways in which our data set
can be used to prioritize renewable energy technology deploy-
ment for any given DAC and identify the DACs with the highest
opportunity for specific renewable energy technologies (see
Section 3.2).
Materials
To intersect DACs with renewable energy potential, we used the
U.S. Environmental Protection Agency’s (EPA) Environmental
Justice Screening and Mapping (EJSCREEN) tool [40], the DOE’s
Low-Income Energy Affordability Data (LEAD) tool [41], the U.
S. Department of Agriculture’s (USDA) Atlas of Rural and Small-
Town America (the Rural Atlas) [42], the State and Local Plan-
ning for Energy (SLOPE) platform [43], and the Renewable
Energy Integration and Optimization (REopt�) platform [44].
Each of these data sets were incorporated into one master data
set using RStudio. See Table 1 for an overview of each data set
and their associated metrics.

The Rural Atlas, SLOPE, and REopt data sets were originally
resolved at the county level, whereas the EJSCREEN and LEAD
data sets were originally resolved at the census block group and
census tract levels respectively. Thus, to create the master data
set, the EJSCREEN and LEAD data sets were aggregated to the
county level. We avoided mean aggregation for the EJSCREEN
and LEAD data because highly impacted communities could be
missed using this method. For example, a highly energy-
burdened census tract, if surrounded by census tracts in the same
county with low energy burdens, would be hidden; thus, we
aggregated using national quintiles by the processes described
in the next several sections. Data sets were then merged by
matching the five-digit county Federal Information Processing
Series (FIPS) codes, which are unique county identifiers main-
tained by the American National Standards Institute [45].
3



TABLE 2

EJSCREEN Metric Descriptions.

Type Metric Definition

Sociodemographic Less than high school education Percentage of individuals who have less than a high school education in each census block group
Low-income Percentage of households in each census block group that make less than or equal to twice the

federal poverty level
Minority Percentage of Hispanic or nonwhite individuals within each census block group

Environmental
hazard*

Cancer risk (air toxics) Lifetime cancer risk due to inhalation of outdoor air toxics
Diesel particulate matter
concentration

Hazardous air pollutants, measured in lg/m3

Lead paint indicator Percentage of occupied housing units in each census block group that were built before 1960
National priorities list sites
proximity

Superfund sites where remediation is needed; number of sites “within five km of the average
block group resident, divided by distance” in kilometers (p. 56)

Ozone concentration Summer average daily maximum 8-hour concentration in parts per billion (ppb)
PM2.5 concentration Average annual concentrations of fine particles in the air, measured in lg/m3

Respiratory hazard index (air
toxics)

Ratio of exposure concentration to health-based reference concentration

Risk management plan
proximity

Facilities that house hazardous materials for which a risk management plan must be established;
number of sites “within five km of the average block group resident, divided by distance” in
kilometers (p. 56)

Treatment, storage, and
disposal facilities proximity

Hazardous waste disposal sites; number of sites “within five km, divided by distance” in
kilometers (p. 59)

Traffic proximity Average annual daily vehicle counts divided by the distance in meters
Wastewater discharge Water pollutant concentrations divided by the distance in meters

Source [47].
*Each environmental hazard metric is associated with adverse human and environmental health impacts. A higher score for each metric indicates an increased presence of the hazard within each
census block group.

1 The weights applied to the fifth quintile were calculated by dividing the national mean score
for the fifth quintile by the national mean score for the fourth quintile. For example, for the low-
income EJSCREEN metric, the mean fourth quintile score was .44 and the mean fifth quintile
score was .66 (see Appendix A). Thus, we weighted the fifth quintile by 1.5 for the low-income
indicator. Using the same process, we weighted the fifth quintile for the minority indicator by 1.7
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EJSCREEN xxx
This analysis used 14 EJSCREEN sociodemographic and environ-
mental hazard metrics, each of which are resolved at the census
block group level and described in Table 2 [47,48]. To aggregate
the EJSREEN metrics to the county level, we created indicators
for each of the metrics. Although a single environmental indica-
tor combining each of the 11 environmental hazard metrics
might help identify communities most in need (i.e., those that
are most exposed to environmental hazards), the EPA advises
against this because viewing the metrics separately provides a
more complete picture of hazard exposure across the country
[47,p. 25]. In addition, indicator creation requires making deter-
minations about weighting the metrics, and determining the
importance of the various weighting criteria (e.g., public health
or financial implications) is subjective and should be established
by local communities; thus, we investigated each metric inde-
pendently and created 14 distinct indicators through the follow-
ing process (see Figure 1).

