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Abstract—Preliminary sizing of an oscillating surge 
wave energy converter (OSWEC) is an iterative process that 
relies on knowledge of the relevant hydrodynamic 
coefficients for a given geometry. Often, the complex 
definition of the device geometry requires coefficients to be 
obtained through experiments or numerical boundary 
element solvers such as WAMIT. These techniques demand 
significant user and computational effort, therefore 
inhibiting the fine-scale parametrization of object 
dimensions. In this study, a theoretical model, originally 
presented in Michele et al. (2016), is developed and 
demonstrated to efficiently optimize the power production 
for an OSWEC device (subjected to certain environmental 
conditions) with variations in device widths, heights, and 
distances from the seabed. Assuming negligible device 
thickness, the OSWEC motions are modeled as a bottom-
raised two-dimensional flap in regular waves using 
potential flow theory formulated in elliptical coordinates. 
The solutions to this diffraction-radiation problem are 
obtained using Mathieu functions with appropriate 
boundary conditions. The resulting potentials are then used 
to derive frequency-dependent expressions for the added 
mass and radiation-damping coefficients, along with wave-
excitation magnitude in surge, pitch, and coupled surge-
pitch motions. Good agreement in hydrodynamic 
coefficient curves is shown between the theoretical model 
and the numerical results obtained from the boundary 
element-based program WAMIT. The theoretical model is 
then employed to maximize the time-averaged output 
power while maintaining or reducing the hinge reaction 
force, with variations in device dimensions, wave 
frequency, and amplitude. 

Keywords—OSWEC, hydrodynamic coefficients, added 
moment of inertia, wave radiation damping, wave 
excitation, wave energy converter, power production, ACE.  
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I. INTRODUCTION 

rom design space exploration to detailed design, wave 
energy converter (WEC) developers employ a range of 

tools to optimize performance. Multiple optimization 
frameworks are available to designers for characterizing 
and refining the performance of OSWEC devices [1][2]. 
Typically, these require analyses using analytical, semi-
numerical, or numerical methods. Among these 
approaches, theoretical (analytical-based) models benefit 
from their simple setup and quick computational time. 
These methods, however, tend to be limited to simple 
geometries (i.e., geometries in which fine-scale details are 
not present or are neglected [3][4]). Hence, these 
approaches are well-suited for early stages of 
development, including design space exploration and the 
optimization of device geometry.   

The current study presents a theoretical optimization 
framework for the development of bottom-fixed, 
oscillating surge wave energy converters (OSWECs), first 
introduced by Michele et al. in [3], and expands it to model 
bottom-raised devices. A particular emphasis is placed on 
optimization for structural and power production 
performance, though such a framework could readily be 
extended to additional performance metrics. 

The authors in [3] proposed to characterize the body’s 
hydrodynamics by solving the radiation and scattering 
potentials using the angular and radial Mathieu functions.  
The potential flow problem is transformed into an 
elliptical coordinate system in which the body of the flap 
is represented by the ellipse at 𝜉𝜉 = 0 (lying over the 
traditional x-axis) thereby allowing the problem to be 
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solved. In this representation, the body thickness must be 
equated to zero. 

 
For semi-numerical techniques, Renzi and Dias’s series 

of papers have proposed using Green’s integral theorem 
along with a hypersingular integral in potential flow 
equation to predict the hydrodynamics of a single OSWEC 
with negligible thickness [5]–[7]. The method has been 
applied to study the OSWEC performances in both open 
ocean and in a channel. Michele et al. [8] later extended the 
integral approach to study the motions of an array of 
devices with finite thickness. Employing a different 
approach, Noad and Porter introduced Fourier transforms 
and Galerkin expansion methods to study the behaviors of 
both the surface piercing and the fully submerged 
OSWECs [4].  

Compared to the aforementioned techniques, numerical 
methods are generally not limited to certain geometric 
features and thus often employed more widely in the 
research of WEC system motions. Within this approach, 
boundary element method (BEM) is considered as one of 
the most popular due to its relatively faster computational 
speed compared to other methods using a computational 
fluid dynamics (CFD) technique. Several studies have 
employed this technique to successfully investigate the 
performance of the OSWEC including [1][9]. Similar to the 
semi-numerical technique, numerical modeling also 
requires significant user, programming, and 
computational efforts, which could inhibit the fine-scale 
parametrization of objective dimensions. 
 The initial sizing of a WEC is an iterative process which 
relies on knowledge of the relevant hydrodynamic 
coefficients for a wide range of geometric parameters. Due 
to this reason, the analytical model can be seen as the most 
effective and least time-consuming approach for this 
purpose. In this paper, a theoretical model extending the 
works originally introduced in [3] is developed to predict 

the hydrodynamic coefficients of a bottom-raised OSWEC 
(Fig. 1). An analytical model for the coupling surge-pitch 
coefficients along with the wave-excitation load are also 
derived. The formulas are employed to efficiently optimize 
the power production for an OSWEC device subjected to 
certain environmental conditions. Device performances 
subjected to variations in widths, heights, and distances 
from the seabed are investigated. Power production along 
with the ACE matrix are also evaluated. Comparisons with 
numerical results and computational speed from WAMIT 
are also discussed.  

II. MATHEMATICAL FORMULAE 

A. Analytical model for hydrodynamic coefficients 
This study builds upon the analytical solutions 

described in Michele et al. [3], which models the motion of 
an array of flap gates or bottom-fixed OSWECs employing 
a thin plate assumption in an elliptical coordinate system. 
It is noted that while the following analysis can be 
extended to an array of devices similar to Michele’s study, 
the current work focuses on demonstrating the power 
optimization of one OSWEC system. The current work also 
extends previous research to account for bottom-raised 
foundations. Surge-pitch hydrodynamic coefficients, 
which are used to evaluate structural loadings on the 
foundation, are also formulated. 

