
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Conference Paper
NREL/CP-5700-80561
January 20222

Tsdat: An Open-Source Data
Standardization Framework for Marine
Energy and Beyond

Preprint
Carina Lansing,1 Maxwell Levin,1 Chitra Sivaraman,1
Rebecca Fao,2 and Frederick Driscoll2

1 Pacific Northwest National Laboratory
2 National Renewable Energy Laboratory

Presented at Oceans Conference
San Diego, California
September 20‒23, 2021

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

Conference Paper
NREL/CP-5700-80561
January 2022

Tsdat: An Open-Source Data
Standardization Framework for Marine
Energy and Beyond

Preprint
Carina Lansing,1 Maxwell Levin,1 Chitra Sivaraman,1
Rebecca Fao,2 and Frederick Driscoll2

1 Pacific Northwest National Laboratory
2 National Renewable Energy Laboratory

Suggested Citation
Lansing, Carina, Maxwell Levin, Chitra Sivaraman, Rebecca Fao, and Frederick Driscoll.
2022. Tsdat: An Open-Source Data Standardization Framework for Marine Energy and
Beyond: Preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-5700-
80561. https://www.nrel.gov/docs/fy22osti/80561.pdf.

https://www.nrel.gov/docs/fy22osti/80561.pdf

NOTICE

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding
provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Water Power
Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S.
Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges
that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this work, or allow others to do so, for U.S. Government purposes.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

1
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Tsdat: An Open-Source Data Standardization
Framework for Marine Energy and Beyond

Carina Lansing
Advanced Computing,

Mathematics, and Data Division
Pacific Northwest National

Laboratory
Richland, U.S.A.

https://orcid.org/0000-0002-
2812-246X

Maxwell Levin
Advanced Computing,

Mathematics, and Data Division
Pacific Northwest National

Laboratory
Richland, U.S.A.

https://orcid.org/0000-0002-
2536-8093

Chitra Sivaraman
Advanced Computing,

Mathematics, and Data Division
Pacific Northwest National

Laboratory
Richland, U.S.A.

https://orcid.org/0000-0001-
9013-427X

Rebecca Fao
Water Power, Energy Conversion

& Storage Systems
National Renewable Energy

Laboratory
Golden, U.S.A.

https://orcid.org/0000-0002-
1779-2302

Frederick Driscoll

Water Power, Energy Conversion
& Storage Systems

National Renewable Energy
Laboratory

Golden, U.S.A.
https://orcid.org/0000-0002-

3490-656X

Abstract— Many organizations are tasked with the collection

and processing of large quantities of data from various
measurement devices. Data reported from these sources are often
not interoperable with datasets and software used by analysts and
other organizations in the same domain, introducing barriers for
collaboration on large-scale projects. This poses a particular
problem for cross-device comparisons and machine learning
applications, which rely on large quantities of data from multiple
sources. To address these challenges, the open-source Time-Series
Data Pipelines (Tsdat) Python framework was developed by
Pacific Northwest National Laboratory, with strategic guidance
and direction provided by the National Renewable Energy
Laboratory and Sandia National Laboratories to facilitate
collaboration and accelerate advancements in the marine energy
domain through the development of an open-source ecosystem of
tools. This paper will describe the Tsdat framework and the data
standards within which it operates. A beta version of Tsdat has
been released and is being used by several projects in marine
energy, wind energy, and building energy systems.

Keywords— Python, open-source, data standards, data lake, big
data, interoperability

I. INTRODUCTION
Instrument manufacturers often use unique or proprietary

methods of collecting and recording data from their devices,
creating operational challenges for organizations and analysts
aiming to derive insights from one or more instruments. A
variety of file and data formats may be used to store the data
after collection; variables measuring the same physical property
may not be named consistently across instruments; metadata
describing how data are reported may be present only in separate
documents that are not readily available for data users; and data
gaps, spikes, or other quality issues indicating instrument failure
or improper calibration may go unnoticed for long periods of

time. When working with unstructured or unstandardized
datasets, analysts and data users must navigate all these factors
and invest significant time and energy wrangling data into a
format suitable for use in their analysis or application.
Inconsistencies in the input data can easily lead to many one-off
cases in cleaning code, making the codebase difficult to
maintain or reuse for other applications or teams in the same
organization and causing significant overhead and duplication
of effort. This is inefficient and costly.

