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a b s t r a c t

Capacity expansion models for the power sector are used to project future decisions over the coming
decades by simulating investment and operation decisions for the use of electricity. Due to model per-
formance constraints, these models typically do not explicitly simulate every hour within a year, but
instead simulate representative time segments (groups of hours). This paper evaluates different ap-
proaches for selecting time segments across three methods: sequential, categorical, and clustering,
across a wide range of time-segment quantities, for a total of 204 temporal profiles. To measure the
performance of each profile's ability to accurately represent data, the root-mean-square-error of each
profile's time segments are compared to the data's original hourly data. The temporal alignment across
regions is also measured (i.e., how often windy days align across regions). Different spatial resolutions
were applied for a subset of the temporal selection methods to investigate the impact spatial resolution
has on performance. This paper provides a framework for measuring the value of different temporal
selection methods and of adding more granular data to energy system models. Overall, multi-criteria
clustering yields the lowest root-mean-square-error across all datasets evaluated and provides a holis-
tic view of the intertwined relationships between renewable generation and electricity demand.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As the energy transition moves forward there is a need to un-
derstand how data variability impacts recommendations derived
from modeling. A key characteristic of modeling is that it relies on
simplifying assumptions to characterize real world behaviors. In
this way, models are simplified versions of reality that allow us to
observe, understand, and make conjectures about behavior.

Capacity expansion models (CEMs) apply optimization tech-
niques to project power sector investment decisions over a span of
decades [1]. These optimization models differ from other types of
energy sector models in how they simplify inputs. For example,
simulation models simulate prescribed future energy systems and
are generally capable of modeling all 8760 h within a year [2].
However, in the case of CEMs, which endogenously evaluate
cy), dnock@andrew.cmu.edu
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investment decisions across decades, representing every hour of
every year over a model's projection period is generally deemed
computationally unrealistic. To maintain computational tracta-
bility, CEMs leverage simplifications in terms of representative
hours within a year (temporal resolution) and representative re-
gions across a set of power producers (spatial resolution). The
characteristics of some of the more widely recognized national-
scale CEMs are featured in Ref. [3] and in Ref. [4].

CEMs have become more complex over time due to recent and
expected changes within the power sector [5,6]. For example, in the
United States, generation from variable renewable energy (VRE),
such as wind and solar, recently overtook natural gas as the fastest-
growing source of electricity generation [7]. One drawback of VRE
generation stems from the variability of VRE supply, whichmakes it
a challenge to model [8,9]. Yet incorporating these resource dy-
namics is important to improving cost estimations of system
expansion [10]. Looking forward this modeling complexity is
compounded by the push to decarbonize the power sector, increase
demand response capabilities [11], and increase VRE supply [12].

In addition to the uncertain nature of VRE, electricity demand
varies, influenced by changes in consumption habits like heating
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Abbreviations

Acronym Description
BA Balancing Authority
CEM Capacity expansion models
EPA Environmental Protection Agency
IPM Integrated Planning Model
LDC Load duration curves
NERC North American Electric Reliability Corporation
NREL National Renewable Energy Laboratory
PV Solar photovoltaic
ReEDs NERL's Regional Energy Deployment System
RMSE Root-mean-square-error

VRE Variable renewable energy

Nomenclature
a Actual value
g Resource group
h Time segments
n Number of observations
p Predicted value
r Regions
RMSE Root-mean-square-error
TTC Total transfer capability
WF Weighted frequency
y Region pairs
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and cooling, which adds stochasticity to the grid [13]. Increasing
VRE combined with demand uncertainty creates an inherent risk in
the mismatch of supply and demand for energy system planners
[14], particularly in deterministic models [15]. Models of the power
sector should aim to have sufficient temporal resolution to incor-
porate the stochasticity of load and VRE generation while also
retaining computational tractability and overall system accuracy.

This paper uses statistical methods to measure the performance
of common temporal selection approaches. The key contribution to
the literature is benchmarking the performance of temporal section
methods across resource and demand types, and identifying best
practices. Temporal selection methods dilute information neces-
sary for power-sector investment decisions. Thus, understanding
the difference between initial data and simplifying assumptions
applied can improve the validity of different energy analyses.
Specifically, this paper fills this gap in the literature by evaluating
the performance of 204 temporal resolution profiles on load, wind,
and solar datasets to identify the discrepancies between temporal
selection methods and highlight the benefits of higher temporal
resolutions. This is accomplished by quantifying the error between
reduced time-segment input (i.e., temporal resolution) and actual
variability between load, wind, and solar profiles.

