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This paper develops a physically justified reduced-order capacity fade model from accelerated calendar- and cycle-aging data for
32 lithium-ion (Li-ion) graphite/nickel-manganese-cobalt (NMC) cells. The large data set reveals temperature-, charge C-rate-,
depth-of-discharge-, and state of charge (SOC)-dependent degradation patterns that would be unobserved in a smaller test matrix.
Model structure is informed by incremental capacity analysis that shows loss of lithium inventory and cathode-material loss as the
dominant capacity fade mechanisms. The model includes terms attributable to solid-electrolyte interface (SEI) growth, electrode
cracking, cycling-driven acceleration of SEI growth, and “break-in” mechanisms that slightly decrease or increase available Li
inventory early in life. The study explores what mathematical couplings of these mechanisms best describe calendar aging, cycle
aging, and mixed calendar/cycle aging. Various approaches are discussed for extracting relevant stress factors from complex
cycling profiles to predict lifetime during real-world battery loads using models trained on constant-current laboratory test results.
The complexity of the present human-driven model identification process motivates future work in machine learning to more
widely search and statistically discern the optimal model that correctly extrapolates capacity fade based on physical knowledge.
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Accurate lifetime prediction is needed to bring maturity to large-
scale battery applications such as electric vehicles (EV) and grid
energy storage, with benefits for cell producers, system engineers,
and end-users. Lifetime models help to establish warranty terms,
replacement schedules, health-conscious controls, and create busi-
ness models for battery first and second use. The ideal life model
should accurately extrapolate degradation forward in calendar time
and number of cycles after training on data from an accelerated
aging test matrix. This model should furthermore interpolate (and
possibly extrapolate) to untested aging conditions, as well as capture
aging path-dependence for real-world mixed-use cases, (e.g., slow
charging interspersed with occasional fast charging, periods of
storage followed by cycling, and variable degradation with seasonal
temperature changes).

Achieving these life-prediction goals is complicated by the
multitude of nonlinear degradation mechanisms present in lithium-
ion (Li-ion) batteries and the disparate ways they manifest them-
selves under accelerated and real-world aging. In this endeavor, two
major open questions are: How is cycling degradation coupled to
calendar degradation, and how does complex cycling damage, such
as from an EV power profile, relate to simple constant-current (CC)
cycle-aging conditions? Identifying solutions to these challenges is
made more difficult by the inherent difference in variable battery
usage in the real world, which may require 10- to 20-year lifetimes,
compared to the limits of laboratory-based accelerated aging tests,
which are often less than one year in duration and conducted under
constant temperature and cycle aging conditions.

Multiple modeling approaches exist for life prediction. Neural-
network and machine-learning models, reviewed by Hu et al.,1 have
limited extensibility beyond their training data to untested operating
conditions. Further work is required to show their applicability not
just for accelerated cycle aging, but for real-world mixed calendar/
cycle-aging scenarios. Data-driven approaches have indeed proven
effective in tracking health in an onboard control environment, using
features derived from real-time current, voltage, and impedance
measurements.2–7

At the opposite end of the spectrum from data-driven models,
physics-based models describe and track individual mechanisms, as
reviewed by Reiners et al.8 For the graphite anode, mechanisms include
solid-electrolyte interface (SEI) growth9,10 and acceleration of SEI
growth due to graphite microcracking11 and transition metal dissolu-
tion/migration to the anode.12,13 Thick SEI can reduce electrode
porosity, clogging pores and blocking Li diffusion in the electrolyte,
potentially leading to the onset of Li plating.14 Li plating and SEI
growth both contribute to loss of Li inventory (LLI) capacity fade. In
addition to LLI, loss of active material (LAM) also impacts capacity
fade. These two mechanisms can manifest in both parallel (additive)
and competitive (minimum or maximum) manners. Predictive models
of LAM range from semi-empirical current integration15,16 to mechan-
ical stress/fatigue-coupled models.8 Physical models are valuable in that
they bring understanding that can be used to optimize cell designs and
operating conditions. Unfortunately, they are not automatically exten-
sible to new cell designs without first ensuring that they mathematically
describe all relevant degradation mechanisms for that new cell. They
are also challenging to parameterize—requiring physical measurement
and detailed electrochemical tests—as well as to compute in real-time
controls.

