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Executive Summary 
A complete solar resource data set is essential for any stage of a solar energy project—from 
feasibility studies to daily operations. But measured or modeled solar resource data are prone to 
data gaps and data quality issues. To mitigate these issues, a data imputation process should be 
implemented to obtain a complete and reliable temporal and spatial data series. This study 
focused on imputing temporal scales by applying random and artificial data gaps and then 
implementing eight imputation methods, including the Kalman filtering and smoothing and stine 
interpolations. These methods were implemented on 1-minute to half hourly irradiance data for 1 
year using a few locations from the National Solar Radiation Database (NSRDB) and ground 
measurement data set. The results demonstrated that some of the simpler methods, such as the 
stine and linear interpolation methods, were the relatively best models based on the statistical 
metrics for imputing NSRDB and ground measurement data, respectively.  
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1 Introduction 
Photovoltaic systems are becoming more prevalent and cost-competitive. As these technologies 
continue to evolve, accurate and complete solar resource data are critical for predicting the solar 
energy output of these conversion systems and for reducing the expense associated with 
mitigating performance risks (Sengupta et al. 2017). Thus, both measured and modeled solar 
resource data are essential for various phases of solar energy projects—from making policy-level 
decisions, to checking the viability of these projects, to planning and implementing the final 
system design. Consequently, solar resource forecast data are essential for utility operators to 
cost-effectively plan for and manage solar variability and ramping events.  

But solar resource data are prone to data gaps (missing data) because of instrument malfunctions, 
discarded data resulting from data quality problems and/or human error (Sengupta et al. 2017), or 
satellite issues from modeled satellite-derived solar resource data. These data gaps must be filled 
using gap-filling modeling techniques to obtain a complete time series data set. Many studies 
have recommended various gap-filling methods. For example, Roesch et al. (2011a, 2011b) 
analyzed various empirical gap-filling methods and recommended a mathematical approach for 
the Baseline Surface Radiation Network (BSRN) data. Similarly, Schwandt et al. (2014) 
implemented empirical gap-filling methods for measured data sets and, in one recommended 
approach, they used a satellite-derived data set to gap-fill missing data from measured data sets 
for overlapping time spans. These approaches are solely for temporal gap-filling methodologies, 
and they do not address spatial gap-filling approaches; however, there are many sophisticated 
spatiotemporal gap-filling methodologies for meteorological data, such as that recommended by 
Wang et al. (2012), which implemented a three-dimensional method based on discrete cosine 
transforms that use the spatiotemporal information.  

In this study, we applied different statistical temporal gap-filling methods to both measured and 
modeled data sets. The ground measurement data were obtained from seven National Oceanic 
and Atmospheric Administration Surface Radiation Budget Network (SURFRAD) stations and 
modeled data from the National Solar Radiation Database (NSRDB V3). The NSRDB is a 
widely used public data set that provides modeled data of the three-component solar irradiance 
data set—i.e., global horizontal irradiance (GHI), direct normal irradiance, and diffuse horizontal 
irradiance—as well as related meteorological parameters (Sengupta et al. 2018). The method 
developed in this study considers the solar irradiance data and other meteorological inputs to 
gap-fill natural and artificial missing data using various statistical techniques. 
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2 Methods 
In this work, several imputation methods were implemented to gap-fill the incomplete irradiance 
time series data from NSRDB and ground measurement data. These data were selected from 
among a few locations, such as the National Renewable Energy Laboratory (NREL) location and 
the National Oceanic and Atmospheric Administration’s SURFRAD sites (Figure 1). The 
NSRDB data set contains measurements in 30-minute intervals, from which the clearness index, 
Kt, series was derived by a ratio method between GHI and extraterrestrial radiation. Kt is used as 
a normalization of the GHI by removing the effect of the low sun angle and reducing the scale of 
values to between 0 and 1. The same techniques were used to gap-fill synthetically removed 
missing values in the ground-based measurements, which occur in 1-minute intervals. Various 
imputation methods were tested, and a few were selected based on statistical metrics. The 
imputation methods’ results were determined by the following criteria: mean absolute percentage 
error (MAE) and MAE (%), root mean square error (RMSE) and RMSE (%), and mean bias 
error (MBE) and MBE (%). (See Section 2.2 for further details on these criteria.) 

 
Figure 1. NOAA SURFRAD network and locations 

The following eight imputation methods were selected:  

1. Kalman filtering and smoothing for structural time series: Kalman filtering, also 
known as linear quadratic estimation, produces estimates of unknown variables from a 
series of measurements observed over time by estimating a joint probability distribution 
over the variables for each time frame. Structural time-series models are set up in terms 
of their components, which have a direct interpretation (Grewal 2011; Harvey 1990; 
Welch and Bishop 1995). 

2. Kalman filtering and smoothing for the state-space representation of an ARIMA 
model: Kalman filtering is applied to an autoregressive integrated moving average 
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(ARIMA) model, which uses several lagged observations of time series to forecast 
observations (Grewal 2011; Harvey 1990; Welch and Bishop 1995) . 

3. Linear interpolation: Linear interpolation is a curve-fitting method that uses linear 
polynomials to construct data points within the discrete range of known data points. 

