
1Robinson B, et al. BMJ Open 2022;12:e052681. doi:10.1136/bmjopen-2021-052681

Open access�

Comprehensive compartmental model 
and calibration algorithm for the study 
of clinical implications of the 
population-level spread of COVID-19: a 
study protocol

Brandon Robinson,1 Jodi D Edwards,2,3 Tetyana Kendzerska,3,4,5 Chris L Pettit,6 
Dominique Poirel,7 John M Daly,8 Mehdi Ammi,9 Mohammad Khalil,10 
Peter J Taillon,11 Rimple Sandhu,12 Shirley Mills,13 Sunita Mulpuru,4,5 
Thomas Walker,1 Valerie Percival,14 Victorita Dolean,15,16 Abhijit Sarkar  ‍ ‍ 1

To cite: Robinson B, 
Edwards JD, Kendzerska T, et al.  
Comprehensive compartmental 
model and calibration algorithm 
for the study of clinical 
implications of the population-
level spread of COVID-19: a 
study protocol. BMJ Open 
2022;12:e052681. doi:10.1136/
bmjopen-2021-052681

	► Prepublication history and 
additional supplemental material 
for this paper are available 
online. To view these files, 
please visit the journal online 
(http://dx.doi.org/10.1136/​
bmjopen-2021-052681).

Received 23 April 2021
Accepted 13 January 2022

For numbered affiliations see 
end of article.

Correspondence to
Professor Abhijit Sarkar;  
​abhijit.​sarkar@​carleton.​ca

Protocol

© Author(s) (or their 
employer(s)) 2022. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
Introduction  The complex dynamics of the coronavirus 
disease 2019 (COVID-19) pandemic has made obtaining 
reliable long-term forecasts of the disease progression 
difficult. Simple mechanistic models with deterministic 
parameters are useful for short-term predictions but have 
ultimately been unsuccessful in extrapolating the trajectory 
of the pandemic because of unmodelled dynamics and 
the unrealistic level of certainty that is assumed in the 
predictions.
Methods and analysis  We propose a 22-compartment 
epidemiological model that includes compartments 
not previously considered concurrently, to account for 
the effects of vaccination, asymptomatic individuals, 
inadequate access to hospital care, post-acute COVID-19 
and recovery with long-term health complications. 
Additionally, new connections between compartments 
introduce new dynamics to the system and provide a 
framework to study the sensitivity of model outputs to 
several concurrent effects, including temporary immunity, 
vaccination rate and vaccine effectiveness. Subject to 
data availability for a given region, we discuss a means 
by which population demographics (age, comorbidity, 
socioeconomic status, sex and geographical location) and 
clinically relevant information (different variants, different 
vaccines) can be incorporated within the 22-compartment 
framework. Considering a probabilistic interpretation of the 
parameters allows the model’s predictions to reflect the 
current state of uncertainty about the model parameters 
and model states. We propose the use of a sparse 
Bayesian learning algorithm for parameter calibration 
and model selection. This methodology considers a 
combination of prescribed parameter prior distributions for 
parameters that are known to be essential to the modelled 
dynamics and automatic relevance determination priors for 
parameters whose relevance is questionable. This is useful 
as it helps prevent overfitting the available epidemiological 
data when calibrating the parameters of the proposed 
model. Population-level administrative health data will 
serve as partial observations of the model states.

Ethics and dissemination  Approved by Carleton 
University’s Research Ethics Board-B (clearance ID: 
114596). Results will be made available through future 
publication.

INTRODUCTION
Since first being identified in December 
2019, the coronavirus disease 2019 (COVID-
19) has spread across the world, creating 
a global health crisis. To date (7 December 
2021), 266 457 039 confirmed cases have been 
recorded worldwide with 5 262 849 deaths.1 
It has become critically important to have 
reliable methods to model and predict the 
transmission of COVID-19 to inform policy 
decisions and forecast health system resource 
utilisation.