1.1. Previous studies have evaluated different temporal resolutions
on outcomes of power-sector models

[16,17]. Others have presented methods for selecting time-
segments based on load or VRE availability [18,19]. Furthermore
[20,21], have presented methods on selecting time-segments based
on correlated load and VRE availability, but do not have compari-
sons between other temporal selection methods. Here we build on
the previous research to systematically compare across temporal
selection methods, considering both load and VRE availability, by
calculating the error of the various methods using yearlong hourly
data.

Furthering the complexity, spatial resolution can compound the
error produced from temporal resolution [22]. demonstrate that
aggregating regions in their CEM from the 134 balancing author-
ities to states and North American Electric Reliability Corporation
(NERC) regions can mute variability and impact model investment
decisions. In addition, the correlation of load and VRE availability
between regions may result in the misalignment of time segments
in some temporal selection methods. This work fills this void in the
literature by investigating three different spatial resolution as-
sumptions (e.g., electricity interconnections, NERC market regions,
and native model regions) and then evaluates the temporal selec-
tion methods performance at each.
2

The novelty of this work revolves around quantifying the impact
of different temporal modeling assumptions. When selecting how
much granularity to incorporate within the models there is an
inherent trade-off between solve time andmodel performance. Too
high of a temporal resolution contributes to lengthy solve times
which hamper the ability to practically perform analysis. On the
other hand, as this paper illustrates, reducing resolution is directly
related to decreases in data accuracy. Different temporal selection
methods can optimize the representation of the underlying data
while meeting the time segment criteria of a given model.

2. Methods

The research approach for measuring the performance of
different temporal selection methods involves a mix of energy
planning models and temporal selection methods. The data is
sourced from Environmental Protection Agency's (EPA) Power
Sector Modeling Platform version 6 (EPA Platform v6) using the
Integrated Planning Model (IPM) [23]. Multiple temporal selection
methods are applied to the model regions (i.e., EPA's current
approach [23], as well as sequential, categorical, and clustering
approaches, as defined in the sections below) across a range of
time-segment combinations. Across all approaches, temporal se-
lection methods effectiveness is measured by comparing the root-
mean square error (RMSE), where RMSE is defined by the differ-
ence between the actual (observed) hourly data and the derived
time segments.

In addition, alternative spatial aggregation methods are inves-
tigated. Within each dataset different levels of regional aggregation
are applied (see Fig. 4). Then the RMSE and the temporal-spatial
alignment results are calculated. Temporal-spatial alignment
measures the frequency at which the hours within a time-segment
align with neighboring regions.

2.1. Datasets and Model Regions

EPA Platform v6 [23] 8760-hourly input data was used for
evaluating the temporal and spatial resolution of different temporal
selection methods. The selection methods were applied to three
datasets: electricity load, solar photovoltaic (PV) capacity factors,
and onshore wind capacity factors.

For electricity demand, this paper relies on EPA Platform v6
electricity load data (Tables 2e2 of [23]. The data includes a single
year (8760 h) of load data for regions that cover the continental
United States. The data is scaled by the peak capacity for each re-
gion. EPA Platformv6 has a total of 78model regions; however, only
63 model regions were included in this analysis, the 11 Canadian
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regions and 4 US supply-only regions were excluded due to data
limitations, and being outside the scope of this analysis.

In terms of resources, only onshore wind and solar PV resource
profiles are considered in this analysis due to the wide inclusion of
these resources in continental US and capacity expansion models.
Wind and solar data from Tables 4e39 and 4e43 of [23] are con-
verted to hourly capacity factors. In addition to the 63 model re-
gions, VRE availability is further subdivided by the state boundaries
within each model region. This results in approximately 120 sub-
regions for wind and solar. Each technology and region is then
further subdivided by resource class. The data includes up to 10
different resource classes for onshore wind and up to seven for
solar PV. In total, the data used contains 621 onshore wind profiles
and 245 solar PV profiles.

2.2. Temporal selection methods

Temporal selection methods were analyzed across three cate-
gories: sequential, categorical, and clustering. These individual
methods reflect commonly used approaches in CEMs [3,24]. We
also include the EPA Platform v6 selection method [23], which
applies a mixed approach (combining both categorical and clus-
tering techniques).

2.2.1. Sequential method
The sequential method averages every set of hours within a

specified interval. For example, an interval of 2 h would average the
data in hours one and two together, then hours three and four
together, etc., resulting in half as many time segments. A 2-h in-
terval results in 12 time-segments per day, 4380 per year. Intervals
can also span across multiple days, such as a 120-h interval aver-
aging the hours across five days, which yields 73 time-segments.
However, load and solar data have diurnal patterns (i.e., solar
generation follows the rise and fall of the sun), meaning that
averaging values across five days yields poor results. Fig. 1(a) shows
a 6-h interval, four time-segments per day. Fig. 1(b) illustrates how
the 6-h interval aggregation method spans across a period of 6
days. The sequential approach presents results for every multiple of
8,760, yielding 32 profiles total.

