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Predictive battery lifetime models

Three major applications for battery lifetime models:

Current state-of-health prediction

Remaining useful life prediction

Lifetime simulation models



Developing algebraic lifetime 
simulation models
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The challenge for battery lifetime 
prediction

Lab testing:
Pre-defined loads

Controlled environments
10-100 cells, 1-2 years

Real-world applications:
Complex, varying loads; varying environments 

?? cells, 10-20+ years

HDV

LDV, MDV 

Energy storage
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The challenge for battery lifetime 
prediction

Your data from the lab: Real-world applications:

Cell T (°C) SOC DOD C-rate

1 30 75 0 0

2 30 50 100 1

3 45 75 50 0.5

T 
(°

C)

Voltage
Current

SOC(t)
Avg. SOC
DOD
C-rate
EFC

SOH(t,EFC, …)

SOH(t,EFC, …)
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Reduced order model identification
Problem statement

Re
l. 

ca
pa

ci
ty

Time

T2<T1

T3>T1

0

1

Lab testing data, with constant 
experimental conditions

What we are trying to find:
Degradation rate for any given battery 
use case / environmental conditions.

Challenges:
If q(t) is linear, then dq/dt is constant, 
and predicting changes to SOH is easy.
But, both q(t)and dq/dt (t) can be non-
linear, and dq/dt is also dependent on 
test conditions.

Common approach:
Define equations by making physically 
informed assumptions or using simple 
empirically defined models.
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Reduced order model identification
Problem statement

Re
l. 

ca
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ci
ty

Time

T2<T1

T3>T1

0

1

Lab testing data, with constant 
experimental conditions

𝑞𝑞1 = 1 − 𝜷𝜷𝟏𝟏𝑡𝑡𝛼𝛼, T=T1

𝑞𝑞2 = 1 − 𝜷𝜷𝟐𝟐𝑡𝑡𝛼𝛼, T=T2

𝑞𝑞3 = 1 − 𝜷𝜷𝟑𝟑𝑡𝑡𝛼𝛼, T=T3

𝛽𝛽 = 𝛾𝛾0exp 𝛾𝛾1
1
𝑇𝑇

Local models
(Time-varying)

Parameter sub-models
(Time-invariant)

𝑞𝑞 = 1 − 𝛾𝛾0exp 𝛾𝛾1
1
𝑇𝑇
𝑡𝑡𝛼𝛼

Global model
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Reduced order model identification
Problem statement
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Reduced order model identification
Problem statement

Simultaneously 
optimize global and 

local parameters using 
bilevel regression

Use ML to help find 
accurate sub-models

For all steps:
Cross-validate, quantify 

uncertainty, and simulate 
extrapolations



Data set
Calendar aging

J. of Energy Storage 17 (2018) 153-169. DOI:10.1016/j.est.2018.01.019
J. of Power Sources 451 (2020) 227666. DOI:10.1016/j.jpowsour.2019.227666

https://doi.org/10.1016/j.est.2018.01.019
https://doi.org/10.1016/j.jpowsour.2019.227666
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Calendar aging



Manual model identification

Calendar capacity fade
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Optimizing a square-root of time model

Local optimization
q = 1 – q1∙t0.5

Fitted q1 values
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Optimizing a sub-model and global model

q1 sub-model
q1 = q1,ref∙exp(-(Ea/R)∙(1/T – 1/Tref))∙…

…exp((αF/R)∙(Ua/T – Ua,ref/Tref))

Global

MAE:
0.56%

MAECV:
0.84%



Improving the time-dependent 
model equation

Calendar capacity fade
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Finding a more optimal model structure

Bilevel optimization
q = 1 – 2∙q1∙(1/2 – 1/(1 + exp((q2∙t)q3)))

Global: q2, Local: q1, q3



Identification of sub-models 
through symbolic regression
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ML approach – Symbolic regression

