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a b s t r a c t

Improvements in wind energy technology, reduced costs, and ambitious clean energy goals have led to
projections of high wind contribution in coming years. Developing methodologies to design wind plants
with a variety of siting constraints and turbine sizes helps enable high wind penetration, and gain a
better understanding of how wind plants are sensitive to setback constraints and turbine design. In this
paper, we present a two-step optimization method to simultaneously determine the optimal number
of turbines and their locations in a wind plant domain divided into many small, discrete parcels. We
present the optimized performance metrics of a wind plant optimized with different turbine sizes and
ratings, and with different siting restrictions within the wind plant. Our results indicate that taller and
larger turbines are more sensitive to increasing siting constraints. We also compare the optimal wind
plant layouts and performance for wind plants optimized for minimum COE and maximum profit.
Wind plants optimized for profit had 130%–190% of the capacity of plants optimized for COE, which
demonstrates that the optimal results are greatly affected by the objective function, which should be
carefully considered. Finally, in this paper we demonstrate the effect of increasing siting constraints on
wind plant capacity density, and how the results change when different land areas are used to calculate
capacity density. When using the entire wind plant boundary area to determine capacity density,
increasing siting constraints decreases the capacity density. However, when we only use the available
area (the area left after removing the siting constraints) to calculate the capacity density, increasing the
siting constraints increases capacity density. This is a critical insight because of how capacity density
is typically defined and used in research, and has important implications for assessment of technical
potential and capacity expansion modeling, as well as future wind deployment potential.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Clean energy ambitions and declining costs are helping to
rive current wind deployment in the United States, potentially
eading wind energy to be a major contributor to the U.S. electric
ower system over the next several decades. The potential for
ind energy to be a major contributor to U.S. electric needs
as been demonstrated through sophisticated capacity expan-
ion models (Cole et al., 2020; Center, 2020; Williams et al.,
021) that optimize regional wind resources with local energy
emand, cost, and competition among other energy-generating
echnologies. Underpinning these capacity expansion models are
eospatial assessments of wind technical potential, which capture
he quantity, quality, and cost of evacuating the site-dependent
esources to the electric grid. Previous estimates of wind techni-
al potential have collectively concluded that the United States
oes indeed have enough wind resource to meet even the most

∗ Corresponding author.
E-mail address: pj.stanley@nrel.gov (A.P.J. Stanley).
 T

ttps://doi.org/10.1016/j.egyr.2022.02.226
352-4847/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
stringent clean energy targets (Lopez et al., 2012, 2021; Eurek
et al., 2017). However, recent wind technical potential literature,
through use of unprecedented spatial resolution, has illuminated
the effects that local siting challenges could have on signifi-
cantly lowering wind potential (Lopez et al., 2021). Further, a
companion journal article to Lopez et al. (2021) demonstrated
how these local siting constraints could result in a diminished
wind energy contribution, increased energy costs, and slower
CO2 emissions reductions (Mai et al., 2021). These manuscripts
ighlight the need for more detailed spatial modeling to capture
iting constraints faced by wind developers and their effects on
ational deployment projections. They also take a step forward in
valuating how wind turbine innovation may play a key role in
nlocking wind potential when faced with limited siting options.
While those recent manuscripts highlight the importance of

he challenges and advance methods for capturing detailed spatial
onstraints, they do not fully capture interactions between tur-
ine innovation and varying siting conditions, which the authors
oted as a limitation and also called for in Nitsch et al. (2019).

his limitation is apparent in the literature, as there is a reliance
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n estimating wind capacity through use of a constant capac-
ty density estimate. Capacity density is a simple relationship
etween available land area and the amount of capacity that
ould be deployed, represented as MW/km2. Capacity density is
enerally determined through empirical assessment (Denholm
t al., 2009) or through rotor-based spacing requirements (Rinne
t al., 2018). Although these methods have been used through-
ut the literature to determine wind technical potential, they
ave significant limitations. Specifically, empirical estimates are
ased on a historic fleet of wind turbines and do not enable
he exploration of wind turbine innovations (e.g., taller tow-
rs). Further, studies often rely upon a national mean capacity
ensity even though regional variations exist in the empirical
ata (Lopez et al., 2021). Second, other literature derives capac-
ty density from rotor-based spacing requirements (Rinne et al.,
018), which generally assumes a uniform grid of turbines and
oes not enable the assessment of wind energy as it is deployed
n relation to landscape features, land use and ownership pat-
erns, and the built environment. These methods have historically
nabled us to explore wind energy’s potential. However, there is
need for more sophisticated methods to enable us to capture

ocation-specific deployment opportunities while simultaneously
odeling the interaction of specific turbine designs. This is partic-
larly important in siting constrained environments and under a
eep decarbonization future, in which there is a tension between
imited land availability and massive required deployment.

The need for this research is driven by innovation, which
requently results in increased wind turbine size and scale as well
s projections of high wind deployment in the future potentially
n locations with higher structure densities. More specifically,
urbine tip heights and ratings are increasing which, as we show,
ill potentially decrease deployed capacity potential for land
onstrained sites and will increase the complexity of siting tur-
ines for all sites with structures or infrastructure. We find that
ind plant design and performance is sensitive to each of the
rivers we study including: turbine scale, setback requirements,
nd objective function.
In this paper, we present three major contributions. First, we

ntroduce a novel two-step optimization methodology to opti-
ize wind plant layouts with varying degrees of siting restric-

iveness. For a variety of reasons, wind plants are required to
ave some minimum spacing between turbines and different
nfrastructure and geographic features within the boundary of the
lant. These minimum spacing requirements are called setbacks.
n a wind plant, requiring certain setbacks to different structures
ithin the plant boundary often results in a domain that is
ivided into several discrete parcels. Performing layout optimiza-
ion in this domain is extremely difficult. Second, we present our
esults on how optimal wind plant design and performance is
ensitive to different factors, and what the implications are for
apacity density assumptions. We consider turbine scale, or how
he physical height and rotor diameter of a turbine, affect how
hey are placed. We consider different setback requirements, and
ow different turbine sizes are sensitive to decreases in available
rea in which to site turbines. We also consider two objective
unctions, cost of energy (COE) and profit. COE is a standard
bjective in research, where for wind farm developers financial
rofitability is a more representative objective. Third, we explore
he sensitivity of capacity density based on the assumed available
evelopment area, which can drastically influence downstream
echnical potential estimation and capacity expansion modeling.
ome of the main takeaways of this research are: taller turbines
equire larger absolute physical distances from structures and
nfrastructure, and are therefore more sensitive to decreases in
vailable area from increasing setback requirements defined with

tip height multiplier; because increasing setback requirements

3508
reduces the available area in which to build turbines, it can reduce
the capacity of a wind farm depending on the objective and the
limitations on land availability; and wind plants optimized for
maximum profit have higher capacity than those optimized for
minimum COE.

The findings in this paper are an important first step in under-
standing some of the interactions and sensitivities of turbine scale
and setback constraints and their implications for capacity den-
sity. We have not yet considered further innovations that enable
more flexible siting, such as wake steering which will allow tur-
bines to be built closer together, flicker and noise mitigation with
advanced plant controls which may reduce setback requirements,
and co-located wind and solar plants that could benefit from
some of the advantages of each generation source. Considering
these innovations, and others, will affect the sensitivities and
relationships that we explored in this research.