First, to aggregate EJSCREEN to the county level, we used the
ntile function from the tidyverse in RStudio to assign a quintile
score to each block group. Quintiles were created for each of
the 14 metrics across all block groups to describe how well the
block group compares to the nation as a whole. For example, if
a census block group scored within the fifth quintile (80th–
100th percentile) for a given metric, it was given a score of 5. If
the block group scored within the fourth quintile (60th–80th per-
centile) for a given metric, it was given a score of 4, and so forth
(see Appendix A for the descriptive statistics for each metric
within each quintile). Lastly, we calculated the proportion of
census block groups within each county that fell within each
of the five quintiles, creating county-level proportion scores.
4

We then created the sociodemographic indicators using the
fourth- and fifth-quintile proportion scores to create a weighted
sum for each county. We used the fourth and fifth quintiles to
highlight the counties most representative of the sociodemo-
graphic metrics. We began with the proportion score from the
fourth and fifth quintiles for each metric (i.e., the proportion
of block groups in each county that fell within the fourth and
fifth quintiles). Counties with quintile bins greater than .20 have
a disproportionately high number of census block groups in
those bins; thus, we subtracted .20 from the fourth-quintile pro-
portion and from the fifth-quintile proportion to determine how
much the values exceed the national distribution. We then
summed the fourth and fifth quintile values and weighted the
fifth quintile value more heavily.1 The final indicator score for
each sociodemographic metric was thus a weighted sum of the
proportion of census block groups in the fourth and fifth quintiles
in excess of .20 by county.

We created the environmental hazard indicators using the
fifth-quintile proportion score for each county. The fifth quintile
alone was used because that quintile is associated with a sharp
increase in risk score assigned by EJSCREEN for most of the envi-
ronmental metrics (see Appendix A). The maximum air toxics
cancer risk scores, for example, in the first through fourth quin-
tiles are 24, 29, 33, and 38, respectively, and the maximum score
in the fifth quintile is 1505. Further, scores within the fifth quin-
tile for two of the metrics mark the point at which the EPA has
and the fifth quintile for the less than high school education indicator by 2.1.



FIGURE 1

Flowchart Describing the Indicator Creation Process.

FIGURE 2

Average Energy Burden in the United States by Area Median Income Level, Used to Calculate Weights for County Energy Burden Indicator Scores. Source [41].
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set a break point for public health risk; the EPA public health lim-
its for PM2.5 and ozone are 2.0 lg/m3 and 70 ppb, respectively,
both of which fall within the fifth quintile range for their given
metric [49,50]. This indicates that all counties that fall within the
fourth quintile or lower do not exceed the annual public health
limit for these metrics. The final indicator score for each environ-
5



TABLE 3

Rural Atlas Metric Descriptions.

Metric Definition

Farming-dependent
counties

Yes/no binary of farming dependence, defined
as a county in which farms account for at least
25% of a county’s earnings or at least 15% of
total county jobs

Mining, quarrying,
and O&G jobs

Percentage of labor force employed in mining,
quarrying, and oil and gas extraction

Persistent-poverty
counties

Yes/no binary of persistent poverty, defined as a
county in which the poverty level was
consistently at or greater than 20% in the 1980
census, the 1990 census, the 2000 census, and
the 2007–2011 American Community Survey

Rural-urban
continuum code

Ranges from 1 (most urban and metropolitan)
to 9 (most rural and non-metropolitan); includes
measures of population sizes and, for non-
metropolitan areas, adjacency to metropolitan
areas*

Unemployment Percentage of unemployed individuals, defined
as those over age 16 who are unemployed and
actively seeking employment

Sources. Rural-urban continuum code [57]; all others [42].
*For example, a score of one indicates a county with a population of at least 1 million people,
and a score of nine indicates a rural county not adjacent to a metropolitan area with a
population of less than 2500.

K
EY

N
O
TE

(G
R
EEN

)

KEYNOTE (GREEN) Renewable Energy Focus d Volume 41, Number 1 d 1–14 2022
mental hazard metric was thus the proportion of census block
groups in the fifth quintile in excess of .20 by county.
2 We arrived at the weights through the following process. Using LEAD data, we determined
that energy burden increases as income decreases. Households earning less than 30% of the
median income, or approximately $20,000 in the U.S. [53], have an average energy burden of
16%, and households earning between 30%–60% of the median income, or between
approximately $20,000–$40,000, have an average energy burden of 6% (see Figure 2) [41]. In
addition, energy consumption increases with income. Households in the lowest two income
brackets consume an annual average of 57.0 and 68.9 million Btu respectively, including
electricity, natural gas, fuel oil/kerosene, and propane, whereas households earning $140,000 or
more per year consume an average of 111.2 million Btu [54], [55]. This means that although those
at the lowest income bracket consume the least amount of energy, they have the highest energy
burden. To account for this lower consumption, census tracts with a score of four (i.e., those that
are energy impoverished with energy burdens exceeding 10%) were assigned a weight of 1.2
because they would need to consume 1.2 times more energy to consume as many Btus as the
next largest income bracket. Census tracts with a score of three (i.e., those that are energy
burdened with energy burdens between 7%–10%) were assigned a mid-point weight of 1.1
because their energy burdens fall between the lowest two income brackets.