4. Spline interpolation: Spline interpolation is a curve-fitting method that uses a piecewise 
polynomial interpolant to construct data points within a discrete range of known data 
points (Lyche and Schumaker 1973). 

5. Stine interpolation: Stine interpolation is a curve-fitting method that uses piecewise 
rational interpolation to replace missing values (Stineman 1980). 

6. Simple moving average: Simple moving average calculates an average of the last n 
observations (Johnston et al. 1999; Ekhosuehi and Dickson 2016).  

7. Linear weighted moving average: Linear weighted moving average calculates an 
average of the last n observations through applying weighting factors that decrease in a 
linear fashion (Ekhosuehi and Dickson 2016). 

8. Exponential weighted moving average: Exponential weighted moving average 
calculates of the last n observations through applying weighting factors that decrease 
exponentially, never reaching zero (Johnston et al. 1999; Ekhosuehi and Dickson 2016). 

Additional methods examined include imputation by last observation carried forward, next 
observation carried backward, mean value, or random sample. These methods were excluded 
during the preliminary gap-filling trials because of applicability issues for time series and high 
deviations of the statistical metrics results. There also exist methods for seasonal data, which 
include seasonally decomposed and seasonally split missing value imputation. The Kt series did 
not exhibit seasonality; therefore, these imputation methods were excluded after preliminary gap-
filling trials. 

The eight imputation methods were calculated using the built-in functions in the imputeTS 
package in R (Moritz and Bartz-Beielstein 2017). These functions included na_interpolation, 
na_kalman, and na_ma, where parameters values indicated the type of imputation model to run 
on the time series (Moritz and Bartz-Beielstein 2017).  

2.1 Data Selection Criterion  
For the Bondville, Illinois (BON) 2017 NSRDB data, data-filtering techniques were applied 
before performing imputations on the missing values in the Kt series via the following criterion: 

1. Remove the first four rows of null (NA) values from the BON 2017 NSRDB data set, if 
applicable.  

2. Set the observations of Kt to null where the fill flag variable does not equal zero. The fill 
flag indicates missing data for values other than zero. Imputation was implemented at 
these indices. Note: The NSRDB fill flags signify the following—0: no fill; 1: missing 
cloud type; 2: full time series missing cloud type; 3: missing cloud property; 4: full time 
series missing cloud property; 5: GHI exceeds clear sky; 6: missing irradiance. 

For the ground-based measurements from the NREL data, the following criterion was used to 
filter the data: 
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• Remove the Kt observations where the solar zenith angle is greater than 89.5° to exclude 
nighttime observations. 

2.2 Statistical Reporting Metrics 
The following statistical measures were used to analyze the performance of the various 
imputation methods for both the NSRDB and ground measurement data. 

MAE and percentage of reading (%) were calculated using the following equations: 
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where ytrue represents the true Kt values from the data set, and yi represents the imputed Kt values 
from each method. 

Similarly, the RMSE and MBE were computed using the following equations: 
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where ytrue represents the true Kt values from the data set, and yi represents the imputed Kt values 
from each method. These metrics allowed us to measure the imputation method performance for 
the NSDRB and ground measurement data.  
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3 Results 
3.1 Satellite Data 
The Kt time series for the 2017 BON NSRDB data was synthetically modified to show the 
missing data. To calculate the statistical reporting metrics to measure the method’s performance, 
synthetic missing values were created and added to the series. The original Kt series contains 
1,920 missing observations. An additional 1,768 values were removed from the series by random 
sampling of the distribution of the original missing values, shown in Figure 2. This new Kt 
series, which was imputed on, contains a total of 3,688 missing values. The synthetically 
removed values allow for the calculation of the statistical reporting metrics mentioned 
previously.  

 
Figure 2. Distribution of differing strings of consecutive NA values for the BON NSRDB data 

Previous publications have assessed gap-filling procedures for solar radiation data—including 
“Analysis and Evaluation of Gap Filling Procedures for Solar Radiation Data” (Pereira et al. 
2018), “Gap-Filling Techniques for Solar Radiation Data and Their Role in Solar Resource 
Assessment” (Kumar and Ravindra 2020), and “Global Solar Radiation Modelling Using 
Polynomial Fitting” (Karim and Singh 2014)—and polynomial curve fitting (Kumar and 
Ravindra 2020; Karim and Singh 2014). Pereira et al. (2018) proposed the application of both an 
algebraic equation of the irradiation composition and linear interpolation for filling solarimetric 
data in southeast Brazil. Both methods were successful in filling the missing data with minor 
processing time. Kumar and Ravindra (2020) used transmittance radio, meteorological values, 
curve-fitting, and comparable satellite data to gap-fill missing solar radiation data at Jodhpur, 
Rajasthan, a station northwest of India. Polynomial curve fitting and the Centre for Wind Energy 
Technology - Deutsche Gesellschaft für Internationale Zusammenarbeit (CWET-GIZ) 
approaches gave the best results for the region while predicting the missing values for various 
cloud conditions. The CWET-GIZ approach is described in Kumar et al. (2014). Karim and 
Singh (2014) assessed the performance of the first- to fourth-order-degree polynomial curve 
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fitting to model global solar radiation by using a solarimeter at Universiti Teknologi 
PETRONAS, located in Perak, Malaysia. A fitting model with second-degree order gave the best 
RMSE and R-squared values (Karim and Singh 2014). 