The rest of this paper is outlined as follows. In Section 2, we
describe our study area, turbine assumptions, wake model and
power calculations, and then our siting restrictions. In Section 3,
we describe our optimization methods and objectives. In Sec-
tion 4, we present model outcomes organized by optimal layouts,
optimal metrics, and capacity density. Lastly, in Sections 6 and 7,
we conclude the report and offer implications for future research
regarding wind energy’s potential.

2. Models

This section includes descriptions of the models used in this
paper, including assumptions about the wind plant domain, wind
turbine models, the wake model, and the wind resource.

2.1. Blue creek wind farm

For this study, we used land features from the Blue CreekWind
Farm, which is an operational plant in northwest Ohio in the
United States. An aerial view of Blue Creek is shown in Fig. 1.
In order to reduce the required computational expense for the
optimizations, we selected a smaller section of roughly 62 km2

within the plant boundary, as represented by the blue square in
Fig. 1. Fig. 2 shows a representation of the important land features
that we considered for this study. These features require mini-
mum setback constraints in our layout optimization to imitate
land-use regulations, and include railways, roads, transmission
lines (HIFLD Open Data, 2020), and buildings (Microsoft, 2020).

To simplify our layout optimizations, we assumed that all
land is available for wind plant development after the setback
constraints are met. This means there are no additional land
features, exclusions, or non-participating landowners that further
limit the land area. However, it would be a simple step to include
any additional limitations on the land availability.

2.2. Wind turbines

In this paper we show results for wind plant optimizations
with three different wind turbines, with the intent to capture dif-
ferences in optimal results as affected by the turbine size and cost.
The three turbines approximately represent what the onshore
turbines of the future could look like with different amounts of
innovation: conservative, moderate, and advanced. The likelihood
of each turbine design coming to fruition decreases as the re-
quired innovation increases. In this work, the small conservative
turbine is modeled after existing 2018 turbine technology (Stehly
and Beiter, 2020), whereas the moderate and advanced turbine
designs are from the 2020 Annual Technology Baseline (ATB)
assessment for potential turbine designs in 2030 (NREL, 2020)
from the National Renewable Energy Laboratory (NREL).
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Fig. 1. A satellite image of the Blue Creek Wind Farm. The blue box represents the study area for this paper, and the white dots represent all existing turbines
within the full extent of the plant. The small figure on the right shows the location of the Blue Creek Wind Farm to scale in Ohio, USA.
Fig. 2. A representation of the domain analyzed in this paper. Shown are the
features that require setbacks during turbine layout optimization—buildings,
roads, transmission lines, and railways. Features are exaggerated in size for
visibility.

The turbine configurations for this work were selected for
onsistency with the ATB and previous work by Lopez and Mai
n these same turbine configurations in estimating technical
otential and under future capacity expansion scenarios. Lopez
t al. 2021 found that moderate and advanced turbines could lose
4% and 20% capacity potential nationally, respectively, compared
o existing (conservative) turbine technology, a result driven by
arger setbacks (less area available) for larger rotors (Lopez et al.,
021). However, the amount of national generation remained
ithin 1% among all turbines, even with substantially less ca-
acity, due to increased capacity factors resulting from higher
ub heights of the moderate and advanced turbines. These results
ndicate that higher hub heights may alleviate siting constraints,
lthough this is confounded by the use of a single capacity density
mong all turbines as we demonstrate in this paper. Mai et al.
021 found that for both the moderate and advanced turbines,
ncreasing siting restrictiveness resulted in significant drops in
3509
wind energy contribution to the future electric system (Mai et al.,
2021).

Fig. 3 shows the important characteristics of each turbine
used in this study. The top row visually represents each turbine
and displays the rotor diameter and hub height. The second row
shows the power curve for each turbine, from which we can
see that the rated powers for the turbines are 2.43, 5.5, and
7 MW for the conservative, moderate, and advanced turbines,
respectively. For each turbine, the cut-in wind speed is 3 m/s,
rated wind speed is 10 m/s, and the cut-out wind speed is 25 m/s.
The third row shows capital expense cost curves for each of the
turbines, and demonstrates economies of scale associated with
building larger wind plants. These curves were created using the
detailed balance of station (BOS) cost model LandBOSSE, which
is based on current construction practices and technology and
results in larger economies of scale for larger turbines and higher
capacity wind plants (Eberle et al., 2019). The ATB inputs within
the BOS cost model also predict dramatic decreases in turbine
costs with increasing turbine innovation, which we captured in
this research.

2.3. Setbacks

We modeled the setback requirements in this paper as a
multiple of the wind turbine tip height, which is common in
many local regulations. The tip height is the maximum height
of the turbine structure, which is the hub height plus the rotor
radius. Additionally, we assumed that the setback constraint is
the same for each feature (e.g., buildings and roads). For this
paper, we examined setback constraints of 0, 1.1, 2, and 3 times
the turbine tip height from each feature. The land available for
wind plant development for each setback multiplier and each
turbine tip height is shown in Fig. 4. In this figure, the land that
is still available after applying the setback constraints is shown in
blue. The first, second, and third rows represent the conservative,
moderate, and advanced turbines from Fig. 3, respectively, while
each column represents a different setback multiplier. In the top
right corner of each subfigure, there is a value that indicates
the percentage of the total area that is still available after the
setbacks. Note how limited the land area becomes with larger
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Fig. 3. The three different turbine models used in this paper. The first row shows the turbine sizes; the second row shows the power curves; and the bottom row
shows the capital expense curves as a function of plant capacity. Each column represents turbine designs with conservative, moderate, and advanced innovation.
setbacks and larger turbines. For example, the land available for
the advanced turbine with a setback multiplier of 3 is just 0.2%,
or 1/500th, of the total wind plant area.

2.4. Wake model and power calculations

To calculate the effective wind speeds at each turbine to use
n the wind plant power calculations, we used the Jensen wake
odel (Jensen, 1983). Although the Jensen model is a simplified

epresentation of the actual flow physics in the wind plant, it
s sufficient for capturing the relative changes in wake losses
nd energy production for this effort for a low computational
xpense. This accuracy, along with the simplicity of the model
nd its widespread use in academia and industry, led us to select
t. For actual design of a wind plant, we would recommend using
more accurate analytic wake model, or some higher fidelity
ethod. However, for this paper the purpose is to demonstrate
ur methods and show high level trends. Thus, for this paper
he Jensen wake model was sufficient. We would expect different
ake models to have little effect on the optimal number of wind
urbines. As is discussed in Section 3.3, the number of turbines is
riven by the combination of a cost model and the wake model,
ot the wake model alone.
We performed the wind plant power calculations for this pa-

er within NREL’s HOPP platform, a freely available open-source
ool for component-level design and optimization of utility-scale
ybrid plants (Tripp et al., 2020). HOPP relies on another NREL
oftware, the System Advisor Model (SAM) to perform the wind
lant wake and power calculations (Freeman et al., 2018). The
ind power performance model in SAM calculates the hourly
3510
electrical output of a single wind turbine or of a wind plant. The
wind power performance model requires information about the
wind resource, wind turbine specifications, wind plant layout,
and costs. This performance model can be coupled to one of the
financial models to calculate economic metrics for residential,
commercial, or utility-scale wind projects. We used HOPP as the
means to run SAM in this wind plant analysis to enable greater
flexibility in component layout optimization, and to leave open
the possibility of performing hybrid plant design in future work.