3 Modeled annual technical generation potential for commercial PV includes buildout on
rooftops of both commercial and industrial buildings.
LEAD xxx
The LEAD tool provides data on energy expenditures and income
level for counts of housing unit types [41] (see Figure 2). We used
the LEAD tool’s census tract-level calculations for energy burden
and aggregated the data to the county level. Energy burden is
defined as the proportion of household income spent on housing
energy costs [41,p. 1]. To aggregate energy burden to the county
level, national quintiles were not used because the LEAD data
have a skewed distribution (skewness = 6.3) and the national
quintile calculation produced 20th, 40th, 60th, and 80th energy
burden percentiles of 2%, 3%, 3%, and 4% respectively, which
fails to provide meaningful energy burden cut-off points. Previ-
ous research identifies energy burden exceeding 6% as a high
energy burden [51], and Cook and Shah [52,p. 3] reported a scale
of energy burden describing households that spend less than 4%
of annual income on energy as “not burdened,” those that spend
between 4% and 7% on energy as “energy stressed,” those that
spend between 7% and 10% as “energy burdened,” and those that
spend greater than 10% as “energy impoverished.” To go beyond
an energy burden binary, we use the Cook and Shah [52] scale
to create the energy burden indicator through the following
process.

We first applied the Cook and Shah [52] scale to each census
tract. Energy burdens less than 4% received a score of one, energy
burdens greater than or equal to 4% and less than 7% received a
score of two, energy burdens greater than or equal to 7% and less
than or equal to 10% received a score of three, and energy bur-
dens greater than 10% received a score of four. We then calcu-
lated the percentage of census tracts within each county in
6

each category: not burdened, energy stressed, energy burdened, and
energy impoverished. According to previous research [51], we
focused on energy burdens exceeding 6%; thus, we took an aver-
age of the energy-burdened and energy-impoverished proportions
from each county and weighted the averages to account for
higher burdens among energy-impoverished households. The
resulting energy burden indicator is thus a weighted average of
the percentage of census tracts labeled as energy burdened and en-
ergy impoverished by county.2

Rural Atlas
This analysis uses five metrics from the USDA Rural Atlas [56] (see
Table 3). Two of the metrics—unemployment and percentage
employed in mining, quarrying, and O&G extraction—are raw
scores taken from the Rural Atlas’ Jobs data set. Quintiles were
calculated to provide an indication of how county scores com-
pared across the nation. To assign quintile scores for these two
metrics, we used the ntile function in RStudio’s tidyverse. If a
county’s raw value was within the first quintile, it was assigned
a score of one. If a county’s raw value was within the second
quintile, it was assigned a score of two, and so forth. Quintile
scores were used to identify specific DAC targets but were not
used in the correlation analyses. The other three Rural Atlas met-
rics used in this analysis—the rural-urban continuum code, farm-
ing dependence, and persistent poverty—originated from the
Rural Atlas County Classifications data set, which assigned scores
to each county based on certain criteria (see Table 3). This anal-
ysis uses the last three metrics unmanipulated.

SLOPE xxx
The DOE and National Renewable Energy Laboratory’s SLOPE
platform provides modeled energy efficiency, renewable energy,
and sustainable transportation data at city, county, and state
levels [43]. From SLOPE, we used estimates for technical genera-
tion potential, levelized cost of energy (LCOE), and capital costs.
Technical generation potential, or simply technical potential, is
the modeled maximum generation in megawatt hours (MWh)
per year that could be produced by a given technology if all suit-
able land or rooftop area were used. Technical potential considers
resource availability and quality but not market conditions,
transmission capacity, or integration into the electricity grid
[58]3. LCOE is the cost to generate electricity ($/MWh), assumes
new construction, and considers the technology’s capital costs,
operation and maintenance costs, performance costs, capacity fac-



TABLE 4

Technology Definitions, Metrics, and Assumptions

Technology Source Definition Metrics and
Assumptions

Utility PV SLOPE Uses ground-
mounted, tracking,
large-capacity systems
to convert solar
energy into electricity

Technical potential:
Single-axis tracking, 20
MW capacity systems
[58]
LCOE:
100 MW capacity facil-
ity and several cost
inputs (see [59])

Residential
PV

SLOPE Uses residential
building roof-
mounted, fixed tilt,
small-capacity systems
to convert solar
energy into electricity

Technical potential;
LCOE:
Site-specific;
calculated for
representative census
blocks and aggregated
to the county level
[58,59]

Commercial
PV

SLOPE Uses commercial and
industrial building
roof-mounted, fixed
tilt, medium-capacity
systems to convert
solar energy into
electricity

Technical potential;
LCOE:
Site-specific;
calculated for
representative census
blocks and aggregated
to the county level
[58,59]

Land-based
wind

SLOPE Uses utility-scale,
large-capacity onshore
wind turbines to
convert wind energy
into electricity

Technical potential:
2.6-MW nameplate
capacity turbine, 121
m rotor diameter, and
90 m hub height [58]
LCOE:
200 MW facility
capacity and several
cost inputs (see [59])

