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Abstract— Many organizations are tasked with the collection 

and processing of large quantities of data from various 
measurement devices. Data reported from these sources are often 
not interoperable with datasets and software used by analysts and 
other organizations in the same domain, introducing barriers for 
collaboration on large-scale projects. This poses a particular 
problem for cross-device comparisons and machine learning 
applications, which rely on large quantities of data from multiple 
sources. To address these challenges, the open-source Time-Series 
Data Pipelines (Tsdat) Python framework was developed by 
Pacific Northwest National Laboratory, with strategic guidance 
and direction provided by the National Renewable Energy 
Laboratory and Sandia National Laboratories to facilitate 
collaboration and accelerate advancements in the marine energy 
domain through the development of an open-source ecosystem of 
tools. This paper will describe the Tsdat framework and the data 
standards within which it operates. A beta version of Tsdat has 
been released and is being used by several projects in marine 
energy, wind energy, and building energy systems. 

Keywords— Python, open-source, data standards, data lake, big 
data, interoperability 

I. INTRODUCTION 
Instrument manufacturers often use unique or proprietary 

methods of collecting and recording data from their devices, 
creating operational challenges for organizations and analysts 
aiming to derive insights from one or more instruments. A 
variety of file and data formats may be used to store the data 
after collection; variables measuring the same physical property 
may not be named consistently across instruments; metadata 
describing how data are reported may be present only in separate 
documents that are not readily available for data users; and data 
gaps, spikes, or other quality issues indicating instrument failure 
or improper calibration may go unnoticed for long periods of 

time. When working with unstructured or unstandardized 
datasets, analysts and data users must navigate all these factors 
and invest significant time and energy wrangling data into a 
format suitable for use in their analysis or application. 
Inconsistencies in the input data can easily lead to many one-off 
cases in cleaning code, making the codebase difficult to 
maintain or reuse for other applications or teams in the same 
organization and causing significant overhead and duplication 
of effort. This is inefficient and costly. 

Many commercial solutions exist for developing data 
pipelines to read-in raw data and convert it to a standard format 
usable by scientists, analysts, and other data users. Talend, 
Domo, and Tableau, for example, are commercial data 
integration solution providers that offer end-to-end data 
ingestion pipelines to accelerate data analytics and generate 
business insights from big data [1,2,3]. These companies clearly 
provide great value to their corporate customers, but their 
pricing models are prohibitively expensive for use in research 
projects or by smaller start-ups. Additionally, their closed-
source nature makes it difficult for developers and analysts to 
share pipeline components across projects and can also present 
challenges if customizations to the base functionality of the 
platform are needed.  

In addition to commercial data processing and analytics 
frameworks, the ARM Data Integrator (ADI) data 
standardization platform has been developed for the 
Atmospheric Radiation Measurement (ARM) program [4,5]. 
This platform has been used for nearly 20 years to standardize, 
curate, and annotate hundreds of atmospheric datastreams 
continuously collected around the globe. While the ADI 
framework has flushed out many of the complex issues 
associated with collecting and standardizing time-series 
instrument data in a production environment, the framework 
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itself is complex to set up and customize, and is tied specifically 
to ARM conventions. A more lightweight, flexible, domain-
agnostic framework is needed to support smaller programs and 
communities such as marine energy. 

The Time Series Data Pipelines (Tsdat) Python framework 
was developed to accelerate advancements in the marine energy 
domain as part of an open-source ecosystem of tools [6]. 
Specifically, it was developed to provide an easy-to-use 
framework for running data ingestion pipelines either locally or 
in a large-scale production environment such as on the Amazon 
cloud. More specifically, it was intended to support data 
submitted to the Marine Hydrokinetic Data Repository 
(MHKDR) to enable large-scale analysis via a structured data 
lake as shown in Fig. 1 [7,8]. 

The rest of this paper provides detailed information about the 
design of Tsdat and the data standards within which the 
framework operates. In addition, it demonstrates Tsdat’s 
application to an example problem related to oceanographic 
buoy data and provides a roadmap for future development. 

II. TSDAT FRAMEWORK 
The goal of Tsdat is to provide an easy-to-use framework for 

creating data processing pipelines in either small-scale local or 
large-scale production environments. The intent was to develop 
a framework flexible enough to support a wide variety of data 
formats and use cases, simple enough that most users could 
stand up a basic data ingestion pipeline with little to no effort, 
and intuitive enough that semi-experienced Python developers 
could quickly find the information they need to create more 
advanced pipelines. 