2.5. Wind resource

In addition to using the Blue Creek Wind Farm for setback fea-
ture data, we also used the associated wind resource. We used the
2013 hourly resource data from NREL’s WIND Toolkit (Draxl et al.,
2015) for our wind plant models. Fig. 5 shows the directional
wind frequency data, as well as the mean wind speed for each
direction binned into 10-degree sections. For wind plant layout
optimization, it is common to use the directionally averaged wind
speeds instead of the full wind speed distributions to reduce com-
putational expense, and is what we did in this paper. Although
this wind resource is predominantly from the southwest, there
are non-negligible resources from all directions.

3. Optimization methods

Even in its most basic form, wind plant layout optimization
is a difficult problem. In the literature, when performing wind
plant layout optimization, previous studies show a preference
for gradient-free optimization methods—different studies have
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Fig. 4. The available area remaining in the wind plant domain with different setback requirements from various features. Each column represents different setback
requirements of 1.1, 2, and 3 times the turbine tip height, and each row represents a different turbine design (corresponding to the turbines represented in Fig. 3).
The shaded blue areas represent the areas where turbines can be built, and the percentage in the top right corner of each subfigure shows the percent of the total
land area still available after applying the setbacks.

Fig. 5. The wind resource data from the Blue Creek Wind Farm. On the left are the wind frequency data, and the right shows the wind speeds averaged for each
wind direction bin.
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Fig. 6. A diagram visualizing our two-step optimization method.

emonstrated successful optimization using genetic algorithms,
article swarm methods, and random search to improve wind
ower plant layouts (Hou et al., 2019). Gradient-free optimization
ethods have also been demonstrated to have great success and
omputational efficiency when optimizing a wind plant (Thomas
nd Ning, 2018; Baker et al., 2019). Often in wind plant layout
ptimization studies, the number of turbines is assumed to be
nown before performing the layout optimization. Including the
umber of turbines within the optimization greatly increases the
omplexity of the problem and effectively forces the use of a
radient-free optimizer (Stanley et al., 2021). Further complexity
s introduced when the wind plant domain is large, and has
eparate, discrete areas in which turbines can be built. Although
t has not been explored in depth, there are a few studies in
he current literature which include optimization of a wind plant
ayout where the boundary has been split into multiple sections.
he wind plant layout optimization portion of IEA Task 37 (Baker
t al., 2021) is currently looking into different methods that
ould be used to solve this optimization problem. Additionally,
ome studies on wind plant layout optimization with landowner
articipation have performed some preliminary exploration into
ossible strategies to solve this complex problem (Chen and
acDonald, 2011, 2012, 2013, 2014; Wang et al., 2017). Like the
etbacks in our problem, varying degrees of landowner partici-
ation can also divide a wind plant into several discrete parcels.
he current literature on this topic provides an excellent starting
oint to develop the necessary optimization methods required for
his paper. The methods we present in this paper build on what
as already been accomplished. We present an strategy to find
ptimized turbine layouts with a large number of divisions with
ections that have large size variations.
In this paper, we optimized the layout of turbines as well as

he number of turbines, which is a discrete variable. Additionally,
s seen in Fig. 4, the setback constraints effectively split the wind
lant into several discrete parcels, which further complicates
he problem. In order to optimize the number and layout of
urbines in this complex domain, we developed and applied novel
ptimization techniques and strategies, which we will describe
nd discuss in this section. Our presented optimization strategy is
ivided into two steps and is shown in Fig. 6. Each step is detailed
n Sections 3.1 and 3.2.
3512
3.1. Step 1: Maximize capacity

3.1.1. Method
The first step in our layout optimization is to maximize the

capacity, or the number of turbines, that can fit in wind plant
without violating the turbine spacing constraints for a given
turbine design. This step in itself has several substeps that were
determined by a series of trials:

1. Starting in the smallest parcel, maximize the number of
turbines in the parcel

2. Fix the turbines from the previous parcel in place, and
maximize the number of turbines in the next smallest
parcel

3. Repeat until all parcels have been optimized.

In order to create land parcels that do not violate the setback
constraints and calculate the parcel areas, we used the Shapely
Python package for manipulation and analysis of planar geomet-
ric objects (Gillies et al., 2007).

To optimize the turbines in each parcel, we used a simple
gradient-free method similar to that first introduced by Mosetti
(Mosetti et al., 1994). This method works by creating a grid of
potential turbine locations within the wind plant domain. Each
of these grid locations is assigned a binary value, indicating
whether a turbine is placed at the associated location. A gradient-
free algorithm is then used to determine the optimal number
of turbines and their locations. To create our grid locations, we
created a square grid that spanned the minimum and maximum
Cartesian x and y coordinates of the parcel in question. Then,
because the parcels were irregular in shape, any of these grid
points that were outside the parcel were moved to the near-
est point on the parcel boundary to ensure that no grid points
violated boundary constraints. This resulted in a larger portion
of points being grouped around the boundary, which was likely
advantageous as optimal wind plant layouts often have turbines
on or near the boundary (Stanley and Ning, 2019b). The potential
grid used approximately one rotor diameter spacing. Fig. 7 shows
the grid points of 256 potential turbine locations that were used
in our optimization for one larger parcel with the smallest wind
turbine. Smaller parcels and larger turbines result in significantly
fewer points.

To optimize the placement of turbines, we used a simple
genetic algorithm. We used single point crossover, with the chro-
mosome bits arranged sequentially, such that adjacent bits cor-
responded to adjacent turbine location points. Additionally, we
used a mutation rate of 0.01, and a population size of 100.
After performing the crossover and creating the offspring, we
combined the parent and offspring populations and ranked them
from best performing to worst performing. We kept the 100
best performing individuals from this list and used them as the
parents for the subsequent generation. Although this strategy of
only keeping the best performing individuals can result in inade-
quate exploration of the design space in some problems, for this
problem the convergence occurred in few enough generations
that this was not an issue. We determined that the algorithm con-
verged if 100 generations passed with the best solution improving
by less than an absolute tolerance of 10−6. In order to lend
further confidence that we approached the global solution with
our optimization algorithm, we repeated the genetic algorithm
10 times for each parcel with each individual in the population
randomly initialized with one wind turbine.

We found that optimizing the smallest parcel first and working
up to the larger parcels was the superior approach, compared to
the optimizing the largest parcels first, or randomizing the order
in which the parcels were optimized. The smallest parcels had
very little freedom in where to place turbines compared to the
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Fig. 7. An example of the grid of potential turbine locations for one land parcel. First, a regular square grid was placed that spanned the horizontal and vertical
xtremes of the land parcel. Then, any of these grid points that were outside of the boundary were moved to the closest point on the boundary to ensure that none
f the points violated the boundary constraints. These points represent proposed locations where a turbine could be built, not actual turbine locations. We used a
enetic algorithm to decide at which of these locations a turbine should be placed.
arger parcels (refer to Fig. 4, taking note of the difference in size
f some of the smallest parcels and the largest ones). Thus, by
ptimizing the smaller parcels first, we prioritized placing at least
ne turbine in these areas if it could be achieved without violating
pacing constraints with already placed turbines. After this, many
urbines could still be placed in the larger parcels as there was
ore freedom to meet the spacing constraint. By optimizing the

arger parcels first, turbines would often be placed close to the
maller parcels, so by the time the smaller parcel was optimized
o turbines could be placed without violating spacing constraints.