Value added
As the pandemic progresses, we are learning 
more about the transmission of severe acute 
respiratory syndrome coronavirus 2 (SARS-
CoV-2), and about the clinical effects of 
COVID-19 on individuals. The fundamental 

Strengths and limitations of this study

	► New compartments and parameters are introduced 
to model more complex disease dynamics and to 
capture clinically relevant quantities of interest.

	► The increased complexity of the mechanistic model 
is complemented by a non-linear sparse Bayesian 
learning algorithm for model calibration to help 
avoid overfitting the available data.

	► Population-level modelling averages across poten-
tially highly varying demographics of different com-
munities within the region of interest and lacks the 
spatial resolution for capturing localised activity.
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Kermack-McKendrick susceptible–infectious–recovered 
(SIR) model2 and adaptions to this model have been 
used to try to understand and predict both short- and 
long-term case counts, to strategically manage healthcare 
resources, and to inform public health policies designed 
to control the spread of the virus. The simplicity of these 
models makes them convenient tools from a mathemat-
ical perspective,3–5 and allows them to capture salient 
trends in disease progression and project short-term 
growth6 and assess critical quantities of interest such as 
the reproduction number (an indicator of the transmis-
sibility of infectious and/or parasitic agents7). However, 
their simplicity limits their utility for the objectives of the 
current protocol as they lack the refinement to account for 
the specific clinically distinct classes of individuals we seek 
to quantify and may oversimplify the complex dynamics 
and global nature of the COVID-19 pandemic reducing 
reliability of long-term forecasts.8 Tuite et al9 presented an 
elaborate model of the transmission of COVID-19 in the 
province of Ontario, Canada. It consists of 16 compart-
ments stratified by age and comorbidity, representing 

the largest number of unique compartments used in 
the study of population-level transmission of COVID-19. 
We propose to expand upon this model, increasing the 
model complexity in two ways: (i) the addition of six new 
compartments as depicted in figure 1, to incorporate the 
effects of vaccination, asymptomatic carriers (quaran-
tining and not), inadequate access to hospital or inten-
sive care unit (ICU) resources, recovery with long-term 
health complications and post-acute COVID-19 and (ii) 
within the above described 22-compartment framework, 
we can incorporate more information as data become 
available through stratification of the model, allowing 
for population demographics (age, comorbidity, socio-
economic status, sex and geographic location) and clini-
cally relevant information (vaccination status, variants of 
COVID-19) to be reflected through the model parame-
ters. Beyond allowing for clinically relevant quantities of 
interest to be accounted for explicitly within the model 
through additional compartments, the increased resolu-
tion of the 22-compartment model also allows for inter-
compartment dynamics and interactions to be captured.
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Figure 1  Flowchart of the proposed 22-compartment model, highlighting the extensions to the 16-compartment model by 
Tuite et al.9
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This increase in model complexity is complemented 
by the proposed use of the non-linear sparse Bayesian 
learning10 11 algorithm for parameter calibration and 
model selection. Using epidemiological data from a given 
region, model parameters may be calibrated using a tradi-
tional Bayesian statistical framework. Many model param-
eters have a clinical interpretation; hence, approaching 
the problem from a Bayesian perspective will permit this 
knowledge to be reflected through informative parameter 
prior distributions. In an extensive comparison of 22 indi-
vidual models, Cramer12 showed the Bayesian compart-
mental model considered in the study13 better captured 
the true case counts within its probability intervals, and 
was among the models with the lowest mean absolute 
error in its predictions. Beyond a standard Bayesian 
approach, we propose an automatic optimal model 
discovery process, using sparse and noisy observations, to 
identify a low-dimensional model that is nested under a 
potentially overparameterised COVID-19 compartmental 
model. This discovery process takes place in the presence 
of model error (imperfection), and little (or no) prior 
information may be available on some parameters. The 
inference procedure, powered by the non-linear sparse 
Bayesian learning algorithm for non-linear dynamics, 
has the goal of optimally balancing average data fit and 
model complexity (Occam’s razor14 15) to avoid overfit-
ting sparse data. The goal is to obtain a comprehensive 
compartmental model that will generalise beyond the 
timeframe of the observed data to provide reliable predic-
tions with reduced uncertainty compared to standard 
Bayesian approaches. Sparse learning in epidemiological 
models was previously approached from a non-Bayesian 
perspective using sparse identification of non-linear 
dynamical systems (SINDy).16 Horrocks and Bauch,17 18 
used the SINDy approach for an SIR model with modified 
transmission dynamics and data sets for measles, varicella 
and rubella.