Geothermal SLOPE Converts energy from
naturally occurring
underground
reservoirs of hot water
into electricity

Capital cost; LCOE:
Site-specific and
considers the
hydrothermal resource
temperature and well
productivity and
depth [59]

Hydropower SLOPE Converts potential
energy from flowing
water into electricity

Capital cost; LCOE:
Site-specific and
considers new stream
reach and non-
powered dam
development but not
upgrades to existing
facilities [59]

Solar-plus-
storage

REopt Behind-the-meter
battery energy storage
systems (BESS)
coupled with rooftop
solar for commercial
buildings

Cost savings:
Medium office
building loads, varied
by climate zone; fixed
PV array costs of
$1,600/kW, BESS
power costs of $840/
kW, and BESS energy
costs of $420/kWh
(among other inputs;
see [60,61])
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tors, labor markets, and interconnection costs [59]. For utility PV,
residential PV, commercial PV, and land-based wind, we used the
technical potential data set and the 2020 data from the LCOE data
set [58,59]. For geothermal and hydropower, we used the 2020
LCOE and capital cost data from the LCOE data set [59]. For all
technologies, we used the median technical potential, LCOE,
and capital cost estimates. Technical definitions and assumptions
for all technologies can be found in Table 4.

We grouped SLOPE county-level data for each technology
into quintiles using the ntile function in RStudio’s tidyverse to
indicate how county scores compared across the nation. Quintile
scores were used to identify specific DAC targets but were not
used in the correlation analyses. If a county’s raw value was
within the first quintile, it was assigned a score of one. If a
county’s raw value was within the second quintile, it was
assigned a score of two, and so forth. For the technical potential
metrics, a higher score indicates that more potential exists for
energy generation development of a given technology in that
county. For LCOE and capital cost metrics, a higher score indi-
cates relatively higher costs for a given technology in that
county.
REopt
We used cost-savings estimates for solar-plus-storage from the
REopt model to assess the geographic locations for which com-
mercial solar-plus-storage is most economically viable. The REopt
model, developed by the National Renewable Energy Laboratory,
is a techno-economic, mixed-integer linear program that deter-
mines the technology type, sizing, and dispatch strategy for a
cost-optimal renewable energy system [62,p. 1,2]. REopt cost-
savings estimates were derived from a recent nationwide assess-
ment of the economic viability of commercial solar-plus-
storage systems conducted by Kwasnik and others [60]4, assump-
tions for which can be found in Table 4.

The data were reaggregated from utility subdivisions to the
county-level using county geometries from the U.S. Census
Bureau, intersecting the REopt data with the U.S. county shape-
file, calculating the percentage of overlap between reference sites
and counties, and scaling the cost savings for each site within the
county by percentage overlap. These scaled savings were then
summed for each county. REopt county-level data were then
grouped into quintiles using the ntile function in RStudio’s tidy-
verse. The 53% percent of counties with cost-savings estimates of
$0 (N = 1649) were removed from the quintile calculation so that
the quintiles were based only on counties with cost savings
greater than $0. If a county’s raw value was within the first quin-
tile, it was assigned a score of one. If a county’s raw value was
within the second quintile, it was assigned a score of two, and
so forth. The quintile scores were used to identify specific DAC
targets; however, for the correlation analyses, we used the raw
cost-savings estimates and included counties with cost savings
estimates of $0.
4 The assessment [60] modeled potential savings for 2,541 scenarios generated by varying
common utility rates at reference sites partitioned by climate zone, state, and solar resource
intensity. The assessment included service territories for all investor-owned-utilities (IOUs) and
non-IOUs with more than 400,000 customers in 2010, as well as the 45 biggest non-IOUs by area.

7



TABLE 5

Correlations Between Renewable Energy Potential and Cost Metrics and Environmental and Sociodemographic Indicators.

Note: Blue shades indicate positive correlations, with darker blue indicating a stronger positive correlation. Pink shades indicate negative correlations, with darker pink indicating a
stronger negative correlation. The lightest shade indicates a correlation between ±.10 and ±.30, and the darkest shade indicates a correlation greater than ±.30. White indicates either a
negligible correlation (r < .10) or a correlation with p > .10. A p-value less than .05 indicates a significant relationship, and a p-value greater than or equal to .10 indicates a nonsignificant
relationship. A p-value greater than or equal to .05 and less than .10 is considered marginally significant.
*** p < .001, ** p < .01, * p < .05, + p < .10.
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Results and discussion
Identifying intersections of DAC indicators and renewable
energy development potential
To identify areas of overlap between the DAC indicators and
renewable energy development potential, we identified correla-
tions between the sociodemographic and environmental hazard
indicators and the raw renewable energy technical potential and
cost estimates using RStudio (see Table 5 for the correlation).
These correlations indicate possible avenues for renewable
energy development, given the metrics considered in this analy-
sis. The data sources supported analysis within the 48 contiguous
states andWashington, D.C., creating a data set with 3,108 coun-
ties (see Appendix B for the number of counties with data for
each metric). A higher score on the rural classification indicates
a more rural county. Higher scores on the other indicators repre-
sent a greater presence of the metric in each county. For example,
a higher score on the unemployment metric indicates a higher
proportion of unemployed individuals in each county
[41,47,56,58] (see section 2.1). Thus, for the technical potential5