.1.2. Objective for step 1
For this capacity optimization, we used an objective of max-

mizing the total sum of spacing between all wind turbines.
aximizing the total spacing between turbines is superior to
imply using a packing algorithm to maximize the number of
urbines. The spacing maximization also acts as a basic energy
roduction optimization because wake effects are generally re-
uced as spacing between turbines increases, but at greatly re-
uced computational expense. The spacing computation is much
heaper than a full evaluation of the wake model and power cal-
ulations, leading to huge computational savings over the entire
ptimization. We calculated the spacing objective with respect
o all of the turbines in the wind plant, not just the turbines
n the parcel being optimized. The optimizer could improve the
bjective by spreading the turbines farther apart and by adding
ore turbines. Therefore, the optimizer maximized the capacity
f the wind plant while also accounting for some interactions
etween turbines. This spacing objective is shown in Eq. (1).

pacing objective =

n∑
i=1

N∑
j=1

di,j (1)

In this equation, n is the number of turbines in the parcel being
optimized, N is the number of turbines in the entire wind plant,
including those in the parcel being optimized, and di,j is the
distance between a turbine inside the parcel being optimized and
another turbine in the plant.

3.1.3. Constraints
The only explicit constraint that we included in this opti-

mization was a minimum turbine spacing of five rotor diameters
between turbines in the plant. By moving all of the potential
turbine location points inside each parcel boundary as shown

in Fig. 7, we guaranteed that the setback and outer wind plant

3513
boundary constraints are automatically satisfied. Because of this,
additional explicit considerations did not need to be made for
these turbine siting constraints. In all, this optimization problem
is expressed in Eq. (2).

maximize spacing objective
w.r.t. turbine locations
subject to spacing constraints (explicit)

setback constraints (implicit)
boundary constraints (implicit)

(2)

3.2. Step 2: Optimize COE or profit

In Step 1, for the objective of wind plant capacity and most of
the time for energy maximization objectives, the optimizer will
place as many turbines into the wind plant as possible, without
violating spacing constraints. For other objectives, where there
is a penalty for losses from turbine wakes, fewer turbines may
be optimal. To optimize for these other wind plant objectives
that sought to space turbines further apart, we started with the
turbine layouts achieved by maximizing the wind plant capacity.
These starting wind plant layouts for each setback multiplier and
tip height after maximizing the wind plant capacity are shown in
Fig. 8. In this figure, the black dots represent the wind turbines to
scale, with the diameter representing the rotor diameter. Similar
to the mesh of points that were created to optimize the turbine
locations in each parcel (shown in Fig. 7), the turbine locations
from the capacity maximized wind plants were used as potential
turbine locations for optimizing other objectives. We then used
a gradient-free optimizer to determine the optimal locations to
place wind turbines.

We tested the use of two gradient-free optimizers to place the
turbines in this step. One was the simple genetic algorithm that
we used in the capacity optimization, except with a population
size of two times the potential turbine locations instead of a
constant 100 as we used for the capacity optimization. All of
the other parameters were the same. The other optimizer we
used was a greedy turbine removal algorithm. For this removal
algorithm, we started with a turbine placed at every potential
turbine location. We then removed the single turbine that re-
sulted in the largest objective improvement. We repeated thus
process until removing a turbine no longer resulted in an im-
provement in the objective. For every wind plant optimization

with the COE objective, we tested both of optimizers. For every
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Fig. 8. Optimized wind plant layouts for a maximum capacity objective. The objective for this optimization was to maximize the sum of the spacing between all
of the turbines, so these layouts are also a rough approximation of a maximum AEP layout. The turbines in these wind plants are spaced very close together and
operate inefficiently. In this paper, these layouts are not final, but are used as an intermediate step before the final optimizations. The rows from top to bottom show
the conservative, moderate, and advanced innovation turbines, where the size of each black dot is to scale representing the turbine rotor diameter. The columns
from left to right show setback tip height multipliers of 0, 1.1, 2, and 3.
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optimization, the final solution function values were within 0.03%
of each other. Thus, because of the simplicity of the algorithm
and good performance, we used the greedy removal algorithm
for the results in this paper. We also briefly tested a greedy ad-
dition algorithm, which underperformed compared to the greedy
removal algorithm. Although the addition algorithm was much
faster than the removal one, the final solution depended on the
starting condition, or the location of the first turbine to be placed,
and generally performed significantly worse.

At this point in the optimization, additional improvement
ould be achieved by fine-tuning the location of the turbines with
gradient-based optimizer. We did not perform this fine-tuning

or this paper, as we are more interested in the higher-level
rends from the results of the optimization.

So, because the boundary and turbine spacing constraints were
lready applied in the capacity maximization step and turbines
ould only placed in these locations, these constraints were au-
omatically met in this phase of the optimization. No additional
onstraints were applied.

.3. Objectives for step 2

Using the optimization method described in Section 3.2 we op-
imized two different objective functions: minimize COE defined
n Eq. (3), and maximize annual profit defined in Eq. (4).

OE =
annual cost

(3)

AEP ∗ (1 − L)

3514
annual profit = (AEP ∗ (1 − L)) ∗ PPA − annual cost (4)

n these equations, AEP is the annual energy production, cal-
ulated in HOPP with the resource data shown in Fig. 5, L are
ny losses experienced within the plant, and PPA is the power
urchase agreement. We assumed a constant value L = 8.8%,

and that the PPA is a constant although it can be varied between
optimizations. For the purposes of this paper, the annual cost is
defined in Eq. (5).

annual cost = FCR ∗ CapEx + O&M (5)

In this equation, FCR is the fixed charge rate assumed to be
6.3%, CapEx is the wind plant capital cost (including turbine
capital costs and balance of station costs), given by the curves
in Fig. 3, and O&M are the operation and maintenance costs,
which we assumed were $37/kW of wind plant capacity. Eq. (5) is
certainly a simplified expression to represent the plant costs. As
with the other models presented in this paper, this cost model
could be replaced with another with the desired complexity and
fidelity. For our this paper, the presented expression is sufficiently
realistic to demonstrate our methods and show high level trends
and relationships.

For each of the objective functions, the model uses the re-
lationships of wake losses and plant cost as a function of plant
capacity and turbine layout to minimize COE or maximize profit.
The wake loss relationships are based on the turbine layout and
turbine type, captured by the Jensen wake model. The relation-
ship of plant cost to capacity is derived for each turbine using the
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Fig. 9. The sensitivities of each objective function to wind plant capacity, and how the objectives balance competing interests. Each objective shows how the value
changes if just the wake losses are varied with increasing capacity with no economies of scale, and how the value changes if just the unit costs are varied and the
wake losses remain constant with increasing capacity. They also show the complete objective with increasing capacity.
NREL land-based wind BOS model LandBOSSE (Eberle et al., 2019).
These cost curves are shown in Fig. 3. The objectives of COE and
profit both try to maximize production and minimize the costs
of the wind plant. However, the way each objective handles the
competing interests is different. Both try to balance the trade-offs
from increasing wake losses and decreasing unit costs as plant
capacity increases. Fig. 9 illustrates the change in COE and profit
due to plant cost scaling and wake losses as a function of capacity
for the conservative innovation turbine. To make this figure, we
created a wake loss relationship with quadratic curve fit to wake
losses from 24 optimized wind plant layouts. With the wake loss
curve, we calculated AEP as a function of wind plant capacity by
assuming a constant capacity factor of 0.375, shown in Eq. (6).