In order to employ the thin plate assumption, the 
thickness of the device is considered negligible compared 
to its width.  For a point (𝑥𝑥,𝑦𝑦, 𝑧𝑧) in the incompressible and 
irrotational fluid domain, there exists a velocity potential, 
𝚽𝚽(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) that satisfies the Laplace’s equation such that: 

 ∇2𝚽𝚽(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 0  (1) 

We assume that the flap undergoes regular harmonic 
motion with frequency 𝜔𝜔 around the y-axis (Fig. 1) as 

 𝜓𝜓(𝑡𝑡) = 𝑅𝑅𝑅𝑅{Ψ𝑅𝑅−𝑖𝑖𝑖𝑖𝑖𝑖}  (2) 

Here, Ψ is the complex amplitude of rotation. The 
temporal component in the velocity potential can be 
separated out (or rewritten) as 

 𝚽𝚽(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑅𝑅𝑅𝑅{𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑅𝑅−𝑖𝑖𝑖𝑖𝑖𝑖} (3) 

On the other hand, the spatial potential can be written as a 
linear combination of incident wave potential (𝜙𝜙𝐼𝐼), 
scattered wave potential (𝜙𝜙𝑆𝑆) induced by the presence of 
the OSWEC, and the radiated wave potential (𝜙𝜙𝑅𝑅) due to 
the motions of the flap.   

 𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜙𝜙𝐼𝐼 + 𝜙𝜙𝑆𝑆 + 𝜙𝜙𝑅𝑅 (4) 

With 

  𝜙𝜙𝐼𝐼 = −
𝑖𝑖𝑖𝑖𝑖𝑖
𝜔𝜔

cosℎ 𝑘𝑘𝑜𝑜(ℎ + 𝑧𝑧)
cosh 𝑘𝑘𝑜𝑜ℎ

𝑅𝑅−𝑖𝑖𝑘𝑘𝑜𝑜(𝑥𝑥𝑥𝑥𝑜𝑜𝑥𝑥 𝜃𝜃+𝑦𝑦𝑥𝑥𝑖𝑖𝑦𝑦 𝜃𝜃) (5) 

Here, 𝑖𝑖 and 𝑘𝑘𝑜𝑜 are the wave amplitude and wave number, 
whose values are derived from the roots of the dispersion 
relation 𝜔𝜔2 = 𝑖𝑖𝑘𝑘𝑜𝑜 tanh𝑘𝑘𝑜𝑜ℎ. 𝑖𝑖 = 9.81 m/s2 and 𝑖𝑖 denote the   
gravitational constant and the imaginary unit, 
respectively. 𝜃𝜃 represents the relative angle of the incident 

 
 
Fig. 1. Definition of the OSWEC system in Cartesian coordinates. 
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wave with respect to the x-axis, and h is the water depth. 
It is noted that both 𝜙𝜙𝑆𝑆 and 𝜙𝜙𝑅𝑅 should satisfy Laplace’s 
equation.  

In order to obtain the solutions to Eq. (1), the following 
boundary conditions are applied to the problem: 
 
1. Mixed (dynamic + kinematic) boundary condition at the 

free surface (𝑧𝑧 = 0):  

 𝚽𝚽tt + g𝚽𝚽z = 0 (6) 

2. No flux condition on the sea bottom (𝑧𝑧 = −ℎ):  

 𝚽𝚽z = 0 (7) 

3. Kinematic condition (no through flow) on the flap’s 
surfaces 𝑧𝑧 𝜖𝜖 [−ℎ, 0]): 

 
𝚽𝚽x = −𝜓𝜓𝑖𝑖 ∗ (𝑧𝑧 + ℎ − 𝑐𝑐) ∗ 𝐻𝐻(𝑧𝑧 + ℎ − 𝑐𝑐)

= 𝑖𝑖𝜔𝜔Ψ ∗ (𝑧𝑧 + ℎ − 𝑐𝑐)𝑅𝑅−𝑖𝑖𝜔𝜔𝑡𝑡
∗ 𝐻𝐻(𝑧𝑧 + ℎ − 𝑐𝑐) 

(8) 

4. 𝜙𝜙𝑆𝑆 and 𝜙𝜙𝑅𝑅 must be bounded as �𝑥𝑥2 + 𝑦𝑦2 → ∞ (9) 

 
Here, subscripts denote derivatives (with respect to the 
corresponding variables) 𝐻𝐻 is the Heaviside step function, 
and 𝑐𝑐 denotes the distance from the seafloor to the hinge 
of the OSWEC. The third condition (Eq. (7)) is established 
from the rotational motion of the flap in Cartesian 
coordinates. The flap strictly rotates around the y-axis (Fig. 
1) such that its motion is in the x-z plane. Assuming small-
amplitude oscillation, the horizontal velocities, 𝚽𝚽x, of the 
flap’s surface (and the fluid particles next to the flap) are 
calculated using the rate of rotation, 𝜓𝜓𝑖𝑖, times the distance 
from the hinge.  

The solutions to the boundary value problems described 
above are only possible through semi-analytical and 
numerical methods. To seek a full analytical solution, 
Michele and coauthors proposed transforming the 
problem to elliptical coordinates (𝜉𝜉, 𝜂𝜂, 𝑧𝑧), whose values are 
defined as  

 𝑥𝑥 =
𝑤𝑤
2

sinh 𝜉𝜉 sin 𝜂𝜂    ,   𝑦𝑦 =
𝑤𝑤
2

cosh 𝜉𝜉 cos 𝜂𝜂    ,   𝑧𝑧 = 𝑧𝑧 (10) 

Here, 𝑤𝑤 represents the width of the OSWEC device. The 
conversion benefits from the thin plate assumption, due to 
the fact that with 𝜉𝜉 = 0, the ellipse collapses into a segment 
of width 𝑤𝑤 representing the OSWEC flap. All the points on 
the flap’s surfaces can be described by 𝜉𝜉 = 0 and 𝜂𝜂 ∈
[0, 2𝜋𝜋]. This simplification makes it possible to formulate 
𝜙𝜙𝑅𝑅, 𝜙𝜙𝑆𝑆, and subsequently the hydrodynamic coefficients of 
added inertia, 𝜇𝜇, and radiation damping, 𝜈𝜈.  