Many commercial solutions exist for developing data
pipelines to read-in raw data and convert it to a standard format
usable by scientists, analysts, and other data users. Talend,
Domo, and Tableau, for example, are commercial data
integration solution providers that offer end-to-end data
ingestion pipelines to accelerate data analytics and generate
business insights from big data [1,2,3]. These companies clearly
provide great value to their corporate customers, but their
pricing models are prohibitively expensive for use in research
projects or by smaller start-ups. Additionally, their closed-
source nature makes it difficult for developers and analysts to
share pipeline components across projects and can also present
challenges if customizations to the base functionality of the
platform are needed.

In addition to commercial data processing and analytics
frameworks, the ARM Data Integrator (ADI) data
standardization platform has been developed for the
Atmospheric Radiation Measurement (ARM) program [4,5].
This platform has been used for nearly 20 years to standardize,
curate, and annotate hundreds of atmospheric datastreams
continuously collected around the globe. While the ADI
framework has flushed out many of the complex issues
associated with collecting and standardizing time-series
instrument data in a production environment, the framework

2
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

itself is complex to set up and customize, and is tied specifically
to ARM conventions. A more lightweight, flexible, domain-
agnostic framework is needed to support smaller programs and
communities such as marine energy.

The Time Series Data Pipelines (Tsdat) Python framework
was developed to accelerate advancements in the marine energy
domain as part of an open-source ecosystem of tools [6].
Specifically, it was developed to provide an easy-to-use
framework for running data ingestion pipelines either locally or
in a large-scale production environment such as on the Amazon
cloud. More specifically, it was intended to support data
submitted to the Marine Hydrokinetic Data Repository
(MHKDR) to enable large-scale analysis via a structured data
lake as shown in Fig. 1 [7,8].

The rest of this paper provides detailed information about the
design of Tsdat and the data standards within which the
framework operates. In addition, it demonstrates Tsdat’s
application to an example problem related to oceanographic
buoy data and provides a roadmap for future development.

II. TSDAT FRAMEWORK
The goal of Tsdat is to provide an easy-to-use framework for

creating data processing pipelines in either small-scale local or
large-scale production environments. The intent was to develop
a framework flexible enough to support a wide variety of data
formats and use cases, simple enough that most users could
stand up a basic data ingestion pipeline with little to no effort,
and intuitive enough that semi-experienced Python developers
could quickly find the information they need to create more
advanced pipelines.

As illustrated in Fig. 2, Tsdat works by taking input data that
can be of any format, applying a data processing pipeline that is
declaratively specified using a set of configuration files and/or
custom code modules, and then storing the output in a
standardized format as specified by another configuration file.

Fig. 1. Tsdat vision

Fig. 2. Tsdat data pipeline overview

Fig. 3. Tsdat pipeline categories

 3: ingestion pipelines and
value-added product (VAP) pipelines. Ingestion pipelines use
raw instrument data as input, apply quality checks and data
cleaning algorithms, and convert the raw data into standard
format. VAP pipelines combine multiple lower-level ingested
datastreams and apply algorithms to translate the instrumental
measurements into the geophysical quantities needed for
scientific analysis. The initial version of Tsdat is focused on
ingestion pipeline templates, but additional VAP pipeline
templates will be provided within the next year.

This section explains the Tsdat architecture and usability
features in more detail and demonstrates how Tsdat can be set
up to feed data lakes residing in the cloud or on premises. More
documentation, examples, and tutorials are available on our
GitHub repository and our website [6,9].

A. Tsdat Architecture
Tsdat was developed following best practice data processing

guidelines acquired by the climate community and more
specifically the ARM program over the past 20 years. ARM data
processing conventions were used as a baseline because they
support time-series data, any dimensionality of data, produce
high quality data which include detailed metadata and data
quality information, and are general enough to apply to any
domain. As Tsdat is intended for use by researchers as well as
software developers, it was developed in Python and is based
upon the popular Xarray library [10].