The following figures (Figure 3–Figure 10) show the eight imputation methods’ imputed values 
(red) for the first 100 observations in the gap-filled Kt series as well as the known values (blue) 
and the real values (green). The real values are the original Kt observations that were replaced 
with null values during the synthetic removal of additional points in the series. The dashed line 
connects the previous known value to the next known value. There is no dashed line between the 
imputed or the real values. 

 
Figure 3. Comparison of imputed Kt values using Kalman filtering on a structural time-series 

model 

Kalman filtering on a structural time series performed well; however, there are discrepancies 
between the imputed value at approximately the 24th observation point and the real Kt value. 



7 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 
Figure 4. Comparison of imputed Kt values using Kalman filtering on an ARIMA model 

The performance of the Kalman filtering on an ARIMA model is similar to the Kalman filtering 
of a structural time series. The same discrepancy between the imputed and real values occurs 
near the 24th observation point.  

 
Figure 5. Comparison of imputed Kt values using linear interpolation 

Linear interpolation performed well to impute missing values; however, note that the imputed 
values do not fit the curve in the series well near the 37th to 41st observation points compared to 
other imputation methods. This is because of the linear nature of the interpolation. 
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Figure 6. Comparison of imputed Kt values using spline interpolation 

Spline interpolation performed poorly. The imputed values do not closely match the curves of 
the series, extending well above the maximum of the series near the 37th to 41st observation 
points. 

 
Figure 7. Comparison of imputed Kt values using stine interpolation 

Stine interpolation performed well and captured the curvature in the series that the linear 
interpolation fails to model. Like the previous imputation models, there is a discrepancy between 
the imputed and real values near the 24th observation point. 
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Figure 8. Comparison of imputed Kt values using simple moving average 

A simple moving average performed poorly. The imputed values do not closely match the real Kt 

values. Additionally, the imputed values do not follow the curvature of the series well, as shown 
in the 73rd to 75th observation points. 

 
Figure 9. Comparison of imputed Kt values using linear weighted moving average 

As shown in Figure 9, a linear weighted average performed poorly. The imputed values do not 
closely match the real Kt values. The imputed values near the 73rd to 75th observation points are 
not well predicted. 
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Figure 10. Comparison of imputed Kt values using exponential weighted moving average 

An exponential weighted moving average also performs poorly. The imputed values near the 
73rd to 75th observation points, as shown in Figure 10 fail to capture the nature of the series. It is 
concluded that moving averages do not work well as imputation methods for the Kt series. 

The imputation methods for the NSRDB Kt time series were repeated using partitioning tactics 
on varying string sizes of consecutive NA values. The varying sizes of the consecutive NA 
values were fit into different bin sizes as follows:  

• Trial 1: 
o Bin 1: singular NAs and strings of two consecutive NAs 
o Bin 2: strings of three or more consecutive NAs. 

• Trial 2: 
o Bin 3: strings of one to three consecutive NAs 
o Bin 4: strings of four or more consecutive NAs. 

• Trial 3: 
o Bin 5: singular NAs 
o Bin 6: two or more consecutive NAs. 

The purpose of these partitioning tactics was to differentiate between methods that perform well 
with larger strings of consecutive NA values compared to methods that only perform well with 
singular NA values and/or small strings of consecutive NA values. The following tables (Table 
1–Table 6) provide the statistical reporting metrics for all three trials. 
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Table 1. RMSE for the Three Varying Bin Size Trials 

The bold font represents the best-performing method for each bin size. For all six bin sizes, stine 
interpolation outperformed the other imputation methods when measuring RMSE. 

Table 2. RMSE (%) for the Three Varying Bin Size Trials 

For the bin size of the singular and two-length consecutive NA values, the Kalman filtering for 
both the structural time series and the ARIMA model as well as the linear and stine 
interpolations performed the best; however, stine interpolation outperformed these and the 
remaining methods for the other bin sizes.  

RMSE 

Imputation Method Bin 1 Bin 2 Bin  3 Bin 4 Bin 5 Bin 6 

KalmanSmoother and StructTS model 0.0815 0.141 0.0854 0.156 0.0711 0.141 

KalmanRun and ARIMA model 0.0816 0.141 0.0856 0.157 0.0712 0.142 

Linear interpolation 0.0815 0.141 0.0854 0.156 0.0711 0.141 

Spline interpolation 0.147 0.345 0.156 0.394 0.0940 0.351 

Stine interpolation 0.0812 0.139 0.0839 0.1554 0.0709 0.0140 

Simple moving average 0.107 0.152 0.106 0.167 0.0873 0.153 

Linear weighted moving average 0.0969 0.147 0.0973 0.163 0.0796 0.148 

Exponential weighted moving average 0.0900 0.145 0.0917 0.162 0.0752 0.146 

RMSPE (%) 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

KalmanSmoother and StructTS model 20.4 34.9 21.5 38.5 17.3 35.0 

KalmanRun and ARIMA model 20.4 35.0 21.5 38.7 17.3 53.1 

Linear interpolation 20.4 34.9 21.5 38.5 17.3 35.0 

Spline interpolation 36.9 85.7 39.2 97.2 22.9 87.1 

Stine interpolation 20.4 34.6 21.2 38.3 17.2 34.7 

Simple moving average 26.7 37.8 26.5 41.3 21.3 38.0 

Linear weighted moving average 24.3 36.6 24.5 40.2 19.4 36.8 

Exponential weighted moving average 22.6 36.1 23.0 39.8 18.3 36.3 
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Table 3. MAE for the Three Varying Bin Size Trials 