The expressions of 𝜙𝜙𝑅𝑅 and 𝜙𝜙𝑆𝑆 in Eq. (4) can be written as 

 �𝜙𝜙
𝑅𝑅 = 𝜑𝜑𝑦𝑦𝑅𝑅(𝑥𝑥,𝑦𝑦)𝑍𝑍(𝑧𝑧)

𝜙𝜙𝑆𝑆 = 𝜑𝜑𝑦𝑦𝑆𝑆(𝑥𝑥, 𝑦𝑦)𝑍𝑍(𝑧𝑧) (11) 

From separation of variables and using the conditions that 
both 𝜙𝜙𝑅𝑅 and 𝜙𝜙𝑆𝑆 satisfy the Laplace’s equation, the 
following equation is obtained: 

𝑍𝑍′′ − 𝑘𝑘2𝑍𝑍 = 0 (12) 

Employing boundary conditions at the sea bottom (7) and 
on the water surface (6), the dispersion relation can be 
derived and the value of 𝑘𝑘 is evaluated as the root of 

𝜔𝜔2 = 𝑖𝑖𝑘𝑘 tanh(𝑘𝑘ℎ) (13) 

For imaginary eigenvalue 𝑘𝑘 = 𝑖𝑖κ, 𝜅𝜅 corresponds to the real 
solutions of 

𝜔𝜔2 = −𝑖𝑖𝜅𝜅𝑦𝑦 tan(𝜅𝜅𝑦𝑦ℎ)      ,     𝑛𝑛 = 1,2,3 … (14) 

It is noted that there is an infinite number of roots to the 
equation above. With the solutions of 𝑘𝑘𝑦𝑦, the 
corresponding normalized eigenfunction is derived as (see 
[10] for more details) 

 𝑍𝑍𝑦𝑦(𝑧𝑧) =
√2 cosh 𝑘𝑘𝑦𝑦(ℎ + 𝑧𝑧)

�ℎ + � 𝑖𝑖𝜔𝜔2� sinh2 𝑘𝑘𝑦𝑦ℎ�
1
2

     ,       n = 0,1,2,3 … (15) 

On the other hand, converting the Laplace’s equations for 
𝜑𝜑𝑅𝑅(𝑥𝑥,𝑦𝑦) and 𝜑𝜑𝑆𝑆(𝑥𝑥,𝑦𝑦) to the elliptical system, the two-
dimensional Helmholtz equations can be obtained  

 �
𝜕𝜕2

𝜕𝜕𝜉𝜉2
+
𝜕𝜕2

𝜕𝜕𝜂𝜂2
+
𝑤𝑤2𝑘𝑘𝑦𝑦2

8
(cosh 2𝜉𝜉 − cos 2𝜂𝜂)� �𝜑𝜑

𝑅𝑅(𝜉𝜉, 𝜂𝜂)
𝜑𝜑𝑆𝑆(𝜉𝜉, 𝜂𝜂)� = 0   (16) 

The general solutions to the Helmholtz equation in these 
coordinates are obtained using the solutions of the angular 
Mathieu and Hankel-Mathieu equations. These are 
analogous to the use of trigonometric functions in the 
Cartesian system or Bessel functions in cylindrical 
coordinates. Applying the boundary conditions specified 
in (6)-(9), the solutions of the radiated potential are derived 
as [3] 

 

𝜑𝜑𝑦𝑦𝑅𝑅(𝜉𝜉, 𝜂𝜂) =  −𝑖𝑖𝜔𝜔Ψfn𝑤𝑤 ∗ 

�
𝐵𝐵1

(2𝑚𝑚+1)𝐻𝐻𝐻𝐻2𝑚𝑚+1
(1) (𝜉𝜉 = 0, 𝜏𝜏𝑦𝑦)𝑠𝑠𝑅𝑅2𝑚𝑚+1(𝜂𝜂, 𝜏𝜏𝑦𝑦)
2𝐻𝐻𝐻𝐻𝜉𝜉2𝑚𝑚+1

(1) (0, 𝜏𝜏𝑦𝑦)

∞

𝑚𝑚=0

 
(17) 

With  

 𝑓𝑓𝑦𝑦 =
√2[𝑘𝑘𝑦𝑦(ℎ − 𝑐𝑐) sinh 𝑘𝑘𝑦𝑦ℎ + cosh 𝑘𝑘𝑦𝑦𝑐𝑐 − cosh 𝑘𝑘𝑦𝑦ℎ]

𝑘𝑘𝑦𝑦2(ℎ + (𝑖𝑖/𝜔𝜔2) sinh2 𝑘𝑘𝑦𝑦ℎ)
1
2

 (18) 

Here, 𝐻𝐻𝐻𝐻(1) and 𝑠𝑠𝑅𝑅 are called the odd Hankel-Mathieu and 
Mathieu functions of the first kind with order 𝑚𝑚, 
respectively. 𝐻𝐻𝐻𝐻𝜉𝜉  is the derivative of 𝐻𝐻𝐻𝐻 with respect to 𝜉𝜉. 
𝐵𝐵1 refers to the first coefficient associated with 𝑠𝑠𝑅𝑅 functions 
(refer to [11] for more details on Mathieu functions). 𝐽𝐽𝑗𝑗 is 
the Bessel function of the first kind and order 𝑗𝑗.  

It is noted that the equations presented here are slightly 
different from those in [3], which were derived for a 
bottom-fixed OSWEC instead of bottom-raised system. 
The effect of the bottom-to-hinge distance, 𝑐𝑐, on the 
hydrodynamic characteristics, has been added. The 
changes are reflected in the expressions for 𝑓𝑓𝑦𝑦 shown in 
(18). When 𝑐𝑐 = 0, the 𝑓𝑓𝑦𝑦 equation converges to that derived 
in [1]. 

The pitch-pitch hydrodynamic added inertia 𝜇𝜇55, 
radiation damping 𝜈𝜈55, and the wave-exciting torque 𝑋𝑋5 
are also obtained (from the normal surface integral of the 
velocity potential derivative) as 
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 𝜇𝜇55 = 𝜌𝜌𝑤𝑤2𝜋𝜋�𝑓𝑓𝑦𝑦2
∞

𝑦𝑦=0

𝐼𝐼𝑚𝑚 ��
𝐵𝐵1

(2𝑚𝑚+1)2𝑁𝑁𝐻𝐻2𝑚𝑚+1(0, 𝜏𝜏)
4𝐻𝐻𝐻𝐻𝜉𝜉2𝑚𝑚+1

(1) (0, 𝜏𝜏)

∞

𝑚𝑚=0

� (19) 

 𝜈𝜈55 = −𝜌𝜌𝜔𝜔𝑤𝑤2𝑓𝑓𝑜𝑜2𝜋𝜋 𝑅𝑅𝑅𝑅 ��
𝐵𝐵1

(2𝑚𝑚+1)2𝑁𝑁𝐻𝐻2𝑚𝑚+1(0, 𝜏𝜏)
4𝐻𝐻𝐻𝐻𝜉𝜉2𝑚𝑚+1

(1) (0, 𝜏𝜏)

∞

𝑚𝑚=0

� (20) 