2.2.2. Categorical method
The categorical method better respects diurnal load and VRE

availability compared to the sequential method by selecting
representative days throughout the year to define a time-segment
set. Day-types are selected categorically, for example, by month of
the year or day of the week. Additionally, one can reduce the
number of time segments within a representative day by applying
Fig. 1. Sequential temporal selection m
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categorical hour-types. For example, representing all 24 h within a
single representative day-type for each month of the year results in
288 time-segments; however, this can be reduced further to 72
time-segments by using 4-h intervals within each day-type.

Fig. 2(a) walks through creating a representative day. Here each
hour of the day is averaged across 6 days to form a representative
day. Next, Fig. 2(b) maps the representative day across the original
6-days of data.

The three most common categories (month-, day-, and hour-
type) are applied. Month-types explored include using all
months, grouping into pairs of consecutive months, and grouping
months by seasonal attributes (where spring/fall are combined).
Day-types explored were all weekdays, weekend/weekday group-
ings, and a third category that identified the peak day within each
month. Weekday/weekend groupings were selected because load
profiles differ across the two day-types, as electricity consumption
shifts from commercial/industrial loads on the weekdays to resi-
dential loads on the weekends, and a peak day was included to
ensure peak characteristics of load could also be captured. Hour-
types explored included all hours within the day and then 4-h in-
tervals within a day-type.

Every combination of these categories was investigated, yielding
18 categorical day-type profiles. The profile time-segment count
ranged between 18 and 864 time-segments. A final category was
added that included a single representative day for each week out
of the year, which resulted in 1248 time-segments. Table 1 sum-
marizes the profiles used for the categorical method.

2.2.3. Clustering method
The clusteringmethod identifies hours of the year with common

characteristics, and groups them together. Load duration curves
(LDCs) are a commonly applied example of this approach. Here
hours within a year are sorted from highest to lowest load value
and then grouped (or clustered) together. For example, one could
sort all the load hours and then use the top 1% of hours as one time-
segment, followed by the next 4% and so on. Fig. 3 presents a
breakdown of this approach. In Fig. 3(a) the hours are sorted across
6 days and averaged them by their sort order. Fig. 3(b) shows how
the segments look across the 6 days. For this paper agglomerative
hierarchical clustering is applied to group hours together. The
agglomerative hierarchical clustering method starts with each
point as a separate cluster, then measures the distance between
points, or a set of points, and merges sets with the shortest
Euclidean distances until a user-specified number of clusters is
achieved.

Here the clustering approaches are examined across four
different data groupings: three include clustering the data on each
ethod for example load dataset.



Fig. 2. Categorical temporal selection method for example load dataset.

Table 1
Categorical profiles. Note: For this paper, seasons were based on the EPA Platform v6 definition of seasons [23], where fall and spring are combined into one shoulder season.
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of the three datasets in this analysis (load, solar, and wind) sepa-
rately, and the fourth approach involves clustering data across all
three datasets at once (referred to as 3-way or multi-criteria clus-
tering approach throughout this paper). Next, two methods for
clustering were applied: an hourly method and a day-type method.
The hourly clustering method clusters the data across two di-
mensions: the 8760-h of the year and the number of profiles (e.g.,
wind, solar, and load). The day-type clustering method clusters the
data across three dimensions: the 365 days of the year, the 24-h of
the day, and the number of profiles. The day-type method yields
4

best-fit representative day-types, while the hourly method clusters
data regardless of the hour of day.

Under the day-type method, the four clustering approaches
were applied to 18 specified time-segment numbers, ranging from
one to 50 days or 24 to 1200 (50� 24) time-segments, and resulting
in 72 profiles. Under the hourly method, the four clustering ap-
proaches were applied to 20 different specified time-segment
numbers, matching the time segment numbers that aligned with
the day-typemethod and adding two additional profiles at 6 and 12
time-segments, and resulting in 80 profiles.



Fig. 3. Clustering temporal selection method for example load dataset.

Fig. 4. Spatial Aggregation Regions for (a) EPA Platform v6 model regions, (b) NERC market regions, and (c) Interconnect regions.
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2.2.4. Summary of temporal selection methods
Table 2 summarizes the temporal selection methods evaluated

in this paper and the number of time segments considered for each
method. A total of 204 temporal selection profiles were tested.