3
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Fig. 4. Tsdat ingestion pipeline

. The
pipeline’s configuration files and code hooks are used to tailor
the specific data and metadata that will be contained in the final,
standardized dataset. Tsdat pipelines provide multiple layers of
configuration to provide a low initial barrier of entry for basic
ingests yet allow full customization of the pipeline for unique
circumstances. Fig. 4 illustrates the different phases of the
pipeline along with the multiple layers of configuration that
Tsdat provides.

As shown in Fig. 4, the base Tsdat ingestion pipeline consists
of an initial phase where raw files are read into an Xarray data
structure. Then the Xarray variables and data are converted into
standard names and units and global metadata are applied based
upon the information specified in the pipeline config file. Next,
the pipeline is run through a quality management step where any
number of checks and cleaning algorithms are applied as
specified by the pipeline configuration file. As part of the quality
management phase, dataset provenance metadata including
information about when the data were processed and the
corrections applied to data variables, even at specific indices, are
automatically recorded in the output dataset. Finally, the
standardized, quality-controlled dataset is saved to the desired
storage destination as also specified by the pipeline
configuration. Fig. 4 also illustrates that code hooks are provided
after each phase in the pipeline so that users can customize the
exact data that are produced, such as deriving a new variable
from other variables in the file. This baseline ingestion pipeline
with code hooks should cover almost all processing scenarios,
but users are also free to extend the base class to add additional
phases if needed for unique circumstances.

Within the pipeline configuration files and code hooks, users
can use pluggable helper classes (indicated by the dark gray
boxes) to perform cross-pipeline functionality such as reading
specific input file formats, performing quality assurance/quality
control (QA/QC) checks, and storing output data. These helper
classes can be contributed by the Tsdat library itself or by
supplemental libraries that can be added for specific

communities or use cases. This was done so that users can
leverage Tsdat contributions across domains.

B. Storage
Tsdat is designed to be able to store processed data to any

file format and location so that the pipelines can be tailored to
work with any data repository and/or data lake infrastructure of
choice. Tsdat currently supports netCDF and csv file formats,
and support for the scalable data lake zarr and parquet file
formats are being developed. Additionally, we plan to add
support for databases to be used as input or output to Tsdat
pipelines to accommodate a growing number of projects
planning to use Tsdat as a streaming pipeline for standardizing
record-based data. Users can easily extend Tsdat’s default
storage and I/O capabilities by defining their own Python
classes. This plug-and-play modularity makes Tsdat data-
format- and platform- agnostic.

C. Pipeline Templates and Triggers
To reduce the learning curve and accelerate pipeline setup,

Tsdat provides repository templates that can be cloned by users
to start with a working pipeline out of the box. Users can then
customize the template as needed to suit their data processing
requirements. We intend to provide multiple templates for the
most common pipeline and storage configurations. Currently,
we include two Ingestion Pipeline templates, one for running
pipelines with a manual or cron-job based trigger on the local
filesystem, and one for running pipelines with an S3 trigger on
the Amazon Web Services (AWS). The AWS template includes
a deployment script that sets up all cloud resources including the
input and output S3 buckets and the serverless pipeline
application. Longer term, we will work with the marine energy
community to add the following usability enhancements: 1) a
configurable command-line script that works with the templates
to allow users to mix and match elements as needed, 2)
templates for VAP pipelines, 3) more trigger options to support
streaming data via message queues, and 4) templates for custom
data models, as explained below in the Data Standards section.

4
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

III. DATA STANDARDS
Data standards ensure that all data produced by Tsdat

pipelines are in a consistent format and can interoperate
seamlessly. For Tsdat it was important to identify a core set of
baseline standards that would work with any domain, but then
allow each community to customize the core with specific data
models applicable to their programs, data types, and research.
This section describes the baseline data standards adopted by
Tsdat, how they can be extended by each community via data
models, and the strategy Tsdat has employed to engage the
community in data standards development and curation.