MAE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

KalmanSmoother and StructTS model 0.0390 0.0646 0.0416 0.0723 0.0320 0.0643 

KalmanRun and ARIMA model 0.0392 0.0648 0.0417 0.0726 0.0320 0.0645 

Linear interpolation 0.0390 0.0646 0.0416 0.0723 0.0320 0.0643 

Spline interpolation 0.0586 0.131 0.0644 0.155 0.0416 0.133 

Stine interpolation 0.0371 0.0600 0.0385 0.0678 0.0297 0.0597 

Simple moving average 0.0577 0.0768 0.0577 0.0844 0.0450 0.0771 

Linear weighted moving average 0.0515 0.0722 0.0521 0.0800 0.0397 0.0725 

Exponential weighted moving average 0.0457 0.0678 0.0466 0.0758 0.0353 0.0678 

For all six bin sizes, stine interpolation was the best-performing imputation method.  

Table 4. MAE (%) for the Three Varying Bin Size Trials 

MAE (%) 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

KalmanSmoother and StructTS model 15.3 25.5 16.6 28.0 12.1 25.3 

KalmanRun and ARIMA model 15.3 25.6 16.6 28.2 12.1 25.4 

Linear interpolation 15.3 25.5 16.6 28.0 12.1 25.3 

Spline interpolation 22.9 51.7 25.7 59.9 15.7 52.5 

Stine interpolation 14.5 23.7 15.4 26.3 11.2 23.5 

Simple moving average 22.5 30.3 23.1 32.7 17.0 30.3 

Linear weighted moving average 20.1 28.5 20.8 31.0 15.0 28.5 

Exponential weighted moving average 17.9 26.7 18.6 29.4 13.3 26.7 

Stine interpolation also performed the best when considering MAE in terms of percentage of 
reading. 
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Table 5. MBE for the Three Varying Bin Size Trials 

MBE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

KalmanSmoother and StructTS model -0.00379 0.00855 -0.00447 0.0142 -0.00208 0.00766 

KalmanRun and ARIMA model -0.00422 0.00870 0.00468 0.0143 -0.00247 0.00786 

Linear interpolation -0.00379 0.00855 -0.00447 0.0142 -0.00208 0.00766 

Spline interpolation -0.00487 0.0493 0.00022 0.0659 -0.0115 0.0509 

Stine interpolation -0.00176 0.00943 -0.00311 0.0153 -0.00102 0.00881 

Simple moving average 0.00253 0.00744 -0.00269 0.0146 -0.00068 0.00640 

Linear weighted moving average 0.00221 0.00776 -0.00250 0.0146 0.00023 0.00670 

Exponential weighted moving average 0.00179 0.00844 -0.00227 0.0151 0.00079 0.00737 

No imputation method performed the best for each bin size in terms of prediction bias. Stine 
interpolation had the smallest average bias for Bin 1 but did not hold the smallest bias for any 
other bin.  

Table 6. MBE (%) for the Three Varying Bin Size Trials 

MBE (%) 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

KalmanSmoother and StructTS model -1.48 3.37 -1.78 5.49 -0.784 3.01 

KalmanRun and ARIMA model -1.65 3.43 -1.87 5.56 -0.934 3.09 

Linear interpolation -1.48 3.37 -1.78 5.49 -0.784 3.01 

Spline interpolation -1.91 19.4 0.088 25.6 -4.36 20.0 

Stine interpolation -0.687 3.72 -1.24 5.91 -0.387 3.46 

Simple moving average 0.988 2.94 -1.07 5.64 -0.259 2.52 

Linear weighted moving average 0.863 3.06 -0.999 5.67 0.085 2.63 

Exponential weighted moving average 0.701 3.33 -0.907 5.86 0.300 2.90 

Looking at the calculations in terms of percentage of reading for MBE, linear interpolation has 
the smallest average bias for Bin 4; however, there is no clear best-performing method in terms 
of bias. 

From the graphs and tables, we conclude that for the BON NSRDB (2017) data, stine 
interpolation is the best-performing imputation method; however, the results of the stine 
interpolation do not significantly differ from those of linear interpolation. 