2.3. Relative root mean square error measure

The RMSE is a frequently used measure of the differences be-
tween values predicted by a model and true values that have been
observed. To measure the performance of each profile's ability to
represent data accurately, the RMSE across each dataset's original
spatial resolution is calculated using Equation (1). There are mul-
tiple statistical ways to measure the error of modeling efforts. The
RMSE is used in this analysis because it returns the error as a single
value that is easily comparable between profiles and penalizes large
errors more than smaller errors. One advantage of using RMSE is
that the RMSE gives a higher weight to larger errors, thereby
potentially identifying approaches that are more successful at
representing critical load hours, like peak load.

Explicitly, the RMSE can be computed as a function of the
summed differences across regions (r) and time segments (h) from
predicted (p) values the actual (a) values at each resource group (g)
for a number of observations (n):

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

r;h;g

�
pr;h;g � ar;h;g

�2

n

vuut
(1)

Here the predicted value (p) is the calculated average value for
each time-segment derived from the different methods
5

summarized in Table 2. The actual value (a) is the corresponding
hourly value of the resource. For the results, a relative RMSE for
each profile is calculated by scaling the RMSE for a given profile by
the max RMSE value for each dataset. The max RMSE for each
dataset is defined as the RMSE from applying a single time segment,
an annual average value.

One challenge with using a statistical method to evaluate input
assumptions is that it does not consider the accuracy of the model
outcomes. It is important to note that the level of accuracy of the
temporal resolution only matters to the extent that it impacts
model results. For instance, high temporal resolution may not be
necessary in a system predominantly served by dispatchable re-
sources now and in the future. But since these models are used to
evaluate a range of scenarios, ensuring the model is well equipped
to evaluate all alternative futures holds merit. Additionally, the
statistical approach allows for a more efficient means of evaluating
different temporal selection methods compared with the time
associated with setting up and running different CEMs for each
individual profile presented here.
2.4. Spatial aggregation methods

For a subset of temporal selection methods, the impact that
different spatial resolutions have on the performance metrics is
evaluated. The spatial resolutions evaluated in this paper includes the
EPA Platformv6model regions (63 regions), NERCmarket regions (16
regions), and interconnect regions (3 regions), as seen in Fig. 4. The
datasetswereaggregateduptoeachregionbysummingloaddataand
averaging wind and solar capacity factors at each hour.



Table 2
Summary of profiles.

Methods
Considered

Methods Description Time Segments Considered Time Segments Description

Sequential The sequential approach averages hours across a set interval. 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 73, 120,
146, 219, 292, 365, 438, 584, 730, 876, 1095, 1460,
1752, 2190, 2920, 4380, 8760

every factor of 8760;
total of 32 profiles

Categorical The categorical approach groups hours based on a set of
attributes associated with that hour.

18, 36, 36, 54, 72, 72, 72, 108, 144, 144, 144, 216,
216, 288, 288, 432, 576, 864, 1248

see Table 1 for day-type combinations
applied;
total of 19 profiles

Clustering Hourly Approach:
The hourly clustering approach clusters hours together that are
closest in value to one another.

6, 12, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240,
360, 480, 600, 720, 840, 960, 1080, 1200

hour list ¼ 6, 12, 24, 48, 72, 96, 120,
144, 168, 192, 216, 240, 360, 480, 600,
720, 840, 960, 1080, 1200;
20 profiles per dataset (load, wind,
solar, and all 3 combined), total of 80
profiles

Day-Type Approach:
The day-type clustering approach clusters days together where
the values within each hour of the day are closest to one another.

24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 360,
480, 600, 720, 840, 960, 1080, 1200

day list ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15,
20, 25, 30, 35, 40, 45, 50;
18 profiles per dataset (load, wind,
solar, and all 3 combined), total of 72
profiles

EPA
Platform
v6 (IPM)

Defines time-segments by a three by 24-step LDC. The year is
divided into three seasons, which are sorted into LDCs and
clustered into six groups. Each group is then separated into four
time-of-day categories.

72 total of 1 profile
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2.5. Temporal-spatial alignment measure

Temporal-spatial alignment is important for the instances
where information is transferred from one region to another. In
CEMs, this transfer plays out in the form of electricity trading.
Clustering time segment selection can occur at different spatial
resolutions. Clustering time-segments at individual model regions,
may yield lower RMSE as compared to NERC or interconnect re-
gions, but may lead to mismatches of information across regions.
This information is critical in evaluating interregional trade, where
mismatches of information could lead to unrealistic interregional
transfers in model results.

EPA Platform v6 defines 140 model region pairs that allow for
interregional electricity trade (Tables 3e21 of [23], referred to as
total energy transfer capabilities. Total energy transfer capabilities
define the upper limit of what can be transferred on an hourly basis
given existing transmission infrastructure. The maximummegawatt
value of electricity trade between each pair is used as the basis for
evaluating the temporal-spatial alignment, as summarized in Fig. 5.