metrics, positive correlations mean that as the environmental haz-
ard or sociodemographic indicator score increases, potential tends
to increase, indicating that those communities might have oppor-
tunities for technology development with high generation poten-
tial. For the capital cost and LCOE metrics, negative correlations
mean that as the environmental hazard or sociodemographic indi-
cator score increases, costs for a technology tend to decrease, indi-
cating that those communities might have opportunities for
development of that technology at lower costs relative to the costs
in other communities. For solar-plus-storage, positive correlations
mean that as the environmental or sociodemographic indicator
score increases, cost savings tend to increase, indicating that those
communities might have opportunities for cost savings from solar-
plus-storage. The strongest correlations for each technology are
described in the following sections.
Commercial and residential PV
Commercial and residential PV share similar relationships at sim-
ilar strengths across each sociodemographic and environmental
hazard indicator. Technical potential is generally higher in urban
areas due to higher concentrations of commercial and residential
buildings. LCOE for commercial and residential PV tends to be
lower in areas with higher concentrations of minority individu-
als, higher percentages of mining, quarrying, and O&G extrac-
tion jobs, and higher concentrations of individuals with less
than a high school education. As technical potential is generally
higher in areas in closer proximity to traffic and TSDFs and
higher concentrations of diesel PM and PM2.5, residential and
commercial PV may also present a targeted investment opportu-
nity in certain environmental justice communities.
Utility PV
Utility PV correlations indicate relatively high development
potential in many areas with higher concentrations of minority
individuals and in many areas with greater ozone exposure.
5 Technical potential is the amount of generation per year that could be produced by a given
technology if all suitable land or rooftop area is used. LCOE is the cost to generate electricity per
MWh (see Section 2.1.4).
Low LCOE for utility PV in areas with concentrations of individ-
uals with less than a high school education and low-income indi-
viduals and high technical potential in areas with high mining,
quarrying, and O&G jobs indicate that there could be an oppor-
tunity for utility PV in communities in need of workforce devel-
opment who may be transitioning away from fossil fuel
production.

Land-based wind
LCOE for land-based wind tends to be lower in rural areas and in
areas with closer proximity to RMP facilities. Greater technical
potential for land-based wind correlates relatively strongly with
higher levels of employment in mining, quarrying, and O&G
extraction, with rural status, and with greater ozone exposure,
indicating that wind development might present an economic
development opportunity in communities transitioning away
from fossil fuel production, while potentially drawing on skilled
workers from these industries.

Geothermal
Hydrothermal utility-scale generation from geothermal resource
is not feasible in most counties. As a result, only 304 counties
had geothermal data points. Areas with relatively lower-cost
geothermal generation are associated with higher air toxics respi-
ratory hazard, closer proximity to traffic and TSDFs, and higher
rates of unemployment.

Hydropower—non-powered dams and new stream reach development
For hydropower capital costs and LCOE, the strongest relation-
ship is between capital costs and proximity to RMP facilities;
however, none of the correlations with hydropower are relatively
strong.

Solar-plus-storage
Cost savings for solar-plus-storage had relatively weak correla-
tions with the DAC indicators but did tend to be higher in areas
closer to traffic, indicating that the technology might have the
potential to be broadly developed in these areas.

Case studies
While correlations between DAC and renewable energy metrics
can identify trends across counties, perhaps the highest value
of this new data set is in the array of county-level metrics it pro-
vides. The data set created for this analysis could help identify
which renewable energy technologies have comparatively high
potential and low costs for any given DAC and, similarly, to iden-
tify the DACs with high opportunity for specific renewable
energy technologies. In the next two sections, we provide exam-
ple analyses of these types.

Identifying a county with high need and high potential
Costilla County in southern Colorado scores relatively highly on
several DAC indicators (see Table 6). The county is categorized as
completely rural and a persistent poverty county by the USDA’s
Rural Atlas. It is also categorized as a farming-dependent commu-
nity and exceeds the 60th percentile for unemployment and for
employment in mining, quarrying, and O&G extraction. More
than 80% of its census block groups are in the highest quintile
for percentage of low-income individuals, and its two census
9



TABLE 6

DAC and Renewable Energy Deployment Potential Indicators in Costilla
County, CO.