3.2 Ground-Based Measurements 
The clearness index (Kt) was calculated by using the extraterrestrial irradiance. The Kt time 
series for the NREL ground measurements is complete; therefore, all the missing values for the 
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series were synthetically removed. To create values to remove from the series, we used the same 
distribution of the original missing values (NA) in the NSRDB Kt series. This distribution is 
shown in Figure 2 and is listed as follows: 

• 1 NA in a row: 319 times 
• 2 NA in a row: 114 times 
• 3 NA in a row: 132 times 
• 4 NA in a row: 164 times 
• 5 NA in a row: 48 times 
• 6 NA in a row: 4 times 
• 9 NA in a row: 1 times. 

The NSRDB data are given in 30-minute intervals, whereas the ground based-measurements are 
given in 1-minute intervals. To account for this in the manual removal of the ground 
measurements, each NA row size ranged from 1 to 30 multiplied by its row size. For example, 
strings of one NA had potential values between 1 and 30. Strings of two consecutive NAs had 
potential values between 31 and 60, and so on. This factors in the 30-minute to 1-minute 
conversion. These ranged values based on the NSRDB NA distribution where then randomly 
removed from the ground-based measurements. 

Similar to the NSRDB data trials, partitioning tactics were applied to the calculation criteria by 
creating various bin sizes in the ground-based measurements as follows: 

• Bin 1: strings of 1–30 consecutive NAs  
• Bin 2: strings of 31–60 consecutive NAs 
• Bin 3: strings of 61–90 consecutive NAs 
• Bin 4: strings of 91–120 consecutive NAs 
• Bin 5: strings of 121–150 consecutive NAs 
• Bin 6: strings of 151+ consecutive NAs. 

The purpose of the partitioning tactics was to differentiate among methods that perform well 
with larger strings of consecutive NA values compared to methods that only perform well with 
singular NA values and/or small strings of consecutive NA values. In the case of the ground-
based measurements, we compared only the linear and stine interpolations because of their high 
performance shown in Section 3.1 compared to the other imputation methods. The results are 
summarized in Table 7–Table 11. 

Table 7. RMSE for the Six Varying Bin Sizes 

RMSE 

Imputation Method Bin 1 Bin 2 Bin  3 Bin4 Bin 5 Bin 6 

Linear interpolation 0.158 0.194 0.208 0.226 0.251 0.223 
Stine interpolation 0.164 0.205 0.216 0.258 0.263 0.240 

The bold font represents the best-performing method for each bin size. Linear interpolation 
outperformed stine interpolation in the case of the ground-based measurements analyzing RMSE. 
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Table 8. RMSE (%) for the Six Varying Bin Sizes 

For all of the bin sizes, linear interpolation had a better percentage of reading for RMSE than 
stine interpolation. This is opposite of the NSRDB data trials. 

Table 9. MAE for the Six Varying Bin Sizes 

MAE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

Linear interpolation 0.0915 0.130 0.144 0.168 0.188 0.159 
Stine interpolation 0.0194 0.100 0.145 0.173 0.192 0.163 

For bins 1 and 2, stine interpolation performed better than linear interpolation; however, for the 
remaining bins, linear interpolation had better MAE values. 

Table 10. MAE (%) for the Six Varying Bin Sizes 

MAE (%) 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

Linear interpolation 18.2 25.3 27.8 32.7 36.6 31.3 
Stine interpolation 18.2 26.1 28.1 33.6 37.4 31.7 

Linear interpolation was the better imputation method for the ground-based measurements when 
looking at the percentage of reading for MAE (%) for the other bin sizes; however, the methods 
return similar MAE% percentages for Bin 1. 

Table 11. MBE for the Six Varying Bin Sizes 

MBE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

Linear interpolation 0.00511 0.00617 0.000782 0.00936 0.00749 0.00642 
Stine interpolation 0.00299 0.000210 -0.00251 0.00286 0.0201 0.00735 

For bins 3, 5, and 6, linear interpolation had a lower average bias than stine interpolation; 
however, for bins 1, 2, and 4, stine interpolation had the lower average bias. This is consistent 
with the NSRDB results, where stine interpolation did not consistently have the lowest bias 
among the other imputation methods.  

RMSE (%) 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

Linear interpolation 27.7 33.3 35.9 39.1 43.4 38.6 
Stine interpolation 28.8 35.2 37.3 44.7 45.5 41.6 
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Table 12. MBE (%) for the Six Varying Bin Sizes 

MBE (%) 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

Linear interpolation 1.02 1.20 0.151 1.82 1.46 1.25 
Stine interpolation 0.594 0.0410 -0.484 0.556 3.91 1.43 

For the percentage of reading of MBE, we obtained the same results for each method and bin 
size as shown for MBE in Table 11. 

For the NSRDB data, stine interpolation performed the best, whereas for the ground-based 
measurements, linear interpolation performed the best. In the NSRDB case, the stine 
interpolation results did not significantly differ from those of linear interpolation. 
Computationally, linear interpolation is more appropriate because of its simplicity compared to 
stine interpolation; therefore, we can conclude that linear interpolation is the most appropriate 
choice of imputation method.  

Further, we performed both methods on the NSRDB and ground-based measurements for the 
other seven locations (see Appendix). Overall, the methods performed similarly. We did not see 
differing results in the other locations.  