Each region (r) contains a set of data that matches all 8760 h to a
given number of time-segments. For each model region pair (y)
identified, the frequency at which the hours within a given time-
segment align are measured. The weighted frequency (WF), as
defined in Equation (2), is weighted by the total transfer capability
Fig. 5. Maximum energy total transfer capabilities between model regions.

6

between the regional pair (TTCy).

WF ¼
P

y

�
TTCy �

���roy ∩ r0y
���
�

P
y
�
TTCy

�� 8;760
(2)

Equation (2) is applied across all regional pairs within the
clustering results. The sequential and categorical approaches were
excluded from this section of the analysis because, although their
RMSE results may vary with different spatial resolutions, the
temporal-spatial alignment results would not. They result in 100%
frequency match regardless of the spatial resolution assumed. This
is due to the fact that the data in these approaches is grouped based
on information like interval hours or the months of the year e in-
formation which does not change from one region the next e

whereas the clustering approach could have hours grouped in
different time segments from one region to the next based on dif-
ferences in load or VRE availability. See supplemental materials for
addition details on Equation (2).

3. Results and discussion

This section first presents the RMSE results for the sequential,
categorical, and clustering approaches, and then a comparison
across all three temporal selection methods. Then, the clustering
approach is used to examine temporal-spatial alignment.

3.1. Sequential method

The sequential approach averages hours across a set interval.
One of the main advantaged to a sequential approach is its ability to
maintain chronology. This can be beneficial for modeling technol-
ogies like energy storage, which require chronology to account for
charging/discharging. The main disadvantage to this approach is
that it is not an effective tool for reducing model complexity down
to the size typically needed in CEMs.

As the datasets are hourly, an interval of 1-h (i.e., 8760 time-
segments) results in zero error. Conversely, choosing an interval
of 8760-h (i.e., an average value for the entire year) for each dataset
defines the max error for each dataset.

The RMSE, shown in Fig. 6(a), for load (blue) is less than that of
solar (yellow) and wind (green). One reason for this stems from a



Fig. 6. Sequential approach RMSE (a) and relative RMSE (b) by dataset.
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larger set of profiles for solar and wind (245 and 621 respectively)
compared to load (63 total) as there are multiple resource groups
for wind and solar within each model region (see Section 2.1
Datasets and Model Regions). Secondly, the capacity factors for
wind and solar have higher variability than load. For example, the
capacity factor for solar may reach as high as 100% during the
midday in the summer and will drop to zero overnight. The load
hours are scaled to reach 100% at the peak hour of demand, but
never drop to zero, as there is always demand on the system. To
account for these differences, the rest of the results in the paper
report the relative RMSE, as shown in Fig. 6(b). The relative RMSE
adjusts the profiles for load, solar, and wind scaling them by their
max RMSE (the annual average).

Fig. 6 illustrates there is a distinct tradeoff between computa-
tional complexity (number of time segments) and the associated
error. Using just a 2-h interval instead of all 8760 h reduces the
number of time segments in half but only results in 0.11e0.24 in-
crease in the relative RMSE. Unsurprisingly, this relationship is not
linear and instead the RMSE increases exponentially as the number
of time-segments decreases.

While the sequential results have illustrated the expected
tradeoff between accuracy and complexity across the entire 8760
landscape, the rest of the results in this paper focus on practical
reductions in model size, examining time-segment numbers at or
below 1300 and then at or below 130.
3.2. Categorical method

The categorical approach groups hours based on a set of attri-
butes associated with that hour, like month of the year or day of the
week. This approach allows for representative day-types that can
be used to map data across the year. Representative days can ac-
count for chronology like the sequential approach and have the
added benefit of lower error results at lower time-segment
numbers.

Fig. 7 shows the relative RMSE results for the 19 categorical
profiles evaluated for each of the three datasets (load (a), solar (b),
and wind (c)) and then the average (d) relative RMSE across all
three. The top panel row (Fig. 7 a-d) shows the profiles between
zero and 1300 time-segments and the bottom panel row (Fig. 7 e-h)
hows the RMSE of highly reduced time-segments more commonly
seen in today's CEMs (i.e., up to 130).

Load and solar data perform better under the categorical
approach compared to wind data. In Fig. 7(eeh), the relative RMSE
drops by 0.13 for load, 0.10 for solar, but only 0.02 for wind, be-
tween the profile with 18 time-segments and the one with 120
7

time-segments. The difference in the categorical day-type ap-
proaches relative RMSE results between load and solar versus wind
illustrates the strong diurnal alignment of load and solar data. This
suggests that alternative metrics beyond day-types that focus on
wind availability may be needed to improve representation of wind
data in CEMs.