A. Baseline Standards
We believe that Tsdat’s baseline data standards should

extend, not conflict, with well-established data standards and
conventions for time-series data so it can leverage existing
libraries and tools. With this focus on interoperability in mind,
we chose to base our data standards on the climate and forecast
(CF) conventions widely used by atmospheric science
communities [12]. CF conventions are designed in conjunction
with the netCDF data format widely used in atmospheric and
meteorological science communities and there exists a large and
thriving ecosystem of tools developed in compliance with these
standards [13]. Additionally, the CF conventions have several
guiding principles that we like and have adopted in our project:
1) data should be self-describing, 2) metadata should be user-
friendly and machine-readable, and 3) data standards should be
as simple as possible and not try to regulate non-existent use-
cases [14]. In addition to CF conventions, we also opted to
include portions of the data standards used by the Atmospheric
Radiation Measurement (ARM) program relating to data quality
checks and controls and file-based data organization [15]. By
building on CF conventions and ARM data standards, we are
inherently including support for an entire suite of open-source
time-series data tools and software widely used by these
communities, including Python libraries such as Xarray, MetPy,
Cartopy, ACT-ATMOS, Py-ART, MHKiT-Python, and more
[10,16,17,18,19,20].

More information on Tsdat’s baseline data standards can be
found at [21], which provides guidance on several topics
regarding data provenance metadata, standard names for
variables, organization and stewardship of file-based data, and
variables and metadata regarding quality checks and controls.

B. Data Models
In addition to general baseline data standards that apply to

any data, specific metadata, data quality, or analysis
requirements may apply, depending upon the type of dataset
being produced. These additional requirements are referred to as
data models, because they are specific to a particular type of data
(e.g., wave energy converter field tests). As shown in Fig. 5, data
models extend the baseline data standards with additional
metadata, variables, computations, and data quality checks.
Each domain is responsible for defining any applicable data
models. For marine energy, Tsdat will work with the MHKDR
repository team and key project stakeholders to identify and
develop a core set of data models and their corresponding
pipeline templates. In developing the templates, we anticipate
making heavy use of the I/O and data processing modules from
the Marine Hydrokinetic Toolkit (MHKiT) [20].

C. Community Engagement
We believe that community engagement is a critical part of

the development process for standards and tools that will be
broadly used. By seeking community input we can expand our
perspective and develop solutions that are more widely
applicable and more likely to be adopted by the community. For
this reason, we have uploaded our baseline data standards to a
public GitHub repository where users can contribute to the
standards document by raising concerns, requesting changes, or
engaging in discussion with other community members [21].
Domain-specific data model specifications may also be
contributed to this repository, provided as separate documents.
We will work with the MHKDR team to identify and engage key
project stakeholders who can help to review and curate marine
energy data model submissions.

IV. EXAMPLE APPLICATION DEVELOPED USING TSDAT
The Atmosphere to Electrons program is a multiyear

research and development initiative funded by the U.S.
Department of Energy tasked with improving wind energy
performance and reducing the cost of wind energy production
[22]. In 2020, two buoys hosting a suite of surface and ocean
meteorology instruments were deployed off the coast of Morro
Bay, California, and Humboldt, California, to evaluate the sites
for compatibility with commercial offshore wind development
[23].

Instruments on these buoys each produce a single daily CSV
file, shown in Table 1, each of which consists of a series of
timestamped measurements. Table 2 shows a sample of acoustic
doppler current profiler (ADCP) data as recorded in the
buoy.z06.00.20201201.000000.currents.csv file at Morro Bay.
Note that many columns are needed to report current velocity
measurements taken in each of the 50 bins.

The Atmosphere to Electrons program used Tsdat to develop
data ingestion pipelines to standardize and consolidate these
data into a format more suitable for higher-level analysis.
Specifically, Tsdat ingestion pipelines were created to
consolidate and standardize data for the raw instrument files
shown in Table 1. Configuration files were developed in
collaboration with an instrument specialist to embed human-
readable metadata with the output dataset and to define data
limits and quality checks to be performed by Tsdat as part of the
data standardization processing. Aside from plotting code and
48 lines of Python written to consolidate the ADCP data into two
two-dimensional variables, no additional user-written Python
code was needed to read-in the data, standardize it, embed user-
friendly metadata, provide quality check reports on the data, and
store the data and plots in an AWS S3 bucket. Fig. 6 and Fig. 7
show a snippet of the data output by this pipeline and a sample
plot of the ocean currents data respectively.