And  

 𝑋𝑋5 = 𝜌𝜌𝜔𝜔𝑖𝑖𝑤𝑤2𝑓𝑓𝑜𝑜𝑑𝑑𝑜𝑜𝜋𝜋 cos𝜃𝜃 ��
𝐵𝐵1

(2𝑚𝑚+1)2𝑁𝑁𝐻𝐻2𝑚𝑚+1(0, 𝜏𝜏)
4𝐻𝐻𝐻𝐻𝜉𝜉2𝑚𝑚+1

(1) (0, 𝜏𝜏)

∞

𝑚𝑚=0

�   (21) 

with  

 𝑑𝑑𝑜𝑜 =
𝑖𝑖𝑘𝑘𝑜𝑜(ℎ + (𝑖𝑖/𝜔𝜔2) sinh2 𝑘𝑘𝑜𝑜ℎ)

1
2

√2𝜔𝜔 cosh 𝑘𝑘𝑜𝑜ℎ
 (22) 

Here, 𝜌𝜌 is the fluid density. In order to quantify the 
structural performance characteristics of the OSWEC 
(discussed in the next section), the study also expands 
upon the work presented in [3] to derive the analytical 
formula for the surge wave load as 

 
𝑋𝑋1 = 𝑖𝑖𝜔𝜔𝜌𝜌� 𝜙𝜙𝑆𝑆(𝜉𝜉, 𝜂𝜂, 𝑧𝑧)𝑛𝑛1𝑑𝑑𝑑𝑑

𝑆𝑆𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏
 

= −𝑖𝑖𝜔𝜔𝜌𝜌
𝑤𝑤
2
� 𝜙𝜙𝑆𝑆(𝜉𝜉, 𝜂𝜂)𝑍𝑍𝑜𝑜(𝑧𝑧) sin 𝜂𝜂 𝑑𝑑𝑧𝑧𝑑𝑑𝜂𝜂
𝑆𝑆𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏

 
(23) 

 𝑋𝑋1 = 𝜌𝜌𝜔𝜔𝑖𝑖𝑤𝑤2𝜆𝜆𝑜𝑜𝑑𝑑𝑜𝑜𝜋𝜋 cos𝜃𝜃 ��
𝐵𝐵1

(2𝑚𝑚+1)2𝑁𝑁𝐻𝐻2𝑚𝑚+1(0, 𝜏𝜏)
4𝐻𝐻𝐻𝐻𝜉𝜉2𝑚𝑚+1

(1) (0, 𝜏𝜏)

∞

𝑚𝑚=0

� (24) 

With 

 𝜆𝜆𝑦𝑦 =
√2(sinh 𝑘𝑘𝑦𝑦ℎ − 𝑠𝑠𝑖𝑖𝑛𝑛ℎ 𝑘𝑘𝑦𝑦𝑐𝑐)

𝑘𝑘𝑦𝑦 �ℎ + 𝑖𝑖
𝜔𝜔2 sinh2 𝑘𝑘𝑦𝑦ℎ�

1
2

     ,     𝑛𝑛 = 0,1,2,3, … (25) 

The hydrodynamic coefficients of surge-pitch added 
inertia, 𝜇𝜇15, and radiation damping, 𝜈𝜈15, are required to 
obtain the hinge surge reaction force and are derived as 

 𝜇𝜇15 =
𝜌𝜌
𝜔𝜔
�𝐼𝐼𝑚𝑚
∞

𝑦𝑦=0

�� 𝜙𝜙𝑦𝑦𝑅𝑅(𝜉𝜉, 𝜂𝜂)𝑍𝑍𝑦𝑦(𝑧𝑧)𝑛𝑛1𝑑𝑑𝑑𝑑
𝑆𝑆𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏

�  

 =
𝜌𝜌
𝜔𝜔
𝑤𝑤
2
�𝐼𝐼𝑚𝑚
∞

𝑦𝑦=0

�� 𝜙𝜙𝑦𝑦𝑅𝑅(𝜉𝜉, 𝜂𝜂)𝑍𝑍𝑦𝑦(𝑧𝑧) sin 𝜂𝜂 𝑑𝑑𝑧𝑧 𝑑𝑑𝜂𝜂
𝑆𝑆𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏

� (26) 

 
𝜇𝜇15

= 𝜌𝜌𝑤𝑤2𝜋𝜋�𝑓𝑓𝑦𝑦𝜆𝜆𝑦𝑦

∞

𝑦𝑦=0

𝐼𝐼𝑚𝑚 ��
𝐵𝐵1

(2𝑚𝑚+1)2𝑁𝑁𝐻𝐻2𝑚𝑚+1(0, 𝜏𝜏)
4𝐻𝐻𝐻𝐻𝜉𝜉2𝑚𝑚+1

(1) (0, 𝜏𝜏)

∞

𝑚𝑚=0

� (27) 

 

 𝜈𝜈15 = −𝜌𝜌𝑅𝑅𝑅𝑅 �� 𝜙𝜙𝑜𝑜𝑅𝑅(𝜉𝜉, 𝜂𝜂)𝑍𝑍𝑜𝑜(𝑧𝑧)𝑛𝑛1𝑑𝑑𝑑𝑑
𝑆𝑆𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏

�  

 = −𝜌𝜌𝑅𝑅𝑅𝑅 �� 𝜙𝜙𝑜𝑜𝑅𝑅(𝜉𝜉, 𝜂𝜂)
𝑤𝑤
2

sin 𝜂𝜂 𝑑𝑑𝜂𝜂
𝑆𝑆𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏

𝑍𝑍𝑜𝑜(𝑧𝑧)𝑑𝑑𝑧𝑧� (28) 

 𝜈𝜈15 = −𝜌𝜌𝜔𝜔𝑤𝑤2𝑓𝑓𝑜𝑜𝜆𝜆𝑜𝑜𝜋𝜋 𝑅𝑅𝑅𝑅 ��
𝐵𝐵1

(2𝑚𝑚+1)2𝑁𝑁𝐻𝐻2𝑚𝑚+1(0, 𝜏𝜏)
4𝐻𝐻𝐻𝐻𝜉𝜉2𝑚𝑚+1

(1) (0, 𝜏𝜏)

∞

𝑚𝑚=0

� (29) 

  

Lastly, the complex amplitude of pitch rotation relates to 
the frequency domain coefficients as 