AEP = 8,760 ∗ CF ∗ c ∗ (1 − lw) (6)

n this equation, 8,760 is the number of hours in a year, CF is
he capacity factor, c is the wind plant capacity, and lw is the
wake loss. This AEP calculation, along with the cost curve shown
in Fig. 3, allowed us to create one-dimensional relationships of
COE and profit as a function of capacity, from Eqs. (3) and (4). In
addition to showing the one-dimensional COE and profit curves
as a function of plant capacity, Fig. 9 also shows how each of
these objectives is driven by the increasing wake losses associated
with larger capacity, and the decreasing unit costs associated with
capacity. The dashed lines show the values of each objective while
either holding the unit plant costs constant and only varying
wake losses with capacity, or holding the wake loss constant and
only varying the unit plant costs with capacity.

Fig. 9 shows how plant capacity affects wake losses and cost
economies of scale, and ultimately the objectives of COE and
profit. In general as the plant capacity decreases, the relative
plant costs increase due to economies of scale of plant construc-
tion (resulting from mobilization costs, electrical collection, in-
terconnection costs, and other nonlinear relationships). Inversely,
these relationships cause lower unit costs as plant capacity in-
creases (Eberle et al., 2019). This economy of scale relationship
incentivizes the optimizer to add as many turbines as possible to
the area, and improves both objectives by adding more turbines.
This relationship is shown by the red dashed lines in Fig. 9. On
the other hand, wake losses increase with increased capacity
as the average distance between turbines decreases. Increasing
wake losses result in lower energy capture, and therefore higher
COE and decreasing profit. The relationship that results from
holding the costs constant but varying wake losses with capacity
is shown by the green lines in the figure. The optimal solution
3515
for each objective occurs where the improvement in AEP and cost
reduction from adding additional capacity is outweighed by the
decrease in efficiency from additional wake losses.

Fig. 9 is meant only to give a simple representation of how
each objective behaves relative to capacity. In reality the problem
is more complex, as the siting of turbines and setback constraints
largely drive the wake losses in a plant. These relationships and
sensitivities are discussed throughout the rest of the paper.

Our study assumes a scenario where the boundary area is
fixed—typically referred to as a ‘‘land constrained’’ site. This fixed
boundary area enables the wake loss and plant cost function
to allow the optimization to find a solution. Many wind plants
are constrained by the available capacity of the transmission
line that the plant will connect to but without a constraint of
available area. This scenario is typically referred to as a ‘‘capacity
constrained’’ scenario. We do not include a cost relationship for
varying the distance between turbines to account for increased
road, collection system, crane travel time, or land lease cost, but
including this cost relationship would allow for the optimization
of capacity constrained sites.

3.4. Zero setback optimization

To provide points of comparison, we also performed turbine
layout optimization with zero setbacks, meaning that the turbine
layouts were only restricted by the boundary and spacing con-
straints. We again performed a two-step optimization process as
was previously described, with the simplification of using a grid
turbine layout parameterization for the capacity maximization
step. Without any setback constraints, there is only one discrete
parcel where turbines can be placed. This would require thou-
sands of potential turbine location dots (as shown in Fig. 7) to
sufficiently resolve the domain, which is too many to be effi-
ciently optimized with the genetic algorithm used. Instead, we
defined the wind plant layout in the zero setback case with eight
grid variables: the number of rows and columns, the grid width
and height, the grid offset or shear angle, the grid rotation, and
the grid center x and y coordinate. These design variables are
shown in Fig. 10a. Any turbines that fell outside of the wind plant
boundary were removed, so the boundary constraint was met
implicitly, as shown in Fig. 10b. After performing capacity max-
imization with the grid design variables, we used the previously
discussed greedy turbine removal algorithm to optimize for the
other objectives, as described in Section 3.2.
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Fig. 10. A representation of the design variables used in the grid turbine layout optimization. Fig. 10a shows the 8 design variables used to define the grid, which
are the grid height and width, h and w, the grid center coordinate, (cx, cy), the grid shear, φ, the rotation, θ , and the number of rows and columns. Fig. 10b shows
he turbines placed at the grid vertices, where the plant boundary is shown with the black square. The blue turbines are within the plant boundary, while the red
urbines are outside of the boundary and are removed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
. Results and discussion

In this section, we present the results from applying our
ovel optimization method. We optimized wind plants for the
bjectives of minimizing COE, and maximizing profit. For each
bjective, we optimized the wind plant layout for the full combi-
ation of setback multipliers of 0, 1.1, 2, and 3, and conservative,
oderate, and advanced innovation turbines, which totals 24
ptimized wind plants. By performing this spread of optimiza-
ions, we were able to make conclusions about the sensitivities
f the optimal solutions to different setback requirements for
ach different turbine design. In Section 4.1, we present the
ptimized wind plant layouts for each turbine, setback multiplier,
nd objective function, and in Section 4.2 we present and discuss
he optimal metrics from each of the optimized wind plants. In
his section we also explore the effect that the setback tip height
ultiplier has on optimized wind plant performance, and how

his varies with turbine design.

.1. Optimal wind plant layouts

In this section, we present and discuss the optimal wind plant
ayouts achieved for the COE and profit objectives. Fig. 11 shows
he optimized wind plant layouts for a COE objective for each
urbine design and setback constraint multiplier. By referring
ack to Fig. 8, we see that in general for this objective there
re much fewer turbines than in the optimal wind plants for the
apacity maximization objective. This is especially true for the
ind plants with relatively large areas that are not as limited
y setback constraints (lower setbacks and smaller turbines). The
OE objective seeks to minimize the cost of wind plant devel-
pment and operation while maximizing the energy production.
he optimal number of turbines in the minimum COE solution
ccurs when the cost benefit from adding more wind turbines is
utweighed by the extra wake losses that occur from adding more
urbines to the plant.

Fig. 12 shows the optimized wind plant layouts for an objec-
ive of maximizing annual profit. In this figure, the black points
epresent the optimal COE turbine locations. These turbines are
lso present in the maximized profit layouts. The red points rep-
esent the additional turbines that exist in the maximum profit
3516
layouts. As in Fig. 11, this figure shows the optimal layouts for
each turbine and setback constraint. Because wind plant capital
costs decrease significantly with increasing turbine innovation,
we used a different PPA for each turbine such that the results
were meaningful. We chose the PPA for each turbine design to
be about 10% higher than the minimum COE solution for the zero
setback case. We set these values early in our process, before
each scenario had been fully explored, so the actual PPA values
vary slightly from this target. These PPA values were 51.22, 38.91,
and 30.27 $/MWh for the conservative, moderate, and advanced
innovation turbines, respectively. For the optimal profit layouts,
in general there are more turbines than for the COE objective, but
still fewer than for the capacity objective. For the profit objective,
higher wake losses are more tolerable than in the COE objective.
Even if the energy costs slightly more to produce per MWh, if
additional turbines can add significant amounts of energy, it can
result in a larger profit.

In both Figs. 11 and 12, we see that for the small setbacks
of 0 and 1.1, the number of turbines is determined by the ob-
jective function. In other words, there are a lot of additional
turbines in the layouts optimized for maximum profit for the
small setback cases. There is enough freedom in placing the
turbines that the optimal number of turbines is determined by
the interaction between decreasing unit costs and increased wake
losses from adding more turbines. However, as setbacks increase,
the available land is reduced. In these situations the available
parcels of land are very small, without much freedom to optimize
their location and only allowing one or two turbines per parcel.
Additionally, the number of discrete parcels is small, allowing
fewer turbines to be placed than is optimal from a cost curve
perspective. The number and location of the turbines in these
plants is determined almost exclusively by the limited available
land allowed from the setback constraints. In these cases, the
optimal turbine locations for the COE and profit objectives are
the same as for the capacity optimized plants. There are very few
extra turbines in the layouts optimized for maximum profit, and
in some case no extra turbines exist, simply because there is not
enough space.