As illustrated in Fig. 2, Tsdat works by taking input data that 
can be of any format, applying a data processing pipeline that is 
declaratively specified using a set of configuration files and/or 
custom code modules, and then storing the output in a 
standardized format as specified by another configuration file. 

 
Fig. 1. Tsdat vision 

 
Fig. 2. Tsdat data pipeline overview 

 
Fig. 3. Tsdat pipeline categories 

 3: ingestion pipelines and 
value-added product (VAP) pipelines. Ingestion pipelines use 
raw instrument data as input, apply quality checks and data 
cleaning algorithms, and convert the raw data into standard 
format. VAP pipelines combine multiple lower-level ingested 
datastreams and apply algorithms to translate the instrumental 
measurements into the geophysical quantities needed for 
scientific analysis. The initial version of Tsdat is focused on 
ingestion pipeline templates, but additional VAP pipeline 
templates will be provided within the next year. 

This section explains the Tsdat architecture and usability 
features in more detail and demonstrates how Tsdat can be set 
up to feed data lakes residing in the cloud or on premises. More 
documentation, examples, and tutorials are available on our 
GitHub repository and our website [6,9]. 

A. Tsdat Architecture 
Tsdat was developed following best practice data processing 

guidelines acquired by the climate community and more 
specifically the ARM program over the past 20 years. ARM data 
processing conventions were used as a baseline because they 
support time-series data, any dimensionality of data, produce 
high quality data which include detailed metadata and data 
quality information, and are general enough to apply to any 
domain. As Tsdat is intended for use by researchers as well as 
software developers, it was developed in Python and is based 
upon the popular Xarray library [10].
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Fig. 4. Tsdat ingestion pipeline 

. The 
pipeline’s configuration files and code hooks are used to tailor 
the specific data and metadata that will be contained in the final, 
standardized dataset. Tsdat pipelines provide multiple layers of 
configuration to provide a low initial barrier of entry for basic 
ingests yet allow full customization of the pipeline for unique 
circumstances. Fig. 4 illustrates the different phases of the 
pipeline along with the multiple layers of configuration that 
Tsdat provides. 

As shown in Fig. 4, the base Tsdat ingestion pipeline consists 
of an initial phase where raw files are read into an Xarray data 
structure. Then the Xarray variables and data are converted into 
standard names and units and global metadata are applied based 
upon the information specified in the pipeline config file. Next, 
the pipeline is run through a quality management step where any 
number of checks and cleaning algorithms are applied as 
specified by the pipeline configuration file. As part of the quality 
management phase, dataset provenance metadata including 
information about when the data were processed and the 
corrections applied to data variables, even at specific indices, are 
automatically recorded in the output dataset. Finally, the 
standardized, quality-controlled dataset is saved to the desired 
storage destination as also specified by the pipeline 
configuration. Fig. 4 also illustrates that code hooks are provided 
after each phase in the pipeline so that users can customize the 
exact data that are produced, such as deriving a new variable 
from other variables in the file. This baseline ingestion pipeline 
with code hooks should cover almost all processing scenarios, 
but users are also free to extend the base class to add additional 
phases if needed for unique circumstances. 

Within the pipeline configuration files and code hooks, users 
can use pluggable helper classes (indicated by the dark gray 
boxes) to perform cross-pipeline functionality such as reading 
specific input file formats, performing quality assurance/quality 
control (QA/QC) checks, and storing output data. These helper 
classes can be contributed by the Tsdat library itself or by 
supplemental libraries that can be added for specific 

communities or use cases. This was done so that users can 
leverage Tsdat contributions across domains.  

B. Storage 
Tsdat is designed to be able to store processed data to any 

file format and location so that the pipelines can be tailored to 
work with any data repository and/or data lake infrastructure of 
choice. Tsdat currently supports netCDF and csv file formats, 
and support for the scalable data lake zarr and parquet file 
formats are being developed. Additionally, we plan to add 
support for databases to be used as input or output to Tsdat 
pipelines to accommodate a growing number of projects 
planning to use Tsdat as a streaming pipeline for standardizing 
record-based data. Users can easily extend Tsdat’s default 
storage and I/O capabilities by defining their own Python 
classes. This plug-and-play modularity makes Tsdat data-
format- and platform- agnostic. 