It is also important to note that there is a diminishing incre-
mental improvement on the relative RMSE for the categories
explored here, especially for load and solar data. As shown in
Fig. 7(aed), there seems to be little incremental benefit between
the three day-types shownwith time segments beyond 500. These
profiles include: M12-D2-H24, M12-D3-H24, and W52-D1-H24
(see Table 1 for definition). Increasing from 576 time-segments to
1248 only yields and additional reduction in the relative RMSE of
0.03 for load and solar and 0.06 for wind.

Fig. 7(eeh) also highlights the tradeoffs between representative
hours verses representative months. In these panels, there are two
categorical day-type approach combinations that result in 72 time-
segments, M03-D1-H24 and M12-D1-H06. For load, the M12-D1-
H06 day-type (more representative months, fewer representative
hours) results in the lower relative RMSE, while the M03-D1-H24
(fewer representative months, more representative hours) results
in the lower for solar (with wind they are nearly the same). This
suggests that the daily hourly intervals are more important to
reflect for solar, whereas monthly trends may be more important
for load.
3.3. Clustering method

The clustering approach groups hours based on their data
characteristics. This approach can allow for the lowest measures of
error achievable for a given number of time segments, particularly
for hourly clustering approach. In exchange for this reduced error,
this approach loses its ability to maintain chronology, which limits
its ability for advanced representation of technologies like storage.
The day-type clustering approach allows for the development of
representative days, which allows for some limited representation
of chronology and still achieves relatively low error results. In
addition, both hourly and day-type clustering introduces chal-
lenges with temporal-spatial alignment, as discussed in Section 3.5
Temporal-Spatial Alignment.

For each number of segments identified, the clustering approach
was applied across four cluster approaches: clustering the data on
each of the three datasets (load, solar, and wind) separately, and
then a fourth multi-criteria clustering approach, which clustered
data across all three datasets at once (referred to as 3-way). Two



Fig. 7. Categorical Approach Relative RMSE for Each Dataset Load (a, e), Solar (b, f), and Wind (c, g), and their Average (d, h). Note the x-axis differences between a-d and e-h. The
second row (eeh) presents a zoomed in view of the results.
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clustering methods were applied: first clustering across all 8760 h
(hourly approach) and second across 365 days (day-type approach).

Fig. 8 shows the relative RMSE results from the clustering
method applied across 8760 h (hourly approach) and Fig. 9 across
365 days (day-type approach). Each series in the figures shows a
different clustering approach applied: clustering data on load
(blue), solar (yellow), wind (green), or clustering on all three
(purple). Both figures show the relative RMSE for each dataset: load
(a), solar (b), wind (c) and then the average value for each profile
(d), this time only for results with less than 130 time-segments.

The first observation is that fitting time-segments to reduce the
error for one dataset results in a increasing the relative RMSE in
other datasets. For hourly clustering (Fig. 8), the relative RMSE in-
creases by 0.88 on average for load clustering load data, as
compared to solar or wind clustering load data. We see similar
trends for the solar and wind data (0.72 and 0.53 respectively).
Fig. 8. Hourly Clustering Approaches Relative RMSE for Each Dat
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In almost all cases, the next lowest relative RMSE to the
matching approaches (e.g., load clustering load data, etc.) is the
multi-criteria clustering approach, which clusters data on load,
solar, and wind simultaneously. When comparing Figs. 8 and 9, the
hourly sets have a lower relative RMSE compared to the day-type
results for the matching and multi-criteria cluster approaches and
higher relative RMSE for the non-matching approaches. Interest-
ingly, when looking at the average for the day-type clustering
approach, Fig. 9(d), load clustering outperforms multi-criteria
clustering, mainly due to the notable difference seen in the rela-
tive RMSE results for load Fig. 9(a).

3.4. Comparison across all approaches

This section compares the relative RMSE results across the three
temporal selectionmethods: sequential, categorical, and clustering.
aset Load (a), Solar (b), and Wind (c), and their Average (d).



Fig. 9. Day-Type Clustering Approaches Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c), and their Average (d).
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Fig. 10 shows the relative RMSE for profiles up to 1300 time-
segments. The relative RMSE is measured for load (a), solar (b),
and wind (c) and then the average (d). The EPA platform v6 results
are shown in red, sequential green, categorical purple, and clus-
tering blue.

The clustering results are broken out into hourly (light blue) and
day-type (dark blue). Both hourly and day-type clustering ap-
proaches are further broken out into multi-criteria clustering (o
marker) and each dataset's matching or native clustering approach
(x markers). Only the multi-criteria approach is included in the
average (d).

One observation is the decrease in the incremental relative
RMSE reduction as the temporal resolution increases. In most cases,
the sequential profiles (green) act as an upper bound for relative
RMSE; except for somewind day-type profiles. This is becausewind
data doesn't have the same diurnal patterns of load and solar.