Objective
To avoid oversimplifying the epidemiological dynamics 
and to account for structural errors or imperfections that 
are inherent in any model of complex systems, we have 
increased the complexity of the underlying mechanistic 
model, which is designed to capture more of the system 
dynamics. This is complemented by the addition of an 
explicit model error term (as described in the online 
supplemental material 1) whose characteristics can be 
inferred by Bayesian inference algorithms. We hypothe-
sise that the low-dimensional model (nested within the 
proposed stratified stochastic 22-compartment model) 
informed by heterogeneous data will have better predic-
tive capabilities (less bias and uncertainty as demonstrated 
by Sandhu et al10 for engineering systems). Obtaining 
the data-optimal model will help advance our under-
standing of the mechanics of the COVID-19 pandemic 
at a population-level scale, by identifying various critical 
time-varying and time-invariant parameters that drive 
the spread such as the reproduction number (see the 

approach described in Allenman et al19 Diekmann et al20 
for a stratified model with multiple infectious compart-
ments). It will also allow for the estimation of clinically 
relevant quantities of interest and for the forecasting of 
various what-if scenarios to predict the short- and long-
term demand on healthcare systems.

METHODS AND ANALYSIS
Model updates reflecting the evolving knowledge of 
COVID-19 and its dynamics will occur in two stages. First, 
new compartments, new connections between compart-
ments and model stratification are incorporated into 
the mechanistic compartmental model, such that the 
observed dynamics may be replicated. Second, model 
parameters are to be calibrated using the data collected 
to date and subsequently continuously updated as new 
data become available for real-time forecasting. In this 
section, we introduce a new proposed mechanistic model 
and model stratifications, and subsequently discuss the 
algorithmic development and data sources that will be 
used to implement this model for real-time prediction.

Mechanistic model framework
There are a number of variations of the SIR model, 
each designed ad hoc to evaluate a specific phenom-
enon relevant to a disease outbreak of interest. The 
16-compartment model from Tuite et al9 combines many 
control measures such as physical distancing and quaran-
tining, as well as modelling the burden on hospital and 
ICU resources, and it effectively addresses many pressing 
challenges that were present during the first wave of the 
pandemic. The proposed 22-compartment model builds 
on this model, so for consistency, the same labels and 
symbols are used wherever possible (particularly in the 
online supplemental material 1). Critically, the proposed 
model introduces new phenomena to the system: (i) vacci-
nation, (ii) reinfection with COVID-19 or a new variant 
of concern, (iii) asymptomatic carriers, (iv) inadequate 
access to hospital resources (accounting for deaths occur-
ring outside of hospitals, individuals in long-term care 
or the scenario wherein demand for ICU resources and 
ventilators exceeds capacity) and (v) recovery with long-
term health complications and post-acute COVID-19.

The flowchart in figure  1 depicts the proposed 
compartmental model, identifying all 22 compartments; 
the arrows indicate the pathways by which individuals 
may flow between compartments. The flowchart provides 
an explicit visual representation of the model equations, 
outlined in the online supplemental material 1, along with 
a summary of the model states and parameters. Readers 
are encouraged to refer to Tuite et al9 to see the founda-
tional model; however, for convenience, the extensions 
to the model are indicated by orange highlights. Six new 
compartments are proposed (indicated with an orange 
symbol in the top-left corner): vaccinated (V), infectious 
asymptomatic (F), infectious asymptomatic, isolated (X), 
no access to hospital care (N), post-acute COVID-19 (P) 
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and recovered with long-term health complications (R2). 
Additionally, the orange-coloured arrows denote new 
connections between compartments.