C. Pipeline Templates and Triggers 
To reduce the learning curve and accelerate pipeline setup, 

Tsdat provides repository templates that can be cloned by users 
to start with a working pipeline out of the box. Users can then 
customize the template as needed to suit their data processing 
requirements. We intend to provide multiple templates for the 
most common pipeline and storage configurations. Currently, 
we include two Ingestion Pipeline templates, one for running 
pipelines with a manual or cron-job based trigger on the local 
filesystem, and one for running pipelines with an S3 trigger on 
the Amazon Web Services (AWS). The AWS template includes 
a deployment script that sets up all cloud resources including the 
input and output S3 buckets and the serverless pipeline 
application. Longer term, we will work with the marine energy 
community to add the following usability enhancements: 1) a 
configurable command-line script that works with the templates 
to allow users to mix and match elements as needed, 2) 
templates for VAP pipelines, 3) more trigger options to support 
streaming data via message queues, and 4) templates for custom 
data models, as explained below in the Data Standards section.  
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III. DATA STANDARDS 
Data standards ensure that all data produced by Tsdat 

pipelines are in a consistent format and can interoperate 
seamlessly. For Tsdat it was important to identify a core set of 
baseline standards that would work with any domain, but then 
allow each community to customize the core with specific data 
models applicable to their programs, data types, and research. 
This section describes the baseline data standards adopted by 
Tsdat, how they can be extended by each community via data 
models, and the strategy Tsdat has employed to engage the 
community in data standards development and curation. 

A. Baseline Standards 
We believe that Tsdat’s baseline data standards should 

extend, not conflict, with well-established data standards and 
conventions for time-series data so it can leverage existing 
libraries and tools. With this focus on interoperability in mind, 
we chose to base our data standards on the climate and forecast 
(CF) conventions widely used by atmospheric science 
communities [12]. CF conventions are designed in conjunction 
with the netCDF data format widely used in atmospheric and 
meteorological science communities and there exists a large and 
thriving ecosystem of tools developed in compliance with these 
standards [13]. Additionally, the CF conventions have several 
guiding principles that we  like and have adopted in our project: 
1) data should be self-describing, 2) metadata should be user-
friendly and machine-readable, and 3) data standards should be 
as simple as possible and not try to regulate non-existent use-
cases [14]. In addition to CF conventions, we also opted to 
include portions of the data standards used by the Atmospheric 
Radiation Measurement (ARM) program relating to data quality 
checks and controls and file-based data organization [15]. By 
building on CF conventions and ARM data standards, we are 
inherently including support for an entire suite of open-source 
time-series data tools and software widely used by these 
communities, including Python libraries such as Xarray, MetPy, 
Cartopy, ACT-ATMOS, Py-ART, MHKiT-Python, and more 
[10,16,17,18,19,20]. 

More information on Tsdat’s baseline data standards can be 
found at [21], which provides guidance on several topics 
regarding data provenance metadata, standard names for 
variables, organization and stewardship of file-based data, and 
variables and metadata regarding quality checks and controls. 

B. Data Models 
In addition to general baseline data standards that apply to 

any data, specific metadata, data quality, or analysis 
requirements may apply, depending upon the type of dataset 
being produced. These additional requirements are referred to as 
data models, because they are specific to a particular type of data 
(e.g., wave energy converter field tests). As shown in Fig. 5, data 
models extend the baseline data standards with additional 
metadata, variables, computations, and data quality checks. 
Each domain is responsible for defining any applicable data 
models. For marine energy, Tsdat will work with the MHKDR 
repository team and key project stakeholders to identify and 
develop a core set of data models and their corresponding 
pipeline templates. In developing the templates, we anticipate 
making heavy use of the I/O and data processing modules from 
the Marine Hydrokinetic Toolkit (MHKiT) [20]. 

C. Community Engagement 
We believe that community engagement is a critical part of 

the development process for standards and tools that will be 
broadly used. By seeking community input we can expand our 
perspective and develop solutions that are more widely 
applicable and more likely to be adopted by the community. For 
this reason, we have uploaded our baseline data standards to a 
public GitHub repository where users can contribute to the 
standards document by raising concerns, requesting changes, or 
engaging in discussion with other community members [21]. 
Domain-specific data model specifications may also be 
contributed to this repository, provided as separate documents. 
We will work with the MHKDR team to identify and engage key 
project stakeholders who can help to review and curate marine 
energy data model submissions. 

IV. EXAMPLE APPLICATION DEVELOPED USING TSDAT 
The Atmosphere to Electrons program is a multiyear 

research and development initiative funded by the U.S. 
Department of Energy tasked with improving wind energy 
performance and reducing the cost of wind energy production 
[22]. In 2020, two buoys hosting a suite of surface and ocean 
meteorology instruments were deployed off the coast of Morro 
Bay, California, and Humboldt, California, to evaluate the sites 
for compatibility with commercial offshore wind development 
[23]. 