The clustering approaches have the least error. The lower bound
for the relative RMSE for all profiles tested is the hourly clustering
approach. However, as observed in the previous section, the
matching clustering approaches only perform well for the dataset
in which they match and perform poorly when they do not match.
When looking at the average (d) themulti-criteria hourly clustering
approach shows the lowest relative RMSE across all time segments.

Another takeaway from Fig. 10 is that the wind dataset has the
highest relative RMSE for all profiles, which is partly a function of
the number of wind profiles represented, but also indicates that
representing wind in temporal resolution approaches is more
difficult than the other datasets due to the variable nature of the
data.

Fig. 11 displays regional differences in relative RMSE for select
profiles (all with near 72 time-segments). The first key observation
is that not all regions necessarily have the same level of error,
Fig. 10. All approaches relative RMSE for each dataset lo
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meaning results will vary andwhat is the best fit for one regionmay
not be the best fit for another.

For the load dataset in Fig. 11(a), day clustering and day-type
approaches perform better in the south and west compared to
the central and east, perhaps due to less seasonal variation in those
regions. For the solar dataset (b), the best performing profile across
all regions is the Cluster Solar 72-Hrs profile. In those cases,
Wyoming and regions in the Southeast have higher relative RMSEs
compared to the rest of the regions. This suggests that the solar data
is more variable in those regions. Across the wind dataset (c),
Wyoming, Colorado, and parts of Texas has a lower relative RMSE
than other regions. One reason for this may be related to the
strength of the resource in these regions. There tends to be more
availability of wind in these regions, which results in more
consistent availability of the resource.

Overall, it is more advantageous to use a three-way clustering
approach as opposed to a single approach if interested in appro-
priately characterizing all three sets. It is also important to be aware
of differences in regional performance of temporal resolution to
identify which regions a model may be less or more accurate in
modeling load, solar, and wind resources.

3.5. Temporal-spatial alignment

The results have thus far utilized temporal selection methods
applied at the model region level (63 regions); however, temporal
selection approaches can also be applied at different levels of
spatial aggregation. In this section the clustering approaches are
applied at the NERC (16 regions) and interconnect level (3 regions)
and the impact on the results is measured. Aligning time segments
across broader regions improves the evaluation of trade outcomes,
but often at the expense of the RMSE.
ad (a), solar (b), and wind (c), and the average (d).



Fig. 11. Select Profiles Regional Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c).
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Fig. 12. Clustering Approaches Relative RMSE for Each Dataset Load (a), Solar (b), and Wind (c), and their Average (d) at Different Spatial Resolutions.
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Fig. 12 shows the results from changing the spatial resolution for
a subset of profiles, the clustering profiles highlighted in Fig. 11
(e.g., 72-h and 3-day clustering approaches). In Fig. 12, clustering
(x marker) is more sensitive to spatial aggregation compared to
day-type clustering (o marker).

It appears that for most of the profiles considered, decreasing
the spatial resolution from 63 regions to 3 regions results in an
increase in the error. This is especially truewhen consideringmulti-
criteria clustering and each dataset's matching or native clustering
approach. Specifically, in Fig. 12, going from 63 to 3 regions results
in large increases (greater than 0.3) in the relative RMSE for the
matching hourly cluster approaches for all datasets and for the
multi-criteria clustering approach for the solar and wind datasets.
Its only in the cases where the relative RMSE is already relatively
high at 63 regions where the value would decrease when the
method is applied to fewer regions.

Interestingly, as seen in Fig. 12(a), the largest decrease (�0.18) in
the relative RMSE from 63 to 3 regions is for the day-type multi-
criteria cluster approach applied to load data (purple o markers).
This is likely due the fact that larger regions more effectively
smooth out extremes in variability seen in wind and solar day-type
data while still capturing daily load patterns. This is consistent with
observations made in Section 3.3 Clustering Method.

Another consideration with temporal resolution is the extent
the selected hours align from one region to the next. Fig. 13 shows
the impact of applying different spatial resolutions to the temporal
selection method has on hourly alignment. The y-axis shows the
percentage of hours that fall within like time-segments weighted
across all trade regions. Fig. 13(a,c) shows the day-type clustering
approach and (b,d) the hourly clustering approach. Each of the
series shows the weighted frequency for the different spatial res-
olutions across the four profiles within each clustering approach
(load, solar, wind, and 3-way). The square markers show the fre-
quency at 3 regions, the circles at 16 regions, and the triangles at 63
regions.