4.2. Optimal wind plant performance

In this section we discuss different metrics of each optimized
wind plant, and the sensitivities of these metrics to the setback
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Fig. 11. The optimal wind plant layouts with the objective of minimizing COE. The rows from top to bottom show the conservative, moderate, and advanced
innovation turbines, where the size of each black dot is to scale representing the turbine rotor diameter. The columns from left to right show setback tip height
multipliers of 0, 1.1, 2, and 3.
constraint. Fig. 13 shows the results for the wind plant optimiza-
tions that minimized COE as their objective. For each optimized
layout, this figure shows the number of turbines, total installed
capacity (the product of the number of turbines and turbine rated
capacity), AEP (the total energy production of all turbines minus
any wake losses), COE, annual profit, and wake loss percentage.
Results for the conservative, moderate, and advanced turbines are
shown in the top, middle, and bottom figures, respectively.

An immediate observation from these results is that for the
onservative and moderate turbines, the optimal COE with zero
etback constraints is slightly higher that those with a setback
ultiplier of 1.1. This is simply an artifact of our turbine location
efinitions. Performing a gradient-based optimization to tune the
ocations of the turbines would result in a lower COE for the zero
etback plants, or at least the same as that for the 1.1 setback
lants. There is an enormous amount of additional information
ontained in Fig. 13, and many of the trends illustrated in this
igure may be important for various applications. We will only
xplicitly point out and discuss the trends that we believe are
ost important. These trends are shown in Fig. 14, which shows

he sensitivity of optimal wind plant capacity, COE, and wake loss
s a function of the setback constraint.
First, we examine the relationship of optimal capacity with

ncreasing setbacks constraints. When minimizing COE, there is
o difference between the optimal capacity between the 0 and
.1 setback cases for the conservative and moderate innovation
urbines, and just a very small decrease in optimal capacity of
bout 5% for the advanced innovation turbine. This indicates that
he optimal number of turbines to minimize COE can still fit
ithin the wind plants with a 1.1 tip height setback. However,
3517
as the setback multiplier increases further, the available area
decreases enough that the number of turbines that can fit in the
plant is much more limited. In these cases, the number of turbines
is limited to not be able to reach the minimum COE value, repre-
sented for the conservative turbine in Fig. 9. For the conservative
turbine, the optimal number of turbines can still be placed in the
plant with a setback of 2, but the capacity is reduced by about
20% for the setback tip multiplier of 3. Because of the larger tip
heights for the moderate and advanced turbines, the increasing
setback multipliers decrease the available land for these turbines
faster than for the conservative turbine. Also, the larger rotor
diameters result in fewer suitable turbine locations that do not
violate minimum spacing constraints. Thus, the optimal capacity
for the larger turbines is more sensitive to the increasing setback
multiplier. For the moderate turbine, a setback of 2 decreases the
optimized capacity about 20% compared to the 0 setback case,
and a setback of 3 decreases the optimal capacity more than 60%.
For the advanced turbine, a setback of 2 decreases the optimized
capacity about 50% compared to the 0 setback case, and a setback
of 3 decreases the optimal capacity about 70%.

Next, for the objective of minimizing COE, we will explore the
sensitivity of optimal COE to the setback constraint for the dif-
ferent turbines. As with the optimal capacities, there is very little
difference between the optimal COE between the 0 setback and
1.1 setback constraint. The increase in COE at the larger setbacks
is caused mostly by the decrease in capacity, which causes an
increase in the unit costs. For the conservative innovation turbine,
the very slight increase in COE from a setback of 1.1 to 2 is caused
by increased wake interactions between turbines. In this case, the
optimal number of turbines can still fit in the wind plant, but the
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Fig. 12. The optimal wind plant layouts with the objective of maximizing profit. The black points show the optimal turbine locations for minimizing COE. These
urbines also exist in the layout to maximize profit. The red points indicate the additional turbines in this layout compared to the minimum COE layout. The rows
rom top to bottom show the conservative, moderate, and advanced innovation turbines, where the size of each black dot is to scale representing the turbine rotor
iameter. The columns from left to right show setback tip height multipliers of 0, 1.1, 2, and 3. We used PPA values of 51.22, 38.91, and 30.27 $/MWh for the
onservative, moderate, and advanced turbines, respectively.
ore limited area means that the turbines are closer together,
nd thus have higher wake losses.
Finally, we will discuss the relationship of optimal wake loss in

he wind plant as a function of the setback tip height multiplier,
or each turbine. As with the capacity and COE, the wake losses
etween a setback multiplier of 0 and 1.1 are very similar. For the
onservative innovation turbine, the wake losses slightly increase
rom the setback multipliers of 1.1 to 3. For these setbacks, the
umber of turbines is the same or almost the same as the 1.1
etback case, except the land area is more limited. This drives
he turbines closer together and increases wake losses. This same
easoning causes the wake losses to increase for the moderate
nnovation turbine at a setback of 2. For the moderate innovation
urbine at a setback of 3, and the advanced innovation turbine at
etbacks of 2 and 3, the wake losses drop dramatically compared
o the 0 setback case. For these optimized wind plants, the land
rea is so limited that there are very few turbines placed in the
lant as evidenced by the extreme drop in capacity. In these cases,
he wake losses decrease because of the small number of turbines
nd their large separation.
In general, increasing turbine tip height results in larger rela-

ive changes in capacity, COE, and wake losses for this example
ite and site-specific siting constraints. If turbine cost per unit
apacity decreases with turbine rating (assuming a constant spe-
ific power), lower absolute COE values may result, depending on
iting constraints. It is important to note that we have assumed
he NREL ATB turbines, which have decreasing costs as turbine
ize increases. Fig. 12 shows the absolute values for COE and other
3518
variables for a COE objective for the three turbines. The turbine
cost decreases on a per capacity basis from the conservative to
moderate and advanced cases. Therefore, the turbine resulting
in the lowest COE or highest profit may vary in size and rating
depending on the relationship of turbine cost as a function of
rating in this simplified example. Considerations of site suitability
for resource, turbulence, hub height, turbine market pricing and
availability, turbine component transportation, constructability,
and ownership model will influence the turbine characteristics
selected for a specific site.

While Figs. 13 and 14 show the full and relative results for
the wind plants optimized for minimum COE, Figs. 15 and 16
similarly show metrics from the wind plants optimized for max-
imum profit. As with the optimal COE figures, the optimal profit
figures show results for each turbine and setback multiplier.
Before examining some of the most important trends that we
have identified, it is important that we point out one important
observation about these results. For the advanced innovation
turbine at a setback tip height multiplier of 3, the optimized profit
is negative. With the extremely limiting setback constraints, there
is not enough available land to build enough turbines to gain
significant advantages from the economies of scale. Clearly, we
can see that this is suboptimal, for it would be better to build zero
turbines rather than lose money. The optimizer found the nega-
tive solution because it is a local maximum of profit. Subtracting a
single turbine would results in even greater losses because of the
sharp increase in plant costs per capacity that occurs at low wind
plant capacities. The negative profit optimization is indicated by
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Fig. 13. Various metrics of the optimized wind plant for the objective of minimizing COE. From left to right, the metrics shown are optimal number of turbines
(n turbines), capacity, AEP, COE, annual profit, and wake loss. From top to bottom, each subplot shows the results for the conservative, moderate, and advanced
innovation turbines. The different shades of colors show optimal results for different setback tip height multipliers, indicated in the legends. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
the gray stripes through affected results in Fig. 15, and the black
circles around the affected results in Fig. 16.