Metric Raw value Indicator
score

Utility PV
Technical potential 91,650,546

MWh
4th quintile

LCOE $45/MWh 1st quintile
Land-based wind
Technical potential 10,961,518

MWh
4th quintile

LCOE $38/MWh 2nd quintile
Solar-plus-storage
Cost savings $3,363 4th quintile
Unemployment rate 7.2% 4th quintile
Mining, quarrying, and O&G

employment
.86% 4th quintile

Low-incomea 59% 0.88
Energy burdenb 8% 0.55
Less than high school educationa 22% 0.93
Hispanic or nonwhite individualsa 69% 0.81
Ozone concentrationa 49 ppb 0.80

a Unweighted average taken across Costilla County’s four census block groups.
b Unweighted average taken across Costilla County’s two census tracts.
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tracts are considered energy burdened, as defined by Cook and
Shah [52]. Half its census block groups are in the highest quintile
for percentage of the population with less than a high school
education. Additionally, 80% of its census block groups fall in
the highest quintile for percentage of Hispanic or nonwhite indi-
viduals. All the county’s census block groups score in the highest
quintile for the ozone indicator.

The renewable energy metrics for Costilla County indicate
substantial opportunity for job creation and investment from
renewable energy development. Utility PV technical potential
is in the fourth quintile and LCOE is in the first quintile, indicat-
ing higher technical potential and lower cost than the average U.
S. county. The county has similarly high potential and relatively
low LCOE compared to other counties for land-based wind.
Solar-plus-storage also presents an opportunity, as the cost sav-
ings associated with solar-plus-storage are in the fourth quintile.
In sum, our analysis found that Costilla County may have high
TABLE 7

Top Ten DACs for Utility PV Development Considering Ozone Concentration

County Technical
Potential (MWh)

LCOE
($/MWh)

Employed
quarrying,

Loving, TX 117,310,996 39 27.3
Andrews, TX 260,067,236 39 24.0
Campbell, WY 316,499,376 44 23.0
Yoakum, TX 131,520,286 41 21.6
Winkler, TX 147,923,745 39 21.2
Weston, WY 213,349,257 44 18.8
Ward, TX 145,515,427 39 18.7
Hemphill, TX 109,192,439 41 18.1
Lea, NM 771,322,461 41 17.8
Uintah, UT 182,290,073 47 16.3
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need and high renewable potential. Utility PV, land-based wind,
and solar-plus-storage deployment have relatively favorable con-
ditions to create jobs and increase local tax revenues for Costilla
County community members.

Identifying top DAC opportunities for utility PV development
As discussed, utility PV has relatively high potential in areas with
higher ozone concentrations and higher employment in mining,
quarrying, and O&G extraction. To demonstrate the usefulness
of the data set in increasing equity in investment decision mak-
ing, we identified the top ten DACs with potential for develop-
ment of utility PV, considering the DAC metrics of ozone and
mining, quarrying, and O&G employment. To generate this list,
we filtered the data set to include only counties that fall in the
highest quintile for utility PV technical potential and the lowest
quintile for utility PV LCOE. We also filtered the data set to
include only counties with the highest score for the ozone indi-
cator that fall in the highest quintile for mining, quarrying, and
O&G jobs. We then sorted the data set first by highest percentage
employed in mining, quarrying, and O&G extraction; then by
highest utility PV technical potential; and finally, by lowest util-
ity PV LCOE. Table 7 identifies the top ten counties resulting
from this process.

Counties in Table 7 have strong potential for utility PV devel-
opment relative to national averages. Additionally, between
16.3% and 27.3% of these counties’ labor forces are employed
in mining, quarrying, and O&G extraction, and each county is
considered non-metropolitan. Finally, each of the counties’ cen-
sus block groups falls within the fifth quintile for ozone. This
indicates that utility PV development could present an economic
development opportunity in these communities if they are to
transition away from fossil fuel production. Queries assessing
the top DAC opportunities for additional combinations of tech-
nologies and DAC metrics can also be performed with our data
set.

General discussion, limitations, and future directions
Our data set can contribute to energy justice by enabling consid-
eration of distributive justice in relation to renewable energy
development. For example, decision-makers can use the data
set to prioritize marginalized communities with renewable
s and Employment in Mining, Quarrying, and O&G Extraction.

in mining,
and O&G (%)

Ozone Indicator Score Rural-Urban
Continuum Code

.80 9

.80 6

.80 5

.80 7

.80 6

.80 7

.80 6

.80 7

.80 5

.80 7
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energy investments without sacrificing generation potential. Fur-
ther steps can ensure the benefits of renewable energy develop-
ment are absorbed by the community, for example by
establishing local hire provisions to set aside jobs for community
members. Communities can use the data set to investigate the
DAC indicators in their area and prioritize renewable energy
technology development based on comparative potential.
Researchers outside the U.S. can also use our work as a template
for their own investigations into energy, incorporating tools rel-
evant to their regions. For example, the Environmental Justice
Atlas (EJAtlas) is a tool that documents environmental justice
conflicts around the world and could be used to examine dis-
tributive justice in other regions by intersecting environmental
concerns with renewable energy development potential [63].