Selecting the three interconnections as the point of spatial res-
olution applied to the temporal selection method yields near per-
fect alignment of hours across trade regions, although, as observed
previously in Fig. 12, at the expense of higher relative RMSE results.
This near perfect alignment of hours is due to the facts that little to
no trade of electricity is occurs across the three interconnections. Of
the 306 GW of energy total transfer capabilities across regions
evaluated in this analysis, 98% (or 300 GW) of that energy total
transfer capabilities occurs within interconnection boundaries. For
NERC regions, 49% (or 155 GW) of the energy total transfer capa-
bilities evaluated occurs within NERC boundaries.

For the three spatial resolutions evaluated, at higher time-
segments (a,b) the clustering approach essentially reflects the
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share of the total energy transfer capabilities that occurs within its
respective boundaries. Fewer time-segments (c,d) lead to a higher
probability of more aligned hours. Fig. 13(c and d) show the day-
type clustering approach performs better than the hourly clus-
tering approach at aligning hours because hours of the day within
the day-type are already aligned, ensuring greater alignment.
Although hourly clustering yields lower relative RMSE results, this
comes at a tradeoff between interregional hourly alignment as
compared to the day-type clustering approach.

Across the four profiles (load, solar, wind, and 3-way) and
within each clustering approach and spatial resolution evaluated
there is little difference between alignment results. The exceptions
to this are the load-day-type clustering profiles in (a,c) and the
solar-hourly clustering profiles in (b,d). Weather conditions on a
day-to-day basis likely assist in the greater alignment between
neighboring regions relative to the other profiles in the clustering
approach.
4. Conclusions

Our work has highlighted differences in time-segment repre-
sentations across three temporal selection methods, and three
subnational region groupings. The purpose of this paper is to pro-
vide guidance for modelers and assess the most-commonly applied
temporal selection methods. This work is also useful for consid-
ering the tradeoffs between model resolution and fidelity to un-
derlying data.

Through this research, there are a few salient insights into
temporal selection methods. First is that the sequential approach
had the highest error. In certain instances, for example where
modelers want to retain a high number of time segments and
properly represent technologies like energy storage, the method
could still prove viable but, in general, there are better methods for
selecting data for CEMs.

One of the approaches that particularly excelled is the hourly
multi-criteria clustering of simultaneous wind, solar, and load
datasets. Although it could be bested in terms of reduced error by
other approaches for each individual dataset, across all datasets it
performed particularly well. This could prove to be a viable
approach for modelers that are not particularly concerned with a
specific technology or load patterns and instead want a holistic
view of the intertwined relationships of technology availability and
electricity demand. One challenge with the hourly multi-criteria
clustering approach is the lack of chronology, which can be
important for modeling certain technologies, like storage.

Additionally, this analysis highlights the tradeoffs between
temporal and spatial resolution for time selection methods.
Applying broader regional definitions to clustering approaches



Fig. 13. Interregional Alignment for Day-Type (a, c) and Hourly (b, d) Clustering Profiles at Different Spatial Resolutions.
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improves the alignment of hours across neighboringmodel regions.
Alignment of hours is important for modeling trade between re-
gions; however, the improvement of aligned hours often came at
the expense of the higher error. In particular, hourly clustering
profiles, which often performed the best at reducing error per-
formed poorly at aligning hours across regions. This suggests that
modelers should use caution when interpreting results that have
large quantities of trade across regions unless care is taken to
ensure those hours are aligned. However, more generally,
improving temporal-spatial alignment should not come at the
expense of the key performance metric, the relative RMSE, as the
majority of power sector investment decisions within CEMs are
based on intra-regional rather than inter-regional model decisions.

For modelers concerned with striking a balance between rep-
resenting the underlying input data, modeling chronology, and
aligning interregional trade, an alternative approach that excelled
well across all of these concerns was the day-type load clustering
approach, which yielded the next lowest relative RMSE after the
hourly clustering approach across all three datasets. In addition,
with certain care, the categorical approaches could be designed in a
way to achieve similar results to the day-type load clustering
approach and avoid concerns regarding interregional trade, but as
the results show, this is sensitive to the categories selected. Both of
approaches also tend to perform significantly worse at representing
wind data, which does not reflect the same level of diurnal pattern
compared to load and solar.

A fruitful direction for futureworkwould be to test the temporal
resolution approaches identified within a model to measure the
impact on model results and computational time. It is important to
note that the level of accuracy of the temporal resolution only
matters to the extent that it impacts model outcomes and changes
the dispatch or level of investment for capacity expansion. The
value of this work has been quantifying the error reduction in
including high temporal resolution at different spatial scales. This
12
work can help other energy modelers understand how the tem-
poral resolution can impact the accuracy of their energy analyses,
and lead to better representation of resource profiles in energy
system models.

Data availability

Analysis model is publicly available [See: https://github.com/
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