These differences in method performance might lie in the ratio of the sum of clear Kt values 
divided by the sum of cloudy-sky Kt values. The ratio for the NSRDB data was 0.4592721, 
whereas the ratio for the ground measurements was 0.7159485. This means that the NSRDB data 
contained more cloudy points than the ground-measurement data, potentially affecting the choice 
of interpolation method. This ratio and its effect on the interpolation method can be examined in 
a future project. 
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Summary and Future work 
Missing data exist in measured or modeled irradiance data, which cause problems in various 
phases or solar energy system projects. This study investigated eight imputation methods. Based 
on the statistical metrics, the stine and linear interpolation imputation methodologies performed 
better for NSRDB and ground measurements, respectively. These results provide a baseline 
models toward realistic reconstruction of time series in the presence of significant amounts of 
missing data as well as data with inferior data quality. Future work will encompass machine 
learning imputation techniques with forecasting ability. Ensemble models of these machine 
learning algorithms for forecasting big data time series will be investigated.  
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Appendix 
A.1 BON: Ground-Based Measurement Results 

RMSE 
Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.108 0.149 0.170 0.191 0.198 0.176 
Stine interpolation 0.113 0.159 0.190 0.227 0.227 0.202 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 21.5 27.8 32.4 37.3 39.0 34.0 
Stine interpolation 22.5 29.6 36.1 44.2 44.6 39.0 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0679 0.0978 0.124 0.138 0.148 0.124 
Stine interpolation 0.0671 0.100 0.134 0.158 0.158 0.136 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 15.5 20.3 26.5 30.9 33.0 27.3 
Stine interpolation  15.4 20.9 28.7 35.5 35.3 29.9 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation -0.00152 -0.00670 0.0113 -0.0123 0.0266 0.00153 
Stine interpolation  0.00135 -0.00577 0.0110 -0.0232 0.0496 0.000905 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  -0.348 -1.39 2.42 -2.76 6.68 0.338 
Stine interpolation 0.309 -1.20 2.34  -5.20 11.1 0.199 

  