The trends seen in Fig. 16 have a lot in common with those
in Fig. 14. First, when looking at the optimal plant capacities
for the profit maximized plants, the capacity decreases for every
turbine each time the setback constraint is increased. Although
the increasing setbacks results in greater capacity decreases for
the larger turbines, solutions for each turbine result in decreasing
capacity. This indicates that even after applying the smallest
setback constraint of 1.1 times the tip height, the land area is
sufficiently limited that the optimal number of turbines to maxi-
mize profit can no longer fit in the plant. The relationship of COE
as a function of the setback multiplier is very similar in Fig. 16
to Fig. 14. The COE increases as setback multiplier increases are
mostly caused by the decrease in capacity due to less available
land area. One interesting observation in Fig. 15 is that the COE for
a setback of 1.1 is actually slightly lower than for the 0 setback. As
we see in the optimal COE results, the slightly reduced capacity
from the 1.1 setback is actually more optimal from a minimum
COE perspective. However, when maximizing the profit, the slight
decrease in COE does not make up for the loss of production.

Finally, we will discuss the trends of optimal profit as a func-
tion of setback multiplier in these wind plants. Like with capacity,

even the smallest setback multiplier causes a decrease in profit

3519
for each of the wind turbines. Also similar to the capacity results,
for this wind plant and set of models, the profit for larger turbines
is more sensitive to increasing setbacks—this is because the more
land area is affected by increasing setbacks for the larger turbines,
and the available land is more restricted by the minimum spacing
constraints. The larger turbines produce larger changes in capac-
ity and unit costs even with the larger associated reductions in
wake losses.

5. Implications for capacity density

Determining the installed capacity density potential of wind
is an important part of technical potential assessments as well as
capacity expansion models and represent a significant driver in
determining the contribution of wind energy in the future. Ap-
propriately defining and estimating capacity density is important
to encourage investments into wind technologies and to provide
realistic expectations of regional deployment. Technical poten-
tial represents the achievable capacity and generation potential
of a geographic region that takes into account system perfor-
mance, land-use and environmental constraints, and resource
availability. Technical potential is used by a variety of stake-
holders, including researchers, wind energy developers, state and
federal land managers, as well as state and federal policymakers
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Fig. 14. The absolute and relative change for the metrics of capacity, COE, and wake loss for the wind plants optimized for minimum COE. Each color line shows
results for each of the different turbines, given in the legend. Both the absolute and relative changes are given with respect to the metric value with zero setback
constraints for the associated turbine. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
for setting renewable targets. It also underpins energy system
models that explore pathways for wind energy integration. A
key driver of technical potential is the assumed conversion of
available land to capacity potential through use of a capacity
density assumption.

Capacity density is defined as the installed capacity of a wind
plant per unit area, which we will express with units of MW/km2.
he installed capacity is easily understood as the sum of the rated
apacities of the turbines within the wind plant. However, the
rea that should be used to represent wind plant capacity density
s not as easily defined, and differing definitions have been used
y past researchers (Denholm et al., 2009; Miller and Keith, 2018;
iffendorfer et al., 2019; Enevoldsen and Jacobson, 2021).
The confusion arises in whether the area occupied by the wind

urbines should be the entire footprint of the wind plant (total
rea within the wind plant boundary), or whether the areas that
re required for installation and operation of each wind turbine
direct area) should be used to determine capacity density. Direct
rea impacts to land use include turbine foundation area, crane
ads, roads, substations, rotor width, operation and maintenance
uildings, and electrical interconnection lines. The total and direct
rea impacted for wind plants varies by turbine rating, number of
urbines, and turbine spacing. Denholm et al. (2009), Diffendorfer
t al. (2019). Capacity density is a critical metric for broadly
nderstanding social and environmental land-use impacts as-
ociated with existing wind energy development. Our work is
ocused on informing future wind energy potential through use
n technical potential and capacity expansion models that aim
o estimate local, regional, and national deployment potential of
ind energy. For these models, accounting for the area available
nd estimated capacity for a wind plant is critical to estimating
he potential deployment of wind energy at the plant to national
cale.
Although the majority of a wind plant is not occupied by
wind turbine, the space between turbines is important for

ptimal wind plant design. Additional turbines in a fixed area
ncrease wake losses, reducing the energy capture per turbine,
nd adding turbines to a fixed area can decrease plant cost
n a per unit capacity basis. Thus, wind plant developers will

esign their wind plant layout around siting constraints while

3520
maximizing profit by optimizing around turbine type, number of
turbines, construction costs, and wake losses. For these reasons,
we conclude that using direct area to estimate capacity density
for wind technical potential assessments is not appropriate—as
seen in Enevoldsen and Jacobson (2021). In this paper, we focus
on two different, and more appropriate, measures of wind plant
capacity density that capture both the dynamics of wind plant
operation and siting criteria. The first is by using the total area
defined by the wind plant boundary (boundary area). The second
is by using just the areas that are not restricted by the spatial
constraints (available area). Both boundary area and available
area are important measures for technical potential and capacity
expansion models when studying wind deployment potential.

Figs. 17 and 18 show the optimal capacity densities for objec-
tives of minimum COE and maximum profit for each turbine and
for each setback constraint. In each of these figures, the top left
subfigure shows the optimal wind plant capacities, and the top
right subfigure shows the available area to place wind turbines
after removing the area excluded due to setback constraints. The
bottom left subfigure shows the wind plant capacity densities by
using the total wind plant boundary area, and the bottom right
subfigure shows the optimal capacity densities using the available
wind plant area after removing the setback constraints.

Let us now discuss the similarities in Figs. 17 and 18. For both
objectives, from a setback of 0 to 1.1 there is either no change in
plant capacity or a very small decrease for the advanced turbine.
As the setbacks increase further, there is a larger decrease in
plant capacity. The large decreases in capacity occur when the
setbacks become large enough to completely remove some of the
discrete parcels from the available land. As the setback multiplier
increases the total capacity for minimum COE and target profit
become similar because of the physical limitations on where tur-
bines can be located. These results show that as siting constraints
increase or as setback multiplier increases, the total capacity of
the plant generally decreases. As wind deployment increases in
the United States, wind plants may be sited in areas with higher
setback constraints due to limited transmission capacity. These
results suggest that future wind plants may have lower capacities
and capacity densities, and taller turbines may see a larger impact

due to siting constraints.
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Fig. 15. Various metrics of the optimized wind plant for the objective of maximizing profit. From left to right, the metrics shown are optimal number of turbines
(n turbines), capacity, AEP, COE, annual profit, and wake loss. From top to bottom, each subplot shows the results for the conservative, moderate, and advanced
innovation turbines. The different shades of colors show optimal results for different setback tip height multipliers, indicated in the legends. The gray stripes represent
an optimized wind plant where the profit is negative. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Depending on the profit margin of the project, capacity density
ill vary with higher profit margins producing higher capacity
ensities but higher COE values. Empirically this is relevant as
xisting wind plants vary in capacity density due to many factors,
ith one being variations in profit margins. As profit margins,
olicy, incentives, etc., vary in the future, capacity densities re-
ulting from specific target profit margins will vary. Fig. 19 shows
he ratio of plant capacities for the profit and COE cases for each
urbine by setback multiplier. With zero setbacks, the capacities
or profit are between 1.3 and 1.9 larger than the capacities for
he minimum COE case, which illustrates that when assuming a
0% profit for a wind plant the resulting capacity densities will
e higher than for plants optimized for minimum COE. This is
critical point because minimum COE is typically used in wind
nergy research and analysis. These results also show this ratio
ecreases as setback multiplier increases causing the number of
ocations or parcels suitable for turbines to decrease.