The model considers two compartments of individuals 
(top row) who may become infected with COVID-19. 
Upon being exposed (infected but not yet infectious), 
individuals from these two compartments will flow to one 
of two exposed compartments (second row) and enter 
one of two tracks depending on whether they are isolating. 
The inclusion of an isolation track extends the suscep-
tible–exposed–infectious–recovered model to incorpo-
rate information on the effectiveness of contact tracing 
and other measures for preventing transmission9 21 as 
in the six-compartment (susceptible, exposed, exposed 
and quarantined, infectious, infectious and quarantined, 
recovered) model inspired by the SARS outbreak.22 After 
the viral incubation period, individuals are considered 
infectious and can now transmit the disease; hence, they 
proceed into one of two infectious pre-symptomatic 
compartments (third row) along their current isolation 
track. Following a pre-symptomatic infectious period, the 
infectious individuals will be separated into three classes 
along their current isolation track, based on the severity 
of symptoms: asymptomatic, mild to moderate and 
severe. Symptoms are deemed to be severe if they warrant 
hospitalisation; otherwise, the symptoms are categorised 
as mild to moderate. Individuals with severe symptoms 
will proceed to a hospital track, entering one of the three 
compartments (fourth row). After various periods of time, 
the portion of the population with acute COVID-19 will 
proceed directly to one of two recovery compartments 
or the dead compartment (fifth row). Individuals whose 
symptoms persist beyond the typical symptomatic period 
will proceed to an intermediate compartment accounting 
for post-acute COVID-19 prior to transitioning to the 
recovered or dead compartments.23 Individuals who are 
asymptomatic or experience mild-to-moderate symptoms 
will recover and enter one of the two recovery compart-
ments (full recovery or recovery with long-term complica-
tions) or the post-acute COVID-19 compartment. Those 
who were previously not on the isolating track may enter 
the isolating track after testing positive once symptoms 
arise. The key dynamics that are introduced in this model 
are discussed in the subsections that follow.

Temporary immunity
Recent evidence suggests the possibility of reinfection with 
COVID-19 after recovery,24 and so temporary immunity is 
modelled by the same mechanics of a simple susceptible–
infectious–recovered–susceptible (SIRS) model. After 
entering one of the recovered compartments (R1 or R2), 
the individual will be returned to the susceptible compart-
ment (S) according to the average duration of temporary 
immunity. The recovered compartment is, therefore, no 
longer a final state; hence, in long-term forecasts, these 
compartments may not necessarily increase monotoni-
cally. Note that the dead compartment (D) is now the 
only final compartment.

Vaccination (V)
Vaccination resulting in temporary immunity is modelled 
by removing individuals from the susceptible (S) 
compartment and placing them in the vaccinated (V) 
compartment according to the rate of vaccination. This 
rate parameter may vary in time due to the availability of 
the vaccines and government policies for vaccine roll-out, 
and it may accordingly vary based on age, comorbidity 
or other factors addressed in the Stratification by charac-
teristics of the population section. Vaccinated individuals 
should be reintroduced into the susceptible compartment 
at a rate determined by the average duration of protection 
from vaccination. The framework allows for an imper-
fect vaccine (providing less than 100% immunity) to be 
modelled,25 enabling vaccinated individuals to become 
infected, and, therefore, to proceed through the flowchart 
due to inefficacy of the administered vaccine. Vaccine 
models as simple as the three-compartment (suscep-
tible–vaccinated–infectious) model26 have been used to 
study the influence of vaccination on disease control and 
have been used previously in the COVID-19 literature for 
studying the control of the disease.27 The effects of having 
multiple vaccines with different clinical properties being 
administered to the public can be modelled through the 
stratification of the model as outlined in the Vaccination 
and COVID-19 variants section.