The energy justice principle of procedural justice, however, is
missing from our analysis; our work was conducted without
input from community members. Thus, decision-makers will
need to incorporate and rely on community guidance to ensure
community agency. Mobilizing local knowledge [14,p. 178]
increases equity in renewable energy investment decision mak-
ing, and thus, involving community members meaningfully in
the decision-making process is a key component of energy justice
and can increase local acceptance of renewable energy projects
[64]. We have provided a starting point, but communities must
determine the factors and strategies that are most important
and relevant for them.

For this reason, community, decision-, and policymakers need
to rely on the correlations reported in this work in addition to
other important factors. The correlations highlighted in this
analysis describe the tendency for any two given metrics to be
related, and many counties do not follow these patterns. Future
research at a more granular geospatial level is needed, especially
in counties with large populations, to inform county-specific or
regional investment decisions and to determine the renewable
energy technologies with the highest potential for a given area
or DAC. Further, although many of the correlations found in this
analysis are strong relative to the correlations found across all
technologies and metrics considered, they generally do not
explain a large portion of variance. More exploration into the
correlates of renewable energy development potential is needed
to determine whether the correlations found in this research
are strong in the context of renewable energy development
potential. The correlations found in this research also do not
imply causation; thus, the relationships might not replicate
beyond the geographies considered here, and renewable energy
deployment might not directly mitigate the challenges faced by
DACs. Finally, although our analysis found that some DAC met-
rics (e.g., energy burden) are not correlated with the renewable
energy metrics, renewable energy development could still be
highly beneficial to such communities (e.g., by reducing energy
burden). A lack of correlation might indicate a greater need for
enacting policies that make renewable energy technologies more
financially viable, and our data set can help to support those
types of analyses. Additionally, the expansion of distributed
energy resources (DERs; e.g., rooftop PV) has both energy justice
benefits and drawbacks [65]. For instance, regardless of whether
DERs have relative financial viability in a community, DERs that
are unaffordable to DACs will exacerbate existing inequalities,
and thus, program and policy interventions are required to
expand access to the benefits of DERs for DACs. Our analysis
can help policymakers establish criteria for program participa-
tion by aiding in DAC definition and identification. Policymak-
ers prioritizing DACs and targeting renewable energy
development in specific counties or regions can also use our data
set to match DAC status with technical potential and LCOE. In
this way, the appropriate technology, based on technical poten-
tial and LCOE, can be prioritized in the appropriate areas, maxi-
mizing the benefits of the technology.

Our analysis highlighted opportunities for renewable energy
development in DACs considering three broad categories of met-
rics: socioeconomic, environmental hazard, and renewable
energy deployment potential metrics. The benefits and draw-
backs, however, of renewable energy deployment for DACs can-
not be assessed by these metrics alone, and there are other
important factors to consider when developing new technolo-
gies. Certain renewable energy technologies might generate
more jobs than others, and some might reduce energy burden
more than others. Environmental impacts also vary across tech-
nologies and geographies, and in some cases, renewable energy
technologies are themselves associated with environmental jus-
tice concerns [66]. Additionally, the development of renewable
energy technologies does not necessarily equate to net economic
benefit where fossil-based jobs and local revenues may decrease.
Finally, and importantly, support for renewable energy develop-
ment varies across communities. Our analyses do not quantify
these effects, and optimal renewable energy development inter-
sections with DACs might change if these additional factors are
considered. Future research can thus expand on the metrics
included in this analysis to make these additional considerations.
For example, the National Renewable Energy Laboratory’s Jobs
and Economic Development Impact (JEDI) models can be
applied to examine the number of local jobs that could be gener-
ated from maximum deployment of each renewable technology.
DER adoption rates could also be incorporated into the data set
to examine adoption patterns across DACs and renewable energy
development potential. Additionally, a metric to estimate com-
munity support and policy readiness for renewable energy devel-
opment can further illustrate feasibility. For instance, a policy
metric could be used that assesses the level of renewable
energy-supportive policy that exists in a jurisdiction. Our data
set can provide a pathway into these investigations.
Conclusion
Data presented in this research can inform renewable energy
development strategies for disadvantaged communities. We first
looked at the correlations between DAC metrics and renewable
energy deployment potential metrics. The strongest correlations
indicate that mining, quarrying, and O&G extraction counties
tend to have higher wind resources, which represents an oppor-
tunity for developing new sources of stable income and employ-
ment in energy transitions. Counties with larger populations of
minority individuals tend to have good opportunity for commer-
cial and residential rooftop PV development, and counties with
higher proportions of individuals with less than a high school
education tend to have good opportunity for utility PV develop-
11



K
EY

N
O
TE

(G
R
EEN

)

KEYNOTE (GREEN) Renewable Energy Focus d Volume 41, Number 1 d 1–14 2022
ment. Counties in closer proximity to traffic and TSDFs and
those with higher diesel pollutant concentrations tend to have
higher potential for the development of commercial and residen-
tial rooftop PV. Counties with higher ozone concentrations tend
to have higher potential to develop utility PV and land-based
wind, in addition to having relatively lower-cost commercial
and residential PV opportunities. Finally, counties with higher
respiratory hazard due to air toxics tend to have relatively
lower-cost geothermal opportunities.