5
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Fig. 5. Tsdat baseline standards and data models

TABLE I. FILES PRODUCED BY THE BUOY DEPLOYED AT MORRO BAY
ON DECEMBER 1, 2020.

Filename
buoy.z06.00.20201201.000000.conductivity.csv
buoy.z06.00.20201201.000000.currents.csv
buoy.z06.00.20201201.000000.gill.csv
buoy.z06.00.20201201.000000.gps.csv
buoy.z06.00.20201201.000000.pressure.csv
buoy.z06.00.20201201.000000.pyranometer.csv
buoy.z06.00.20201201.000000.rh.csv
buoy.z06.00.20201201.000000.surfacetemp.csv
buoy.z06.00.20201201.000000.temperature.csv
buoy.z06.00.20201201.000000.wind.csv

TABLE II. SAMPLE OF RAW OCEAN CURRENTS DATA AT MORRO BAY ON DECEMBER 1, 2020.

DataTimeStamp NumberOfBins BinSpacing Vel1
(mm/s)

Dir1
(deg)

Vel2
(mm/s)

Dir2
(deg)

…

Vel50
(mm/s)

Dir50
(deg)

2020-12-01 00:00:00 50 4 240 260.8 230 261.3 … 46340 225
2020-12-01 00:10:00 50 4 230 272 230 258.7 … 46340 225
2020-12-01 00:20:00 50 4 200 259.3 210 255.9 … 46340 225

… … … … … … … … … …
2020-12-01 23:50:00 50 4 360 234.6 320 233.7 … 46340 225

Fig. 6. Snippet of data output by a Tsdat pipeline

Fig. 7. Plot of ocean current velocities produced by a Tsdat pipeline

V. CONCLUSION
Open-source tools and data standards will serve the marine

energy community by providing shared solutions to common
data needs, greatly reducing duplication of effort across
domains, and reducing the time to commercialization. We
developed Tsdat to reduce the operational barriers preventing
organizations from maintaining high-quality standardized
datasets that can be easily used in downstream analyses and
reports. Tsdat can be used to read and standardize data from data
acquisition systems deployed in marine energy environments,
instruments deployed in wind energy, and sensors from the
buildings domain. By using Tsdat to read, curate and standardize
data, the time to process and analyze data will be reduced
dramatically, thereby increasing success rates for projects. By
reusing code, higher-quality data products will be created during
field testing, which will provide timely feedback to project
members to improve collection or configuration of instruments
and detect issues with instruments.

6
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

Our next step is to host the ingested standardized data in data
lakes to allow organizations to collaborate, filter, and query the
data easily; generate insights on historical or streaming data; and
apply machine learning algorithms to predict quality to achieve
the optimal result.

As Tsdat gains traction, we continue to seek opportunities
for community engagement—whether that be by users asking
questions and providing feedback, or, ideally, by users
contributing new features to Tsdat so we can support a broader
range of applications. We invite readers interested in using Tsdat
for their own projects to visit our GitHub at
https://github.com/tsdat.

ACKNOWLEDGMENT
This material is based upon work conducted in support of the

Water Power Technologies Office within the U.S. Department
of Energy's Office of Energy Efficiency and Renewable Energy.
The use case to test the ingestion pipeline was conducted in
support of the Wind Energy Technologies Office within the U.S.
Department of Energy's Office of Energy Efficiency and
Renewable Energy.

We would like to thank Raghavendra Krishnamurthy,
Matthew MacDuff, and the rest of the Atmosphere to Electrons
program sponsored by the U.S. Department of Energy for their
adoption of Tsdat early in our development process and for their
continued support and use of Tsdat. We also extend a special
thank you to Calum Kenny, whose questions, feedback, and
strategic vision have been highly beneficial to this project.
Finally, we would like to thank Eddie Schuman, Yangchao
(Nino) Lin, Jonathan Whiting, Emma Cotter, and Daniel
Zalkind for providing feedback and interesting use cases for
Tsdat. Their input has helped shape various features and
processes within Tsdat.