Asymptomatic carriers (F and X)
Two compartments have been introduced to model 
asymptomatic carriers, who are undergoing isolation (X) 
and who are not (F). The inclusion of explicit compart-
ments to quantify asymptomatic carriers has also been 
used previously, such as in the study of influenza28 and 
COVID-19,29 respectively. Due to the non-linear interac-
tion of the susceptible and infectious classes (see equa-
tion (A.23) in the online supplemental material 1), these 
additional infectious compartments could have a signifi-
cant influence on the model output. Furthermore, these 
compartments allow the model to project the influence 
of government policies on the testing of asymptomatic 
individuals, or to retrospectively study the effect asymp-
tomatic carriers had on case counts through undetected 
community transmission.

Inadequate access to hospital resources (N)
The distinction between mild-to-moderate and severe 
symptomatic infections was defined as whether cases 
warrant hospitalisation. The inclusion of a compartment 
that accounts for inadequate access to hospital resources 
provides a mechanism to account for severe cases that 
result in death, but that are not accounted for in hospital 
or in ICU statistics. This compartment also provides a 
mechanism to assess worst-case scenarios, where the 
demand for hospital and ICU resources exceeds capacity.

Post-acute COVID-19 (P) and recovery with long-term health 
complications (R2)
The compartmental model includes a compartment 
for post-acute symptomatic COVID-19, and two distinct 
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recovery compartments: one that assumes a full recovery 
(R1) and a second in which individuals recover but are 
subjected to long-term health complications (R2). This 
second recovery compartment allows for health service 
utilisation, and for deaths resulting from long-term health 
complications to be modelled for long-term forecasts. For 
model stratifications that consider pre-existing health 
conditions (see discussion on comorbidity in the Strati-
fication by characteristics of the population section), this 
also allows for a mechanism whereby individuals may 
be transferred between health states when returning to 
the susceptible compartment under the assumption of 
temporary immunity (see equation (A.1) in the online 
supplemental material 1).

Model stratification
We now discuss how this base model will consider a 
combination of the effects of age, comorbidity, sex, socio-
economic status, geographical location, multiple variants 
of COVID-19 and different vaccines, without requiring 
any further modification to the 22-compartment model’s 
structure. In the most general sense, this is achieved by 
stratifying the model to capture the desired effects, such 
that a number of coupled 22-compartment models will 
exist in parallel for each possible combination of modelled 
effects. Tuite et al’s 16-compartment model9 is stratified by 
age into 16 age groups with equal widths of 5 years and 
includes a second stratification indicating whether an 
individual has a pre-existing health condition. These two 
model stratifications allow for clinically relevant informa-
tion to be explicitly modelled, and for age- and health-
specific model predictions to be obtained, as parameters 
are multidimensional arrays. We propose further use of 
stratification to account for additional demographic and 
clinical phenomena.

Stratification by characteristics of the population
The population can be optimally stratified by age to 
reflect age-dependent differences in COVID-19 transmis-
sion, clinical outcomes and policy decisions that affect 
specific demographic groups (eg, age-based vaccination 
priority). Grouping the population based on specific pre-
existing health conditions that are known to be relevant to 
COVID-19 (respiratory diseases, cardiovascular diseases, 
autoimmune diseases, etc) is also important in fore-
casting the outcomes of infections at the population level. 
Further stratifications based on socioeconomic status and 
sex are possible. For example, these model stratifications 
can be leveraged to model outbreaks among long-term 
care residents or the increased exposure of individuals 
of lower socioeconomic status, whose occupations may 
result in more daily interactions than people who are able 
to work from home.