We also identified how individual communities can use our
data set to better understand their comparative renewable
energy development opportunities and to inform more strategic
economic development and energy planning. The Costilla
County, Colorado example showed relatively high potential
for utility PV, land-based wind, and solar-plus-storage develop-
ment. In addition, we identified several rural counties in Texas,
Wyoming, New Mexico, and Utah that have high employment
in mining, quarrying, and O&G extraction, are exposed to high
concentrations of ozone, and have good potential to develop
utility PV.

Transitioning to a low-carbon energy economy is inevitable
if we are to limit future climate change [67]; transitioning
equitably, however, is not. We risk exacerbating existing
inequalities if we fail to prioritize energy justice and expand
access to the benefits of renewable energies to DACs. Our anal-
ysis and resulting data set can enable prioritization of renew-
able energy investments in DACs, help to bring the benefits
of renewable energy to frontline communities, and ultimately
TABLE A1

Descriptive Statistics for the Metrics from EJSCREEN.

Metrics
Quintile 1 Quintile 2

Min–
max

Mean Min–
max

Less than high school education
(%)

0–.03 .01 .03–.07

Low-income (%) 0–.14 .08 .14–.25
Minority (%) 0–.07 .03 .07–.19
Cancer risk from air toxics (see

[47])
8.8–23.8 20.1 23.8–28.6

Diesel particulate matter
concentration
(lg/m3)

0.01–0.19 0.13 0.19–0.32

Lead paint indicator (%) 0–.05 .01 .05–.18
National priorities list sites

proximity
(# of sites/km)

0–0.02 0.01 0.02–0.05

Ozone concentration (ppb) 25.0–38.2 34.2 38.2–41.6
PM2.5 concentration (lg/m3) 4.01–7.40 6.43 7.40–8.22
Respiratory hazard index from air

toxics (see [47])
0.09–0.31 0.25 0.31–0.38

Risk management plan proximity
(# of sites/km)

0–0.12 0.07 0.12–0.21

Treatment, storage, and disposal
facilities
proximity (# of sites/km)

0–0.13 0.06 0.13–0.59

Traffic proximity (vehicle count/m) 0–43.7 16.1 43.7–161
Wastewater discharge (see [47]) 0–0.00002 0.000003 0.00002–0.0004
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help make the transition to low-carbon energies more
equitable.
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Appendix A
See Table A1.
Quintile 3 Quintile 4 Quintile 5

Mean Min–
max

Mean Min–
max

Mean Min–
max

Mean

.05 .07–.12 .10 .12–.21 .16 .21–1.0 .33

.19 .25–.36 .30 .36–.52 .44 .52–1.0 .66

.13 .19–.38 .27 .38–.70 .52 .70–1.0 .88
26.3 28.6–33.1 30.8 33.1–38.4 35.6 38.4–1,505 44.8

0.25 0.32–0.47 0.39 0.47–0.69 0.57 0.69–6.08 1.08

.11 .18–.38 .28 .38–.65 .51 .65–1.0 .80
0.03 0.05–0.08 0.06 0.08–0.16 0.11 0.16–9.0 0.46

40.1 41.6–43.8 42.8 43.8–46.3 44.9 46.3–75.9 52.1
7.83 8.22–8.78 8.51 8.78–9.41 9.10 9.41–16.5 10.48
0.34 0.38–0.46 0.42 0.46–0.55 0.50 0.55–4.10 0.65

0.16 0.21–0.53 0.35 0.53–1.2 0.84 1.2–18 2.5

0.29 0.59–1.7 1.10 1.7–4.2 2.7 4.2–442 22.4

95.4 161–409 270 409–1,027 658 1027–37,576 3145
0.0001 0.0004–0.003 0.001 0.003–0.05 0.01 0.04–429,574 76.5
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Appendix B
See Table B1.
TABLE B1

Number of Counties with Data for Each Metric.

Source Metric N (counties)

EJSCREEN Less than HS education 3108
Low-income 3108
Minority 3108
Cancer risk 3108
Diesel PM 3108
Lead paint 3108
NPL proximity 3108
Ozone 3108
PM2.5 3108
Respiratory hazard 3108
RMP proximity 3108
TSDF proximity 3108
Traffic proximity 2970
Wastewater discharge 2889

LEAD Energy burden 3107
Rural Atlas All metrics 3108
SLOPE Technical potential

Commercial PV 3107
Residential PV 3107
Utility PV 3108
Land-based wind 3108

LCOE
Commercial PV 3107
Residential PV 3107
Utility PV 3102
Land-based wind 3102
Geothermal 304
Hydropower 3060

Capital costs
Geothermal 304
Hydropower 3060

REopt Cost savings
Solar-plus-storage 3108
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