Ψ =
𝑖𝑖𝑋𝑋5

−𝜔𝜔2(𝐼𝐼55 + 𝜇𝜇55) + 𝑖𝑖𝜔𝜔�𝜈𝜈55 + 𝜈𝜈𝑔𝑔� + 𝐶𝐶55 + 𝐶𝐶𝑔𝑔
 (30) 

Where 𝜈𝜈𝑔𝑔 and 𝐶𝐶𝑔𝑔  are the power take off (PTO) damping and 
restoring coefficients, respectively (to be discussed in the 
next section), 𝐼𝐼55   is the mass moment of inertia of a bottom-
hinged flap, and 𝐶𝐶55 is the combined hydrostatic and 
gravitational restoring coefficient which derives from the 
first order truncation of the Taylor series expansion of the 
equation of motion [12]. The latter two are calculated as 

 𝐼𝐼55 =
1
3
𝑀𝑀𝐻𝐻𝑓𝑓2 �1 + �

𝑝𝑝
2𝐻𝐻𝑓𝑓

�
2

� 
 

(31) 

 𝐶𝐶55 = �𝜌𝜌∀𝑟𝑟𝑏𝑏 − 𝑀𝑀𝑟𝑟𝑔𝑔�𝑖𝑖  (32) 

Where 𝑀𝑀, 𝐻𝐻𝑓𝑓, and 𝑝𝑝 are the mass, height, and thickness of 
the flap, ∀ is the displacement of the flap (here the entire 
body is submerged such that ∀= 𝑤𝑤𝑝𝑝𝐻𝐻𝑓𝑓), 𝑟𝑟𝑏𝑏 is the center of 
buoyancy, and 𝑟𝑟𝑔𝑔 is the center of gravity. These parameters 
will be defined for the validation and demonstration 
models in later sections. 

B. Performance characterization 
The early stages of sizing and design for a wave energy 

converter concept are often based on fundamental 
performance estimates—namely from metrics associated 
with power generation, capital costs, and structural 
considerations, among others. OSWEC designs, in 
particular, are largely driven by structural costs and limits 
resulting from the large hydrodynamic loads experienced 
during operation [6]. To demonstrate the utility of 
analytical modelling during the early stages of design, a 
few relevant performance characteristic metrics are 
defined here and used later to demonstrate a parametric 
study on the geometry of an OSWEC. Fortunately, many 
of the common, first-order metrics used in WEC design are 
readily calculated by the frequency domain hydrodynamic 
coefficients output by the model.  

A common measure of wave energy converter power 
performance is the capture width (𝐶𝐶𝐶𝐶), defined as 

 𝐶𝐶𝐶𝐶 =
𝑃𝑃𝑇𝑇
𝑤𝑤𝑃𝑃𝑊𝑊

  (33) 

Where 𝑃𝑃𝑇𝑇 is the time-averaged power absorbed by the 
power take off (as defined in subsection C, Power 
estimation), 𝑤𝑤 is the device width, and PW is the time-
averaged wave power per unit crest-width 

 𝑃𝑃𝑊𝑊 =
1
4
𝜌𝜌𝑖𝑖𝑖𝑖2� 

𝑖𝑖
𝑘𝑘𝑜𝑜

tanh 𝑘𝑘𝑜𝑜ℎ �1 +
2𝑘𝑘𝑜𝑜ℎ

sinh 2𝑘𝑘𝑜𝑜ℎ
� (34) 

C. Power estimation 
Power estimates are calculated assuming the power 

take-off is capable of providing variable damping to the 
system, controlled on a per-wave period basis. Under this 
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condition, the time-averaged power, per wave-amplitude 
squared, absorbed by an ideal PTO unit is [13] 

 
𝑃𝑃𝑇𝑇
A2 =

1
4

|𝑋𝑋5|2

𝜈𝜈55
1

1 + 𝜀𝜀
 (35) 

Where the coefficient 𝜀𝜀 is defined as, 

 𝜀𝜀 = �1 + �
𝐶𝐶55 − 𝜔𝜔2(𝐼𝐼55 + 𝜇𝜇55)

𝜔𝜔𝜈𝜈55
�
2

 (36) 

The optimal PTO damping coefficient is then related to 
the wave radiation damping by, 

 νg = ν55ε (37) 

 Provided the relevant hydrodynamic coefficients are 
available, the time-averaged power expression (35) can be 
computed as a function of wave frequency. With a known 
wave amplitude, the expression can be scaled to obtain an 
estimate of the capture width (33) for a given OSWEC 
geometry.  

Rather than a single wave amplitude-frequency 
combination, some frequency domain metrics can be 
evaluated for an irregular sea state. For instance, a wave 
energy spectrum can readily be incorporated into the time-
averaged power expression (35) to obtain statistics on the 
power production during an irregular sea state [14].  In its 
most basic form, the energy spectrum is a superposition of 
the energy components of each wave that contributes to an 
irregular sea state. The following relationship can be 
defined between the energy spectrum and each wave 
amplitude: 

 𝑑𝑑(𝜔𝜔)𝑑𝑑𝜔𝜔 =
1
2
𝑖𝑖𝑖𝑖2 (38) 

Where 𝑑𝑑(𝜔𝜔) is the wave energy spectrum and 𝑖𝑖𝑖𝑖 is the 
amplitude of each individual wave that contributes to the 
irregular sea state. This expression can be used in 
conjunction with the time-averaged power per wave-
amplitude squared (35) and integrated over a range of 
frequencies to obtain the time-averaged power absorbed 
by the PTO: 

 𝑃𝑃𝑇𝑇 =
1
2
�

|𝑋𝑋5|
𝜈𝜈55

1
1 + 𝜀𝜀

𝑑𝑑(𝜔𝜔)𝑑𝑑𝜔𝜔  
 

(39) 

In this paper, the Bretschneider Spectrum is elected for 
use,  

 𝑑𝑑(𝜔𝜔) =
5

16
𝜔𝜔𝑚𝑚4

𝜔𝜔5 𝐻𝐻1 3⁄
2  exp�−

5
4
𝜔𝜔𝑚𝑚4

𝜔𝜔4� 
 

(40) 

Where 𝜔𝜔𝑚𝑚 is the modal (or peak) frequency and 𝐻𝐻1/3 is 
the significant wave height. 

D. Structural Loads 
Knowledge of the coupled surge-pitch added mass and 

damping coefficients derived in (27) and (29), respectively, 
enables the estimation of reaction forces at the hinge of the 
OSWEC (point 𝑂𝑂 in Fig. 1). Centrifugal forces and force 
components in the heave direction are neglected in this 
exercise. 