21 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

A.2 NREL: NSRDB Results  
RMSE 

imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.110 0.132 0.121 0.131 0.101 0.133 
Stine interpolation 0.111 0.133 0.123 0.130 0.101 0.134 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 28.6 31.3 29.6 31.5 25.3 31.4 
Stine interpolation 28.8 31.4 30.1 31.3 25.2 31.5 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0488 0.0713 0.0595 0.0697 0.0423 0.0724 
Stine interpolation 0.0459 0.0653 0.0568 0.0625 0.0392 0.0664 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 21.9 27.3 23.7 28.0 17.7 27.3 
Stine interpolation  20.6 25.0 22.6 25.1 16.4 25.0 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.00168 -0.00609 -0.000803 -0.00661 -0.00376 -0.00732 
Stine interpolation  0.00114 -0.00478 -0.00133 -0.00467 -0.00333 -0.00573 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  0.757 -2.33 -0.319 -2.65 -1.57 -2.76 
Stine interpolation 0.513 -1.83 -0.528 -1.87 -1.39 -2.16 
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A.3 FPK: NSRDB Results 
  RMSE 
Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0874 0.137 0.0954 0.140 0.0922 0.137 
Stine interpolation 0.0868 0.133 0.0956 0.135 0.0929 0.133 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 22.1 36.9 24.9 37.3 22.9 36.6 
Stine interpolation 21.9 35.7 24.9 36.0 23.1 35.5 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0388 0.0778 0.0428 0.0809 0.0409 0.0788 
Stine interpolation 0.0354 0.0677 0.0391 0.0701 0.0382 0.0684 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 16.2 36.4 19.0 37.3 16.4 36.2 
Stine interpolation  14.8 31.7 17.3 32.3 15.4 31.4 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.00182 0.0140 0.00419 0.0144 0.00322 0.0131 
Stine interpolation  0.00272 0.0135 0.00500 0.0138 0.00369 0.0124 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  0.759 6.56 1.86 6.64 1.30 6.02 
Stine interpolation 1.14 6.33 2.21 6.36 1.48 5.71 
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A.4 FPK: Ground-Based Measurement Results  
RMSE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.137 0.161 0.174 0.193 0.217 0.185 
Stine interpolation 0.144 0.170 0.208 0.221 0.244 0.210 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 25.2 30.7 31.7 35.4 39.9 34.2 
Stine interpolation 26.3 32.3 37.7 40.6 44.9 38.6 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0812 0.108 0.122 0.138 0.163 0.130 
Stine interpolation 0.0825 0.100 0.138 0.153 0.180 0.142 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 16.6 22.6 24.8 28.3 33.2 26.6 
Stine interpolation  16.8 23.1 28.1 31.4 36.7 29.1 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation -0.00991 0.0111 0.0159 -0.00214 -0.0231 -0.00322 
Stine interpolation  -0.00712 0.0210 0.0336 0.0155 -0.0160 0.00950 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  -2.02 2.33 3.24 -0.439 -4.70 -0.659 
Stine interpolation -1.45 4.41 6.83 3.17 -3.25 1.95 
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A.5 TBL: NSRDB Results 
RMSE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.102 0.123 0.105 0.128 0.0997 0.120 
Stine interpolation 0.0991 0.122 0.103 0.127 0.0992 0.119 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 24.5 30.3 26.4 30.7 25.4 29.7 
Stine interpolation 23.9 30.0 26.0 30.4 25.3 29.5 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0507 0.0646 0.0515 0.0701 0.0436 0.0624 
Stine interpolation 0.0462 0.0592 0.0470 0.0642 0.0404 0.0571 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 19.3 25.8 21.4 26.3 18.4 25.3 
Stine interpolation  17.6 23.6 19.5 24.1 17.1 23.1 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation -0.00386 -0.000425 -0.00462 0.00186 -0.00308 0.000142 
Stine interpolation  -0.00257 -0.000385 -0.00425 0.00225 -0.00219 0.000107 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  -1.47 -0.170 -1.92 0.698 -1.30 0.0578 
Stine interpolation -0.978 -0.154 -1.77 0.842 -0.923 0.0435 
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A.6 TBL: Ground-Based Measurement Results 
RMSE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.158 0.194 0.208 0.226 0.251 0.223 
Stine interpolation 0.164  0.205 0.216 0.258 0.263 0.240 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 27.7 33.3 35.9 39.1 43.4 38.6 
Stine interpolation 28.8 35.2 37.3 44.7 45.5 41.6 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0915 0.130 0.144 0.168 0.188 0.160 
Stine interpolation 0.0914 0.134 0.146 0.173 0.192 0.163 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 18.2 25.3 27.8 32.7 36.6 31.1 
Stine interpolation  18.2 26.1 28.1 33.6 37.4 31.7 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.00511 0.00617 0.000782 0.00936 0.00749 0.00642 
Stine interpolation  0.00299 0.000210 -0.00251 0.00286 0.0201 0.00735 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  1.02 1.20 0.151 1.82 1.46 1.25 
Stine interpolation 0.594 0.0410 -0.484 0.556 3.91 1.43 
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A.7 SXF: NSRDB Results  
RMSE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0833 0.124 0.0937 0.128 0.0789 0.124 
Stine interpolation 0.0824 0.122 0.0916 0.128 0.0775 0.122 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 20.5 30.2 23.4 31.0 19.8 30.3 
Stine interpolation 20.3 29.9 22.9 30.8 19.4 29.9 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0381 0.0613 0.0442 0.0637 0.0342 0.0613 
Stine interpolation 0.0356 0.0559 0.0405 0.0584 0.0317 0.0557 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 14.8 23.6 17.6 24.0 13.8 23.7 
Stine interpolation  13.8 21.5 16.1 22.0 12.8 21.6 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.00791 -0.00926 0.00194 -0.00986 0.00197 -0.00901 
Stine interpolation  0.00888 -0.00879 0.00257 -0.00926 0.00293 -0.00836 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  3.08 -3.57 0.774 -3.71 0.795 -3.49 
Stine interpolation 3.45 -3.38 1.03 -3.48 1.18 -3.23 
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A.8 SXF: Ground-Based Measurement Results 
RMSE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.115 0.165 0.162 0.186 0.212 0.178 
Stine interpolation 0.125 0.172 0.186 0.208 0.223 0.195 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 21.4 31.7 31.4 34.3 39.6 33.4 
Stine interpolation 23.3 32.9 36.1 38.2 41.7 36.6 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0688 0.110 0.115 0.135 0.159 0.125 
Stine interpolation 0.0717 0.100 0.123 0.140 0.159 0.129 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 14.4 24.0 25.5 27.7 33.7 26.6 