. Conclusions

In this paper, we developed a new modeling methodology that
aptures the interaction between critical variables of wind plant
esign, including wind turbine characteristics, costs, and varying
3521
degrees of siting restrictiveness. We demonstrated the sensitivity
of projected wind plant capacity, capacity density, and AEP to
these critical variables. We showed that boundary and available
area capacity densities are driven by either the balance of wake
losses, plant cost and scaling relationships for sites with few
siting constraints, or by the combination of wake losses and plant
cost combined with turbine size and siting setbacks. Increasing
turbine tip height results in higher sensitivities to capacity and
COE. Relative to the 0 setback case, the advanced turbine capacity
decreased by 70%, whereas the conservative turbine capacity
decreased by 20%. Similarly, the change in COE is roughly 5 times
greater for the advanced turbine relative to the conservative
turbine as setback multiplier varies from 0 to 3.

Boundary area capacity densities are nearly constant for all
turbines from 0 to 1.1 setback multipliers, but decrease as setback
multiplier increases beyond 1.1. This trend illustrates the impact
of increasing setback constraints. Available area capacity densities
are highly sensitive to turbine tip height and setback multiplier,
as well as the way the available area is distributed. Modeling
available area and boundary area capacity densities represents
a large challenge for technical potential and capacity expansion
modeling efforts. The profit objective results in higher capacity
densities than the COE objective by a factor between 1.3 and



A.P.J. Stanley, O. Roberts, A. Lopez et al. Energy Reports 8 (2022) 3507–3525

s
d
i
t

1
C
t
u

m
l
s

Fig. 16. The absolute and relative change for the metrics of capacity, COE, and annual profit for the wind plants optimized for maximum profit. Each color line shows
results for each of the different turbines, given in the legend. Both the absolute and relative changes are given with respect to the metric value with zero setback
constraints for the associated turbine. The green dots with the black outline represent an optimized wind plant where the profit is negative. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 17. Metrics related to the wind plant capacity density versus the setback tip height multiplier for plants optimized for minimum COE. The top left subplot
hows optimized capacity, the top right shows the available area the place wind turbines after removing the setbacks, the bottom left shows the wind plant capacity
ensity by using the wind plant boundary as the area, and the bottom right shows the wind plant capacity density by using the available area after setbacks (shown
n the top right subplot) as the area. Each line color represents a different turbine indicated in the figure legend. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
.9 for a 1.1 profit scenario relative to a minimum COE scenario.
OE is a common objective for wind plant optimization; however,
hese results suggest that current capacity density assumptions
nderpredict boundary area capacity.
Another unique takeaway from this paper is our presented

ethodology for optimizing the number of turbines and their
ayout for different objectives in a boundary divided into discrete
ections. We found that as siting constraints increase, the total
3522
capacity of the plant generally decreases while COE increases.
We show that larger and taller turbines produce higher sensi-
tivities to plant capacity as turbine tip height setbacks increase.
As wind deployment increases in the United States, wind plants
may be sited in areas with higher setback constraints due to
limited transmission capacity. These results suggest that future
wind plants employing larger and taller turbines may have lower
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Fig. 18. Metrics related to the wind plant capacity density versus the setback tip height multiplier for plants optimized for maximum profit. The top left subplot
shows optimized capacity, the top right shows the available area the place wind turbines after removing the setbacks, the bottom left shows the wind plant capacity
density by using the wind plant boundary as the area, and the bottom right shows the wind plant capacity density by using the available area after setbacks (shown
in the top right subplot) as the area. Each line color represents a different turbine indicated in the figure legend. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Fig. 19. The ratio of wind plant capacities for the plants optimized for maximum
rofit divided by the plants optimized for minimum COE. This figure indicates
hat a profit objective results in higher capacities that a COE objective. Each
ine color represents a different turbine indicated in the figure legend. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

apacities, capacity densities, and higher COE values due to sit-
ng constraints. These relationships – combined with land-based
ind turbine size and tip heights increasing – are critical to
nderstand the influences of local turbine setback legislation
nd as turbine scale changes. Meeting aggressive decarboniza-
ion goals with large deployments of land-based wind requires
dditional research to understand and inform stakeholders and
olicymakers. These results show large sensitivities of capac-
ty, capacity densities, profit, and COE to turbine size, setback
ultiplier, and existing structures. Continued research through

echnical potential and capacity expansion modeling incorporat-
ng these methods and results is critical to fully understand future
ind deployment scenarios.
3523
7. Future work

This area of study is increasing in relevance as turbine scales
increase, turbine costs decrease, wind COE falls, and decreases
in transmission availability force projects into more populated
or ecologically sensitive areas. This body of work and potential
future work can also be valuable to develop turbine and plant
characteristic assumptions for forward looking models, including
NREL’s ATB. Of the many directions that could be considered for
continuation of this work, in this section we present four specific
areas of study that we believe are most relevant and impactful.

First is the development of a reduced order model for predict-
ing variations in capacity density of wind plants from changes in
turbine cost and scale, profit, wind resource, specific power, and
innovations such as wake steering. The method of optimization
presented in this paper is effective and computationally efficient
when considering the optimization of a single site. However, it
is infeasible to apply this same method to study wind capacity
density for thousands of sites nationwide or even worldwide. This
reduced order model would be used in national assessments of
wind technical potential and capacity expansion models to more
accurately predict future wind deployment pathways under deep
decarbonization scenarios.

Second is to further refine the optimization methods for en-
vironmental impact constraints or objectives. As the deployment
of wind rises dramatically, it will become increasingly important
to develop metrics and methods to optimize wind farm layouts
for high performance with minimal environmental impact. A
potential formulation of this problem could be one where the
siting limitations are not fixed, but there is a requirement that
a certain portion of the wind farm area remain undeveloped.

Third is to couple turbine design variables within the wind
farm layout optimization problem. Our past studies have demon-
strated that when the number of turbines is fixed, coupled turbine
design and layout optimization performs better than optimizing

these sequentially. Further benefits can be gained if turbines are
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ptimized individually, allowing multiple turbine designs within
he wind farm (Stanley and Ning, 2019a). Coupled turbine design
nd layout optimization while exploring the optimal number of
urbines, setback constraints, and different objectives could be an
nteresting and important area to research.

Fourth is to consider further innovations that can effect wind
eployment. Two specific innovations that we think are impor-
ant to mention are wake steering through yaw misalignment,
nd advanced plant controls to mitigate the impacts of flicker and
oise. Wake steering can be used to either increase production
n existing farms, or to build turbines closer together with lower
ake losses and wake induced turbine loads. This could increase
iting flexibility and capacity density, and affect the sensitivities
hat we explored for this paper. Advanced plant controls could
e used to reduce the required setback requirements imposed on
urbines. As shown in this paper, reducing setbacks could increase
he potential of wind and greatly impact future deployment.
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