The hinge surge reaction force is [12]: 

 𝐹𝐹𝑅𝑅1 = (−𝜔𝜔2𝜇𝜇15 + 𝑖𝑖𝜔𝜔𝜈𝜈15)Ψ − 𝑖𝑖𝑋𝑋1  (41) 

 The contribution of this force to the bending moment at 
the base is then obtained as 

 𝑀𝑀𝑏𝑏
𝑜𝑜 = 𝑐𝑐 𝐹𝐹𝑅𝑅1  (42) 

With the substitution of (30) into (40), it is possible to 
obtain a spectrum of 𝐹𝐹𝑅𝑅1 and thus 𝑀𝑀𝑏𝑏

𝑜𝑜, from which further 
statistics can be extracted. Here, the hinge surge reaction 
force and base bending moment will instead be evaluated 
using the design wave concept, in which the spectrum is 
replaced with a single wave at the significant wave height 
and peak period (described in Section IV. Demonstration). 

III. VALIDATIONS 

E. Hydrodynamic coefficients and wave-exciting forces 
To substantiate the proposed theoretical model, 

analytically obtained hydrodynamic coefficients are 
compared here with numerical results from WAMIT 
(version 7.2). The WAMIT model is representative of a 
laboratory-scale, bottom-raised OSWEC previously tested 
in a 4.5-m deep wave basin at the University of Maine’s 
Harold Alfond W2 Ocean Engineering Laboratory.  Time-
domain numerical simulations, produced using 
hydrodynamic coefficients from the WAMIT model, were 
previously validated against data from the wave basin 
experiments. The simulated and experimental time series 
trends compared exceptionally well, indicating the model 
hydrodynamic coefficients provide a valid representation 
of the real-world OSWEC dynamics. The dimensions and 
geometric properties of the system are detailed in Table 1. 
While the analytically obtained hydrodynamics are based 
on a thin-flap assumption, a finite thickness is defined to 
achieve an accurate mass moment of inertia.  

 
Fig. 2 presents a comparison of the theoretical quantities 

derived in (19)—(29)  with numerically obtained WAMIT 
quantities. These include the pitch added mass and 
radiation damping, surge-pitch added mass and radiation 
damping, pitch excitation moment magnitude and phase, 
and surge excitation moment magnitude and phase. 
Coefficients and excitation forces are evaluated over a 

TABLE 1 
DIMENSIONS AND PROPERTIES OF THE VALIDATION MODEL 

Symbol Name Value Unit 

h Water depth 4.5 m 

c Hinge to seabed 3.85 m 
Hf Flap height 0.61 m 
w Flap width 0.94 m 
p Flap thickness 0.1 m 
M Flap mass 25.7 kg 
I55 Mom. inertiaa 4.25 kg-m2 
C55 Linear hydrostatic 

restoring coeff.a 

137 kg-m2 s-2 

a Calculated about the hinge point 
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frequency range of 0.1 rad/s to 11 rad/s with a step size of 
0.1 rad/s. A total of 15 frequencies (𝑛𝑛 = 15) were retained 
in the solution to (17).  

Hydrodynamic results demonstrate good similarity 
between the numerical and theoretical calculations. The 
trends of the added mass, radiation damping, and wave 
excitation magnitude coefficients are captured well by the 
theoretical model. A notable deviation in the wave-
excitation torque and force phase angles (subfigs c and d) 
is observed at higher frequencies; the analytical model 
predicts a convergence of the phase angles toward zero as 
the frequency increases, whereas the WAMIT model 
predicts an offset close to 30 degrees. These disparities 
begin at a frequency of 5 rad/s. Variations in the device 
thickness between the two models may be a key factor. The 
analytical model assumes a flat plate (negligible 
thickness), whereas the numerical model is representative 
of the physical model tested in the wave basin which has a 
width to thickness aspect ratio of 9.4. Differences in 
boundary conditions beneath the OSWEC may also 
contribute to deviation between the analytical and 
numerical results. The no-slip condition from 𝑧𝑧 𝜖𝜖 [−ℎ, 𝑐𝑐) in 

Eq. (8) is representative of a foundation that blocks flow 
beneath the OSWEC. This foundation is not modeled in 
WAMIT, which in turn enables nonzero flow velocities to 
be modeled beneath the device. The reason for this 
variation will be further investigated in a subsequent 
study.  
 Despite the small variations, the theoretical model 
shows clear advantage compared to the numerical 
calculations in computational speed. While the theoretical 
model takes only a few seconds to compute all the cases, it 
takes several minutes on average to run one frequency case 
in WAMIT.  

IV. DEMONSTRATION 

A great benefit of the use of theoretical models in WEC 
design derives from their ability to explore the available 
design space with computational ease. This capability is 
demonstrated here using the theoretical model to perform 
a sweep over a range of dimensions. Frequency-dependent 
performance metrics, defined in sections C-D, are 
evaluated as a function of parameterized OSWEC 

 

  
  (a)   (b)    

  
  (c)   (d)    

Fig. 2. Comparison of relevant hydrodynamic coefficients obtained using the analytical model (solid) and WAMIT (dashed).  
(a) pitch added mass and pitch wave radiation damping; (b) coupled surge-pitch added mass and coupled surge-pitch wave radiation 
damping; (c) wave-excitation pitch moment magnitude and phase; and (d) wave-excitation surge force magnitude and phase. All curves 
shown in black correspond to the left-hand axis, and curves shown in red correspond to the right-hand axis. All coefficients are calculated 
with respect to rotation about the flap hinge. 
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dimensions for a given set of environmental conditions. 
The environmental conditions, body dimensions, and 
demonstration results are discussed in the next sections. 

F. Environmental Conditions 
A full-scale irregular wave state from the U.S. 

Department of Energy Wave Energy Prize [16] was used to 
define the environmental wave conditions of the 
demonstration. Full-scale irregular wave state 2 (IWS 2) 
was elected for use. This wave state has a peak period 𝑇𝑇𝑝𝑝 =
9.86 s  significant wave height 𝐻𝐻𝑥𝑥 = 2.64 m , and incident 
wave angle  𝜃𝜃 = 0 deg. The irregular sea state was defined 
by a Bretschneider wave energy spectrum (38). The 
environmental conditions used in demonstration are 
summarized in Table 2. 