REFERENCES
[1] “Clean, complete, uncompromised data for everyone.” Talend.

https://www.talend.com/ (retrieved July 26, 2021).
[2] “Modern BI for AllTM.” Domo. https://www.domo.com/ (retrieved July

26, 2021).
[3] “Become a data-driven organization with Tableau.” Tableau.

https://www.tableau.com/ (retrieved July 26, 2021).
[4] K. Gaustad, T. Shippert, B. Ermold, S. Beus, J. Daily, A. Borsholm, K.

Fox, "A scientific data processing framework for time series NetCDF
data," Environmental Modelling & Software, 60, pp. 241-249, Oct. 2014,
https://doi.org/10.1016/j.envsoft.2014.06.005

[5] “ARM.” U.S. Department of Energy, Office of Science.
https://www.arm.gov/ (retrieved July 26, 2021)

[6] “Tsdat Time Series Data Pipelines.” GitHub. https://github.com/tsdat
(retrieved July 26, 2021).

[7] “Marine and Hydrokinetic Data Repository, U.S. Department of Energy.”
Open EI, Marine and Hydrokinetic Data Repository.
https://mhkdr.openei.org/ (retrieved July 26, 2021).

[8] H. Fang. (June 2015) “Managing data lakes in big data era: What’s a data
lake and why has it became popular in data management ecosystem.”
Presented at 5th Annual IEEE International Conference on Cyber
Technology in Automation, Control and Intelligent Systems, Shenyang,
China. [Online] 10.1109/CYBER.2015.7288049

[9] “Tsdat.” Tsdat. https://tsdat.readthedocs.io/en/latest/ (retrieved July 26,
2021).

[10] “xarray: N-D labeled arrays and datasets in Python.” xarray.
http://xarray.pydata.org/en/stable/ (retrieved July 26, 2021).

[11] “YAML: YAML Ain't Markup Language.” %YAML 1.2.
https://yaml.org/ (retrieved July 26, 2021).

[12] “CF Conventions and Metadata.” CF MetaData.
https://cfconventions.org/ (retrieved July 26, 2021).

[13] “Network Common Data Form (NetCDF).” UCAR Community
Programs, UNIDATA, Data Services and Tools for Geoscience.
https://www.unidata.ucar.edu/software/netcdf/ (retrieved July 26, 2021).

[14] J. Gregory, “The CF metadata standard,” University of Reading, UK and
Met Office Hadley Centre, Exeter, UK, November 6, 2003. [Online].
Available:http://cfconventions.org/Data/cf-documents/overview/
article.pdf

[15] ARM Standards Committee, “ARM Data File Standards Version: 1.3,”
U.S. Department of Energy, Office of Science, DOE/SC-ARM-15-004,
September 2020. [Online]. Available: https://www.arm.gov/publications/
programdocs/doe-sc-arm-15-004.pdf

[16] May, R. M., Arms, S. C., Marsh, P., Bruning, E., Leeman, J. R., Goebbert,
K., Thielen, J. E., and Bruick, Z., 2021: MetPy: A Python Package for
Meteorological Data. Unidata, https://github.com/Unidata/MetPy,
doi:10.5065/D6WW7G29.

[17] Met Office, “Cartopy: a cartographic python library with a matplotlib
interface,”

[18] “ARM-DOE/ACT.” Version 1.0.4. GitHub. https://github.com/ARM-
DOE/ACT (retrieved July 26, 2021).

[19] J. Helmus, S. Collis, “The Python ARM radar toolkit (Py-ART), a library
for working with weather radar data in the Python programming
language,” Journal of Open Research Software, 4, 1, p.e25,
http://doi.org/10.5334/jors.119

[20] K. Klise et. al., “MHKiT (marine hydrokinetic toolkit) – Python,”
Computer Software, January 2020,
https://doi.org/10.5281/zenodo.3924683.

[21] “ME Data-Pipeline-Software/data_standards.” GitHub.
https://github.com/ME-Data-Pipeline-Software/data_standards (retrieved
July 26, 2021).

[22] Atmosphere to Electrons, https://a2e.energy.gov/ (accessed July 26,
2021).

[23] “BUOY, Offshore Wind Energy - Buoy Lidar Project.” Atmosphere to
Electrons, U.S. Department of Energy.
https://a2e.energy.gov/projects/buoy (retrieved July 26, 2021).

https://www.arm.gov/
https://github.com/ME-Data-Pipeline