Instruments on these buoys each produce a single daily CSV 
file, shown in Table 1, each of which consists of a series of 
timestamped measurements. Table 2 shows a sample of acoustic 
doppler current profiler (ADCP) data as recorded in the 
buoy.z06.00.20201201.000000.currents.csv file at Morro Bay. 
Note that many columns are needed to report current velocity 
measurements taken in each of the 50 bins. 

The Atmosphere to Electrons program used Tsdat to develop 
data ingestion pipelines to standardize and consolidate these 
data into a format more suitable for higher-level analysis. 
Specifically, Tsdat ingestion pipelines were created to 
consolidate and standardize data for the raw instrument files 
shown in Table 1. Configuration files were developed in 
collaboration with an instrument specialist to embed human-
readable metadata with the output dataset and to define data 
limits and quality checks to be performed by Tsdat as part of the 
data standardization processing. Aside from plotting code and 
48 lines of Python written to consolidate the ADCP data into two 
two-dimensional variables, no additional user-written Python 
code was needed to read-in the data, standardize it, embed user-
friendly metadata, provide quality check reports on the data, and 
store the data and plots in an AWS S3 bucket. Fig. 6 and Fig. 7 
show a snippet of the data output by this pipeline and a sample 
plot of the ocean currents data respectively. 
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Fig. 5. Tsdat baseline standards and data models 

TABLE I.  FILES PRODUCED BY THE BUOY DEPLOYED AT MORRO BAY 
ON DECEMBER 1, 2020. 

Filename 
buoy.z06.00.20201201.000000.conductivity.csv 
buoy.z06.00.20201201.000000.currents.csv 
buoy.z06.00.20201201.000000.gill.csv 
buoy.z06.00.20201201.000000.gps.csv 
buoy.z06.00.20201201.000000.pressure.csv 
buoy.z06.00.20201201.000000.pyranometer.csv 
buoy.z06.00.20201201.000000.rh.csv 
buoy.z06.00.20201201.000000.surfacetemp.csv 
buoy.z06.00.20201201.000000.temperature.csv 
buoy.z06.00.20201201.000000.wind.csv 

 

TABLE II.  SAMPLE OF RAW OCEAN CURRENTS DATA AT MORRO BAY ON DECEMBER 1, 2020. 

DataTimeStamp NumberOfBins BinSpacing Vel1 
(mm/s) 

Dir1 
(deg) 

Vel2 
(mm/s) 

Dir2 
(deg) 

 
… 

Vel50 
(mm/s) 

Dir50 
(deg) 

2020-12-01 00:00:00 50 4 240 260.8 230 261.3 … 46340 225 
2020-12-01 00:10:00 50 4 230 272 230 258.7 … 46340 225 
2020-12-01 00:20:00 50 4 200 259.3 210 255.9 … 46340 225 

… … … … … … … … … … 
2020-12-01 23:50:00 50 4 360 234.6 320 233.7 … 46340 225 

 
Fig. 6. Snippet of data output by a Tsdat pipeline 

 
Fig. 7. Plot of ocean current velocities produced by a Tsdat pipeline 

V. CONCLUSION 
Open-source tools and data standards will serve the marine 

energy community by providing shared solutions to common 
data needs, greatly reducing duplication of effort across 
domains, and reducing the time to commercialization. We 
developed Tsdat to reduce the operational barriers preventing 
organizations from maintaining high-quality standardized 
datasets that can be easily used in downstream analyses and 
reports. Tsdat can be used to read and standardize data from data 
acquisition systems deployed in marine energy environments, 
instruments deployed in wind energy, and sensors from the 
buildings domain. By using Tsdat to read, curate and standardize 
data, the time to process and analyze data will be reduced 
dramatically, thereby increasing success rates for projects. By 
reusing code, higher-quality data products will be created during 
field testing, which will provide timely feedback to project 
members to improve collection or configuration of instruments 
and detect issues with instruments.  
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Our next step is to host the ingested standardized data in data 
lakes to allow organizations to collaborate, filter, and query the 
data easily; generate insights on historical or streaming data; and 
apply machine learning algorithms to predict quality to achieve 
the optimal result.  

As Tsdat gains traction, we continue to seek opportunities 
for community engagement—whether that be by users asking 
questions and providing feedback, or, ideally, by users 
contributing new features to Tsdat so we can support a broader 
range of applications. We invite readers interested in using Tsdat 
for their own projects to visit our GitHub at 
https://github.com/tsdat. 
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