 

G. Body dimensions 
Five dimensions define the body in the system 

presented in Fig. 1. These include water depth h, flap 
height Hf, distance from the hinge to the seabed c, width w, 
and thickness p.  If the height of the flap is constrained such 
that the flap always extends from the hinge to the free 
surface (i.e., Hf = h-c), the thickness is parameterized as 
function of width (w/p = constant), and if the mean water 
depth is assumed constant, the number of free dimensions 
can be reduced to two: the flap width and the distance 
from the hinge to the seabed.  

Here, the flap width w ranges from 1/3 of the water 
depth to the full water depth (the flap is as wide as the 
water is deep) in increments of 1 m. The distance from the 
hinge to the seabed c ranges from 0 m to 2/3 of the water 
depth in increments of 1 m. Though the theoretical model 
is reliant on a thin-plate assumption, a thickness is defined 
to obtain reasonable mass moment of inertia and body 
volume properties. The width-to-thickness ratio is held 
constant at w/p = 30. To parameterize mass, a mass density 
𝜌𝜌𝑚𝑚  equivalent to half the water density is assigned. For 
each set of dimensions, the body mass-moment of inertia 
and linear, combined hydrostatic and gravitational 
restoring coefficient are calculated using (31) and (32). 
These dimensions and properties are defined in Table 3. 

TABLE 2 
ENVIRONMENTAL CONDITIONS USED IN THE DEMONSTRATION  

Symbol Name Value Unit 

S(ω) Energy spectrum Bretschneider - 

Tp Peak period 9.86 s 
Hs Sig. wave height 2.64 m 
ωmin Min. frequency  0.25 rad s-1 
ωmax Max. frequency 3.00 rad s-1 
dω Frequency increment 0.01 rad s-1 

 

 
  (a)   (b)     (c)  
 

 Fig. 4. Performance characterization metrics as a function of normalized distanced to seabed c/h and normalized width w/h: (a) capture 
width ratio; (b) surge hinge reaction force; (c) foundation base bending moment.  

  
  (a)   (b)   (c)  
 
 Fig. 3. Hydrodynamic coefficients as a function of frequency and normalized width w/Hf for a constant flap height Hf = h/2: (a) pitch added 
mass; (b) pitch radiation damping; (c) excitation pitch moment. 
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H. Variation of hydrodynamic coefficients with frequency 
Variations in frequency-dependent pitch-added mass, 

pitch radiation damping, and pitch excitation moment 
with normalized width (w/Hf) are presented in Fig. 3. 
Results are shown for a single flap height of Hf = h/2. As 
width is increased, these coefficients increase in 
magnitude, and peak values shift toward lower 
frequencies. These trends are consistent with WAMIT 
results from Kurniawan and Moan [15], who conducted a 
similar frequency-domain sweep across widths on a 
bottom-raised OSWEC. Similar trends have been well-
documented in studies on bottom-fixed OSWECs [17][18]. 

I. Parametric study on width and height 
Performance characteristics, displayed as a function of 

the normalized distance to seabed (c/h) and normalized 
width (w/h), are presented in Fig. 4. The capture width 
ratio (subfig. a) is representative of the ratio of power 
absorbed by an ideal PTO during operation in the IWS 2 
sea state to the total wave power available in that sea state, 
obtained using (33)-(40). The surge force at the hinge 
(subfig. b) and its resulting contribution to the bending 
moment about the foundation base (subfig. c) are taken as 
the maximum values in response to a regular design wave 
at the significant wave height and peak period.  

Under the constraints used in the demonstration 
calculations, the CWR increases dramatically with 
increasing width and decreases slightly as the distance 
from the seabed increases.  The maximum surge hinge 
reaction force follows a similar trend. This result is 
expected; as the OSWEC grows in width or height (recall 
Hf = h-c), its face occupies a larger portion of the water 
cross-section, hence increasing the magnitude of the 
hydrodynamic coefficients and excitation loads. The 
foundation base bending moment is maximized at the full 
width and at the largest distance from the seabed. Though 
the surge hinge reaction force decreases with increasing 
distance, this change is overcome by the increase in 
moment arm as the hinge is moved further from the 
seabed. As both the capture width ratio and hinge surge 
foundation force are maximized at the same condition (i.e., 
when w/h is maximized and c/h is minimized, over their 
observed ranges), a conclusive argument cannot be made 
as to the optimal dimensions without further constraints. 

These constraints could include knowledge of the 
structural limits of the internal hinge support mechanisms 
(e.g., bearings, shafts, shaft mounts, etc.), as well as the 
geometry and material limits of the foundation. This trade-
off between power absorption and loading on OSWEC 
designs has been the subject of previous studies 
[13][14][19]. Contributions from the hydrodynamic 
loading on the foundation itself, as well as the PTO torque, 
are not included in this calculation. The effect of these 
loads on the bending moment may be significant 
depending on the size and shape of the foundation, as well 
as the magnitude of PTO damping coefficient.  

V. CONCLUSIONS 

An understanding of the relationships between key 
performance characteristics and the parameters in the 
available design space is fundamental to the design 
process. Closed-form mathematical models, which benefit 
from their ease of implementation and fast performance, 
are well-suited for this task. In this study, the work of 
Michele et al. [1] is extended to model the hydrodynamic 
characteristics of a bottom-raised OSWEC. Closed-form 
formulas for pitch-pitch and surge-pitch added inertia and 
radiation damping are presented. The results are 
employed to investigate the power production as well as 
the structural load on the support foundations due to the 
motion of the OSWEC. 

Theoretical values of the hydrodynamic coefficients 
were validated with numerically obtained results from 
WAMIT. Overall, the trends are well-captured. Excellent 
agreement (within 2%) was recorded for added mass, 
radiation damping, and wave excitation force/torque 
magnitudes in both pitch-pitch and surge-pitch directions. 
On the other hand, variations between the analytically and 
numerically predicted wave-excitation phases are noted at 
higher frequencies. While the analytical phase angles show 
convergence toward zero as the frequency increases, the 
data from WAMIT indicate an offset close to 30 degrees. 

Discrepancies in the wave excitation force and torque 
phase angles could be driven by the thin-plate assumption 
of the theoretical model, as well as differences in boundary 
conditions between the theoretical model and WAMIT, the 
latter of which does not model the presence of a flow-
blocking foundation.  Investigations into these variations 
at the high-frequency region will be explored further in a 
subsequent study.  