Linear
𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯

𝑌𝑌 = 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽0 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽1𝑋𝑋1 � 𝑋𝑋2
𝛽𝛽2 � ⋯

A: T
B: SOC

A: {T, T2}
B: {SOC, SOC2}

A: {T, T2}
B: {SOC, SOC2}
C:  {SOC/T2,…}

2: Apply operators to 
generate new features

3: Search for the subset of 
features that model the data

1: Input features

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1SOC + 𝛽𝛽2SOC/T2 + ⋯

Feature matrix is very 
wide, with many highly 

correlated features

This search has combinatorial 
complexity: 

(1000 choose 5) = 8∙1012

Multiplicative
𝑒𝑒xp log 𝑌𝑌 = 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2 log 𝑋𝑋2 + ⋯
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Feature selection algorithm: SISSO

https://doi.org/10.1103/PhysRevMaterials.2.083802
SISSO: Ouyang et. al.:

Fortran, Matlab, Python [1, sklearn: 2]

Target: Y
r = Y - Ypred

Target: r

Target: r

Target: r

r = Y - Ypred

r = Y - Ypred

r = Y - Ypred

https://doi.org/10.1103/PhysRevMaterials.2.083802
https://github.com/rouyang2017/SISSO
https://github.com/NREL/SISSORegressor_MATLAB
https://github.com/NREL/SISSORegressor_MATLAB
https://github.com/Matgenix/pysisso
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q1 sub-model identification
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q3 sub-model identification
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Global model

ML-assisted
MAE:
0.39%

MAECV:
0.51%

Standard approach
MAE:
0.56%

MAECV:
0.84%
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Data set
Cycle aging

J. of Energy Storage 17 (2018) 153-169. DOI:10.1016/j.est.2018.01.019
J. of Power Sources 451 (2020) 227666. DOI:10.1016/j.jpowsour.2019.227666

https://doi.org/10.1016/j.est.2018.01.019
https://doi.org/10.1016/j.jpowsour.2019.227666
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Cycling aging

Break-in

Long-term



NREL    |    25

Cycling aging
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Prior work vs. ML-assisted

Prior work ML-assisted



Impact on simulation
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Calendar aging (20 years)

< 3 Years 5 Years

Standard approach ML-assisted
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Cycling aging (3 years)

Standard approach ML-assisted



Takeaways
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Takeaways

• Accurate models can help inform experimental design, make 
better control decisions, or predict technoeconomic impact

• Don’t trust any model unless…
– You understand how it relates to its training data (any 

systematic errors, impact of test design/setup, …)
– Model extrapolations and interpolations ‘make sense’

• ML can help find accurate models, but it doesn’t replace 
being careful
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Extra slides
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Current state-of-health prediction

Problem statement:
What is the current state-of-health of my battery?
Input data:
Basically any cell measurement: I-V-T-t data (Charge/discharge, 
voltage relaxation, random pulses), EIS, ultrasound, pressure, ….
Assumptions:
You don’t have the time/capability to simply measure the SOH 
metric you care about
Applications:
Real-world SOH detection
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Current state-of-health prediction

Examples:
Using partial charge curves:

Using EIS

Using dQdV
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Remaining useful life prediction
Problem statement:
How long will it be until my battery reaches end-of-life?

This is closely related to classifying good/bad cells.
Input data:
Basically any cell measurement: I-V-T-t data (Charge/discharge, voltage 
relaxation, random pulses), EIS, ultrasound, pressure, ….
Assumptions:
We continue to use the battery in the same manner as it has been 
historically used (or in the same way that the model was trained on).
Applications:
Optimization of battery use, classification of bad cells, anticipation of battery 
replacement
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Remaining useful life prediction

Examples:

First 5%-30% of lifetime 
required (mean 20%)

First 30% of lifetime 
required (regardless of 

actual cell lifetime)
First 5-30% of lifetime required 

(this is a classifier)
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Lifetime simulation models

Examples:
Algebraic

Single-particle
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