One may even account for geographical location in a 
rudimentary sense, using a multiregional discrete model 
as in Zakary et al.30 This is achieved by assigning a specific 
index to population centres and accounting for the 
travel between these locations through a coupling term. 

A more formal account of these effects would require a 
partial differential equation model (such as in Viguerie 
et al31–33), which effectively extends the current ordinary 
differential equation framework by accounting for popu-
lation densities and the spatio-temporal movement of 
individuals by means of a diffusion term. One would need 
algorithmic developments that allow for the propagation 
of uncertainty in the large-scale problem by leveraging 
high-performance computing platforms and domain 
decomposition methods34 like those outlined by Desai et 
al.35

Vaccination and COVID-19 variants
Mutations of SARS-CoV-2 into new variants36 and the 
subsequent modelling of human-to-human transmission 
of these variants can also be achieved through the intro-
duction of an additional index that stratifies the model 
further, as in an n-strain model.37 This approach would 
assign an index to each distinct strain of the virus and 
allow for parameter values to vary according to the clin-
ical characteristics of that particular strain. The inclusion 
of a model stratification for multiple variants has future 
implications as well, as the emergence of escape variants 
may cause the pandemic to persist despite widespread 
vaccination efforts.38 39

The model includes a compartment (V) to account for 
the vaccinated population, but to model vaccines that do 
not provide 100% immunity against infection, an addi-
tional stratification could be introduced that accounts 
for the vaccination status of individuals who become 
infected. This could be of use when modelling multi-
dose vaccines and vaccine boosters, respectively. The 
additional index would also allow modellers to reflect 
how a vaccinated person’s experience with the disease 
may differ from an unvaccinated infected individual (eg, 
reduced probability of severe infection) by modifying the 
associated parameter values for the given index. As more 
data become available, this additional index could also 
allow for transmission-related differences between mRNA 
vaccines and viral vector vaccines to be modelled.40

Bayesian calibration of the proposed 22-compartment 
COVID-19 model
The data available for model calibration from testing and 
public health databases represent incomplete measure-
ments of the model states. Hence, adopting a Bayesian 
framework for the calibration of the model allows for more 
reliable long-term forecasting as it allows the modeller to 
impose known transmission dynamics through the model, 
rather than relying on patterns in the data alone. Prior 
knowledge of the model parameters is included through 
the assignment of parameter prior distributions. This 
prior knowledge is then updated based on the available 
data to obtain a parameter posterior distribution, which 
is used for forecasting. The probabilistic representation 
of the parameters allows for the uncertainty in the states 
and parameters to be propagated through the model to 
obtain predictions with associated uncertainty intervals.
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Despite the current effort to extend the compartmental 
model to include more relevant disease dynamics, there 
are certainly unmodelled phenomena that will contribute 
to the transmission of the disease. To address concerns of 
model inadequacy (stemming from the lack of knowledge, 
unmodelled dynamics and reduced order modelling), an 
additive white or coloured noise model discrepancy term 
will be added to the dynamics, resulting in a stochastic 
compartmental model.

As we increase the complexity of the model to capture 
more phenomena, we must be mindful that predictions 
obtained using overparameterised models calibrated with 
limited data can exhibit large uncertainty due to overfit-
ting. Furthermore, an inappropriate choice of parameter 
prior distribution by the modeller may introduce bias and 
lead to erroneous predictions, as probabilistic predictions 
are sensitive to the choice of priors in the case of sparse 
observations. For model calibration, non-informative 
priors are often assigned to some model parameters for 
which there is little or no prior information. The selection 
of priors for such parameters can be handled through the 
concept of automatic relevance determination (ARD),41 42 
thereby extending the Bayesian parameter estimation and 
model selection framework outlined by Sandhu et al.43–46 
This addresses the two concerns above, as it induces spar-
sity in the unknown parameter space during model cali-
bration, helping to prevent overfitting, and it removes the 
onus of choosing parameter priors for parameters that 
are not well understood from the individual modeller 
and instead relies on data-informed priors. Assigning 
a combination of ARD priors and known priors, this 
approach performs automatic model reduction in non-
linear dynamics using a hybrid scheme to prune redun-
dant parameters.47 As a result, one or a few nested models 
(under the more complex model) are identified that 
balance average data fit and model complexity. Through 
Bayesian model selection aided by ARD, the data-optimal 
dynamical model and model error will be simultaneously 
identified.