The model was used in a demonstration study to 
perform a rapid sweep of design parameter space. 
Variations in pitch-pitch added mass, radiation damping, 
and excitation moment were explored as a function of 
frequency for a range of widths. These trends agreed well 
with numerical studies presented in the literature. Finally, 
trends in power performance and measures of the 
dynamic structural loading from the OSWEC on the 
foundation were observed over a range of widths and 
hinge heights.  The well-known trade-off between power 

TABLE 3 
DIMENSIONS AND PROPERTIES OF DEMONSTRATION MODEL 

Symbol Name Value Unit 

h Water depth 30 m 

c Hinge to seabed 0:1:20:a m 
Hf Flap height 10:1:30 m 
w Flap width 10-30 m 
w/p Flap width-to -

thickness ratio 
30 m/m 

ρm Mass density 500 kg m-3 
a start:stepsize:stop 
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absorption and structural loading was highlighted. With 
further implementation, a designer could use this 
theoretical model in conjunction with a multi-objective 
optimization method to quickly narrow free parameters to 
a near-optimal subset. 

APPENDIX 

Numerical Accuracy Validation 
The analytical model can be validated by evaluating the 

exciting torque on the structure employing two 
approaches. The first method employs the surface integral 
of the scattered potential while the second technique 
utilizes the Haskind-Hanaoka relation. Using the first 
approach, the exciting torque was derived in [1] as 
 

 𝑋𝑋5 = −𝑖𝑖𝜔𝜔𝜌𝜌𝑓𝑓𝑜𝑜
𝑤𝑤
2
� 𝜙𝜙𝑆𝑆(0,𝜂𝜂) sin 𝜂𝜂 𝑑𝑑𝜂𝜂
2𝜋𝜋

0
  

 
(43) 

 
The result to this expression is presented in Equation (21) 
with the parameters modified accordingly to account for 
the bottom-raised effect. On the other hand, using 
Haskind-Hanaoka relation for 3D floating body, the 
exciting torque is formulated as (see Chapter 8 in [10] for 
derivation details). 
 

 𝑋𝑋5 = −
4
𝑘𝑘
𝜌𝜌𝑖𝑖𝑖𝑖𝒜𝒜𝑅𝑅 �

𝜋𝜋
2
� cos𝜃𝜃 

 
(44) 

 
𝒜𝒜𝑅𝑅  is called the angular variation of the radially 

spreading wave [10] and having the unit of time.  
 

On the other hand, the general form of asymptotic 
behavior of the radiation potential in the far field (𝜉𝜉 → ∞) 
can be written as (Equation 8.6.12 in [10]) 
 

 �𝜙𝜙𝑦𝑦𝑅𝑅
∞

𝑦𝑦=0

~
𝑖𝑖𝑖𝑖𝒜𝒜𝑅𝑅(𝜂𝜂)

𝜔𝜔
cosh 𝑘𝑘(ℎ + 𝑧𝑧)

cosh𝑘𝑘ℎ
 �

2
𝜋𝜋𝑘𝑘𝑟𝑟

𝑅𝑅𝑖𝑖�𝑘𝑘𝑘𝑘−
𝜋𝜋
4� 

 
(45) 

 
With 𝑟𝑟 = 𝑤𝑤𝑒𝑒𝜉𝜉

4
 is the radius expressed in terms of the 

radial elliptic coordinate 𝜉𝜉 [1]. Equating this with equation 
(17), and using the asymptotic formula of Hankel-Mathieu 
function of the first kind, 𝐻𝐻𝑜𝑜2𝑚𝑚+1

(1) (𝜉𝜉 → ∞, 𝜏𝜏𝑦𝑦), as [11]: 
 

 𝐻𝐻𝑜𝑜(𝜉𝜉 → ∞, 𝜏𝜏𝑦𝑦) = − 𝑆𝑆2𝑛𝑛+1
�𝜏𝜏𝑛𝑛𝐵𝐵1

�
2

𝜋𝜋�𝜏𝜏𝑛𝑛𝑒𝑒𝜉𝜉
𝑅𝑅𝑖𝑖��𝜏𝜏𝑛𝑛𝑒𝑒

𝜉𝜉−3𝜋𝜋4 �  
 

(46) 

With 𝜏𝜏𝑦𝑦 = �𝑤𝑤𝑘𝑘𝑛𝑛
4
�
2
 

 𝐻𝐻𝑜𝑜(𝜉𝜉 → ∞, 𝜏𝜏𝑦𝑦) = −4𝑆𝑆2𝑛𝑛+1
𝑤𝑤𝑘𝑘𝑛𝑛𝐵𝐵1

� 2
𝜋𝜋𝑘𝑘𝑛𝑛𝑘𝑘

𝑅𝑅𝑖𝑖�𝑘𝑘𝑛𝑛𝑘𝑘−
3𝜋𝜋
4 �  

 
(47) 

 
𝒜𝒜𝑅𝑅(𝜂𝜂) can then be found as 

 

𝒜𝒜𝑅𝑅(𝜂𝜂)

= − �
2𝜔𝜔𝑍𝑍𝑜𝑜𝑓𝑓𝑜𝑜 �𝑠𝑠𝑅𝑅2𝑚𝑚+1 �

𝜋𝜋
2 , 𝜏𝜏𝑦𝑦��

2
𝑠𝑠𝑅𝑅2𝑚𝑚+1𝜂𝜂(0, 𝜏𝜏𝑦𝑦)

𝑖𝑖𝑘𝑘𝑜𝑜𝐻𝐻𝐻𝐻2𝑚𝑚+1𝜉𝜉(0, 𝜏𝜏𝑦𝑦)

∞

𝑚𝑚=0

 

 

(48) 

 
Substituting this into equation (44), 𝑋𝑋5 can be calculated.  

 

Fig. 5 shows the comparison of the wave-excitation pitch 
moment magnitude and phase using the two approaches 
with 𝑚𝑚 = 7 (the number of orders used in approximating 
the Mathieu functions). This value of 𝑚𝑚 allows to obtain 1) 
the difference in the order of 𝑂𝑂(10−13) between the two 
methods, and 2) the convergences in the wave-exciting 
pitch and phase values with the maximum differences of 
0.27% compared to the results obtained with 𝑚𝑚 = 6.  
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Fig. 5 – Comparison of wave-exciting pitch moment magnitude 

and phase using 1) Diffraction method and 2) Haskind-Hanaoka 
relation. The results were obtained with 𝑚𝑚 = 7. 
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