Reduced-order algebraic models17–20 are a third class of life-
predictive model, sitting somewhere between physics-based and
data-driven approaches. Like physical models, they attempt to
discern and track individual degradation mechanisms. Unlike
physical models, they use ordinary rather than partial differential
equations (respectively, ODEs vs PDEs). While most physics-based
works pre-suppose a mathematical model, most life-prognostic
works proceed backwards from the data, adding terms as needed
—sometimes in an empirical fashion—to describe additional aging
phenomena as they appear in the data. Additional terms to describe
new aging phenomena can be physically supported through non-
invasive cell characterization methods. Incremental capacity analysis
is an invaluable diagnostic tool to quantify the contributions of LLI,
anode LAM, and cathode LAM mechanisms to capacity fade.9,21

Within single aging conditions, LLI and LAM states can be
extrapolated and have been shown to predict the onset of accelerated
degradation, for example when anode LAM outpaces cathode LAM
and LLI, which leads to Li plating.22zE-mail: kandler.smith@nrel.gov
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Reduced-order models often model calendar capacity fade as
a function of time raised to some power, t ,p and cycling fade
as a function of full-equivalent cycles raised to another power,
N .z100 For Li-ion batteries, a time exponent of p ≈ 0.5 is most
common9,18–20,23–34 attributed to diffusion-limited SEI growth.
Under kinetic limitations, the exponent may approach p ≈
1.0.25–27 For a review of these and other reduced-order calendar
aging models, see Table I of Gasper et al.17 Cycle aging models
typically use an exponent near z ≈ 0.5,19,35–39 interpreted as a
surface process such as SEI microcracking or cathode transition
metal dissolution/migration that accelerates SEI growth. Larger
values, 0.6 < z < 0.940,41 or z ≈ 1,20 may be attributed to lithium
lost when active sites are lost due to mechanical stresses of cycling.
In the most common case where Li inventory limits relative capacity
q, calendar and cycling mechanisms proceed in parallel and the
effect of each mechanism may simply be added, ∼ −q qLi 0

18,20,37

The aging test matrix must vary time and cycling-throughput to
adequately deconvolute their separate fade contributions.

Other mechanisms may combine competitively, rather than
additively or multiplicatively. An example of this is the competition
between the overall available Li in the cell (related to the LLI),
overall capacity for Li storage in the cathode active materials
(LAMPE), and the overall capacity for lithium storage in the anode
(LAMNE). Active material availability is influenced by several
different physical mechanisms. Cathode cracking is a well-docu-
mented mechanism for the present graphite/nickel-manganese-cobalt
(NMC) cathode system with polycrystalline architecture. Cracking
causes growth in secondary particle surface area due to separation of
primary particle grain/grain boundaries,42 crystalline restructuring
near the surface leading to slower kinetics,43,44 damage to transport
paths including within the grain interior,45 and electrical isolation.46

Electrochemical-mechanical models predict that cracking saturates
at the beginning of life and can be considered a break-in
mechanism.47 Actual data also show a continuous LAM with
cycling, possibly due to continued crack growth due to fatigue,
crystalline-restructuring-driven resistance growth, or electrical iso-
lation within the composite electrode.48

Less explored in lifetime models are “break-in” mechanisms that
occur early in life, causing initial shifts in Li inventory and anode/
cathode stoichiometry windows and thus capacity.20,49 When fitting
a model, break-in magnitude can be estimated by throwing out data
for the first tens of days or cycles and allowing the y-intercept, q ,0 to
vary. Under mild cycling, NMC chemistries can show initial
increases in capacity. This could be due to an initial drop in cell
resistance with NMC surface growth, or due to electrolyte oxidation.
Deshpande50 proposed an electrolyte oxidation mechanism that may
occur at fresh NMC surfaces where a solvent S reacts with LiPF6

salt. The product Li intercalates into the cathode, improving the
cell’s cyclable Li inventory,