Data
The province of Ontario, Canada, represents an inter-
esting case study owing to heterogeneity in the demo-
graphics and population density across the region. For 
Bayesian analysis, we will use data from linked health 
administrative databases housed at ICES48 and public 
health data49 from the province of Ontario, the largest 
province in Canada. Ontario has high-density, ethnically 
and socioeconomically diverse metropolitan regions as 
well as large low-density rural areas with more homoge-
neous demographics.

It is important to note that data will not exist for each 
of the 22 unique model compartments, and compart-
ments that are observable will largely consist of biased 
and noisy measurements. In reference to figure  1, we 
anticipate that data will be available concerning: vacci-
nation (V), isolation after testing positive (G), the four 
compartments relating to hospital care (H, H1, I and 

H2), and the dead compartment (D). Various parameters 
may also be informed by systematic review, such as the 
demographics within the region of interest, and various 
clinical parameters that need not be inferred from the 
data. Other compartments are hidden variables that will 
need to be determined through a combination of the 
mechanics of the stochastic compartmental model and 
the data, using non-linear filters such as the extended 
Kalman filter, ensemble Kalman filter or particle filter for 
state estimation.50

Patient and public involvement
No patients involved. ICES has a public engagement 
team, which advises researchers and staff who are inter-
ested in engaging with the public. We will leverage the 
ICES Public Advisory Council to provide perspectives 
from public members.

Planned start and end date for the study
Data collection through ICES will tentatively run for 
2 years beginning in September 2022, with an additional 
year anticipated thereafter for the analysis and summary 
of findings.

DISCUSSION
The increased complexity of the proposed 
22-compartment model will allow for a more comprehen-
sive account of the underlying dynamics of the pandemic, 
which we hypothesise will provide a means to obtain more 
accurate predictions than previous models. The proposed 
Bayesian framework addresses concerns of overfitting, 
model error and the estimation of time-varying parame-
ters using available public health data. The data-optimal 
sparse representation of the observed dynamics allows for 
predictions with less uncertainty than models calibrated 
using standard Bayesian approaches.

In the short term, the proposed research effort will 
allow for the calibration of the model within a probabi-
listic setting, which will then lend itself to forecasting case 
counts and the associated anticipated burden on health-
care resources under uncertainty. The long-term implica-
tions of this research will extend beyond the height of the 
current pandemic. From a clinical perspective, relevant 
quantities of interest that the model framework seeks to 
capture include: the influence of asymptomatic carriers 
(compartments F and X), vaccination (compartment 
V, and through model stratification), deaths occurring 
outside of hospital (compartment N) and long COVID-19 
(compartments P and R2), as well as potential implica-
tions of temporary immunity and COVID-19 variants. 
The relevance of age, comorbidity, socioeconomic status 
or sex to the predicted clinical outcomes may also be 
quantified. Furthermore, many retrospective analyses 
may be performed. For example, estimates of the true 
case counts, obtained through state estimation, may be 
used to study the effectiveness of testing efforts as well 
as the effectiveness of policy-based control measures in 
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mitigating community transmission. Finally, through 
machine learning techniques like transfer learning,51 
the calibrated model for the COVID-19 pandemic can 
be methodically used to inform parameter priors as 
appropriate for the modelling of future epidemics and 
pandemics.

Ethics and dissemination
This study was approved by Carleton University’s Research 
Ethics Board-B (clearance ID: 114596). Results will be 
made available through future publication.
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