Stine interpolation  15.0 24.2 27.2 28.8 33.6 27.4 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation -0.000138 -0.00386 0.00239 0.00717 -0.0240 -0.00246 
Stine interpolation  0.00117 -0.00946 0.0116 0.0165 -0.0171 0.00363 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  -0.0289 -0.845 0.530 1.47 -5.08 -0.523 
Stine interpolation 0.245 -2.07 2.57  3.40 -3.61 0.770 
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A.9 PSU: NSRDB Results  
RMSE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0897 0.109 0.0931 0.114 0.0843 0.110 
Stine interpolation 0.0899 0.110 0.0928 0.115 0.0842 0.111 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 23.8 29.0 24.9 29.9 21.3 29.1 
Stine interpolation 23.8 29.1 24.9 30.2 21.3 29.3 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0443 0.0593 0.0490 0.0615 0.0417 0.0598 
Stine interpolation 0.0422 0.0554 0.0454 0.0580 0.0398 0.0558 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 18.8 25.5 21.2 26.2 16.6 25.6 
Stine interpolation  17.9 23.8 19.6 24.7 15.9 23.9 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation -0.00413 -0.00426 -0.00442 -0.00407 0.00249 -0.00478 
Stine interpolation  -0.00276 -0.00408 -0.00332 -0.00414 0.00332 -0.00451 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  -1.76 -1.83 -1.91 -1.73 0.991 -2.05 
Stine interpolation -1.17 -1.75 -1.44 -1.73 1.32 -1.93 
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A.10 PSU: Ground-Based Measurement Results  
RMSE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.167 0.223 0.187 0.234 0.253 0.220 
Stine interpolation 0.211 0.242 0.236 0.324 0.354 0.293 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 34.4 43.7 38.5 49.5 52.2 45.5 
Stine interpolation 43.3 47.5 48.5 68.6 73.0 60.6 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.104 0.152 0.132 0.171 0.192 0.157 
Stine interpolation 0.122 0.200 0.155 0.218 0.259 0.195 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 25.2 34.4 31.6 43.2 48.1 38.4 
Stine interpolation  29.8 36.1 37.2 55.1 64.9 47.7 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation -0.0142 -0.0153 0.00625 0.0256 -0.0153 0.00590 
Stine interpolation  -0.0143 -0.00721 0.0119 0.0332 -0.0399 0.00685 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  -3.45 -3.45 1.50 6.45 -3.84 1.45 
Stine interpolation -3.49 -1.63 2.86  8.38 -10.0 1.68 
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A.11 DRA: NSRDB Results  
RMSE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0861 0.0948 0.0863 0.102 0.0794 0.0944 
Stine interpolation 0.0867 0.0925 0.0860 0.0992 0.0787 0.0920 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 18.2 20.8 18.4 22.7 16.8 20.8 
Stine interpolation 18.3 20.3 18.3 22.1 16.6 20.3 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0350 0.0431 0.0373 0.0450 0.0320 0.0428 
Stine interpolation 0.0321 0.0372 0.0331 0.0395 0.0298 0.0369 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 11.0 14.7 11.9 16.1 10.2 14.8 
Stine interpolation  10.1 12.7 10.6 14.2 9.49 12.8 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.000267 -0.000946 0.000282 -0.00214 0.00292 0.000069 
Stine interpolation  0.00180 0.000763 0.00199 -0.000702 0.00404 0.00172 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  0.0844 -0.324 0.0902 -0.768 0.931 0.0238 
Stine interpolation 0.569 0.261 0.635 -0.252 1.29 0.596 
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A.12 DRA: Ground-Based Measurement Results  
RMSE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.120 0.140 0.179 0.196 0.228 0.172 
Stine interpolation 0.121 0.140 0.182 0.206 0.229 0.176 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 18.2 20.9 27.1 29.7 33.3 25.9 
Stine interpolation 18.3 20.9 27.7 31.2 33.5 26.6 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0630 0.0834 0.115 0.139 0.167 0.109 
Stine interpolation 0.0607 0.100 0.120 0.138 0.157 0.106 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 10.1 13.2 18.5 22.5 25.6 17.5 
Stine interpolation  9.74 12.5 17.7 22.3 24.1 16.9 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.00719 -0.0156 0.00826 -0.00691 -0.0110 -0.00127 
Stine interpolation  0.00963 -0.0110 0.0190 0.00540 0.00819 0.00779 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  1.15 -2.47 1.33 -1.12 -1.69 -0.204 
Stine interpolation 1.55 -1.74 3.06  0.875 1.26 1.25 
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A.13 GCM: NSRDB Results 
RMSE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0921 0.119 0.0958 0.130 0.0857 0.120 
Stine interpolation 0.0908 0.118 0.0948 0.128 0.0846 0.118 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 22.9 30.9 23.8 34.6 22.5 31.1 
Stine interpolation 22.6 30.5 23.6 34.1 22.2 30.6 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0471 0.0604 0.0478 0.0678 0.0420 0.0607 
Stine interpolation 0.0435 0.0555 0.0440 0.0623 0.0394 0.0557 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 18.1 25.1 18.4 29.6 17.5 25.4 
Stine interpolation  16.7 23.1 17.0 27.1 16.4 23.3 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.00423 -0.00818 -0.000823 -0.00874 -0.000339 -0.00901 
Stine interpolation  0.00432 -0.00731 -0.000147 -0.00823 -0.000315 -0.00824 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  1.63 -3.40 -0.318 -3.81 -0.141 -3.77 
Stine interpolation 1.66 -3.04 -0.0567 -3.58 -0.131 -3.44 
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A.14 GCM: Ground-Based Measurement Results  
RMSE 

Imputation Method Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.128 0.150 0.157 0.180 0.219 0.168 
Stine interpolation 0.132 0.165 0.165 0.194 0.235 0.180 

RMSE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 23.5 28.2 29.5 32.4 40.3 31.0 
Stine interpolation 24.2 31.0 31.0 35.0 43.4 33.2 

MAE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 0.0749 0.0986 0.110 0.131 0.170 0.118 
Stine interpolation 0.0749 0.100 0.113 0.134 0.173 0.120 

MAE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation 15.3 21.1 23.2 26.5 34.9 24.3 
Stine interpolation  15.3 22.2 23.9 27.0 35.4 24.9 

MBE 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation -0.00745 -0.0154 -0.00395 -0.00638 -0.0213 -0.00864 
Stine interpolation  -0.00177 -0.00563 0.00378 0.00861 -0.00864 0.00209 

MBE (%) 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 
Linear interpolation  -1.52 -3.30 -0.835 -1.29 -4.36 -1.79 
Stine interpolation -0.363 -1.20 0.799  1.74 -1.77 0.433 
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