+ → ( ) + + [ ]+ −S LiPF S PF Li e2 2 2 , 16 6 2

and thus its initial capacity. Ideally, these reactions would occur
during the formation process, however most formation protocols
consist of low rate (∼C/10), high temperature (∼45 °C) cycles. In
contrast, the lifetime of the as-manufactured cell is typically spent
cycling at higher rates and lower temperatures, both causing
additional diffusion-induced stress and fresh surface area growth
of the cathode. In addition to cycling-induced shifts, the time-

averaged state of charge (SOC) of the cell can also cause apparent
shifts in Li inventory as Li slowly diffuses from the excess anode
overhang area.19,51,52 The passive part of the anode can either
reversibly increase or decrease the capacity depending on the SOC
before the capacity measurement. If the pre-capacity-measurement
SOC is higher than the mean-aging SOC, measured capacity can
increase. Li may similarly slowly move in and out of partially
isolated cathode and anode particles depending on dwell time at
certain SOCs.

This paper develops a reduced-order capacity fade model for a
dataset of 32 Li-ion graphite/NMC cells designed for EV applica-
tion. The model incorporates lessons from the prior work to identify
a physically justified model, while attempting to address key
challenges for life-predictive models. The dataset and modeling
analysis shed light on factors leading to electrode cracking, the
coupling between calendar and cycle life, the presence of multiple
break-in mechanisms and relationships between simple and complex
cycling. We hope the work motivates future experiments and
analyses to further improve life predictive accuracy and minimize
the time and expense of aging experiments. In the following,
the Experimental Section describes the aging test campaign. The
Mathematical Model Section then introduces the reduced-order life
model framework and references Appendices A-C that consider how
to extrapolate the fitted model to complex aging scenarios. The
Results Section identifies degradation mechanisms from the data and
develops the capacity model for the present graphite/NMC cell.

Experimental

Aging tests were conducted on 32 Li-ion prismatic cells of 50-Ah
class capacity with graphite anode and Li-Ni0.6Mn0.2Co0.2O2

cathode and total mass of 860 g. The prismatic hard-can cells follow
the PHEV2 form factor (length: 148 mm, height: 91 mm, thickness:
26.5 mm) from the VDA (German Association of the Automotive
Industry). Maximum charge and discharge rates are 1C and 3C,
respectively. Table I summarizes calendar aging tests performed on
11 cells at various temperatures and SOCs. Table II summarizes
cycle aging tests performed on 19 cells at various temperatures,
charge C-rates, and min/max SOC windows. Throughout this paper,
depth-of-discharge is defined as = −DOD SOC SOC .max min All
aging cycles used CC cycling protocols, with 10-minute rests at
the end of charge and discharge, except for a 50% duty-cycle cell
which had additional rest time—spent equally at the end of charge
and end of discharge—such that approximately half its life was spent
cycling and half its life was spent at rest. The 50% duty-cycle cell is
used to validate the model’s coupling between calendar and cycle
life. Two additional cells were aged under a world-harmonized test
protocol (WLTP) EV drive cycle at 25 °C between 5%–90% ΔSOC
with C/3 constant-current constant-voltage (CCCV) charging to
4.11 V with a 0.5A cutoff and 10-minute rests following charge
and discharge. The WLTP drive cycle cells are used to validate how
well the life model fit to simple cycling test conditions extends to
complex cycling. FUJITSU TNW 5V,360A cyclers controlled
electrical charge/discharge; ESPEC CORP. BT2–408C environ-
mental chamber controlled the cell ambient temperature environ-
ment. In fitting the model, the average measured cell temperature is
used, rather than ambient temperature. Cell temperature was
measured at the middle-top surface of the cell.

Each aging test was interrupted for a reference performance test
(RPT) approximately once per month for calendar-aging cells and
once per 100 cycles for cycle-aging cells. Performed at 25 °C,
the nominal RPT consisted of a C/3 partial discharge to 2.75V,
30-minute rest, a CCCV charge at C/3 rate to 4.25V with C/100
cutoff, 10-minute rest, followed by a C/3 discharge to 2.75V. Every
second RPT, a supplemental C/20 full charge and discharge was run
with the same voltage and current cutoff limits and 10-minute rest
period. The C/20 cycling data are used for incremental capacity
analysis which fits open-circuit potential curves for the anode and

Table I. Calendar-aging conditions.

SOC/T 10 °C 25 °C 45 °C 55 °C 60 °C

10% X
50% X X
90% X X X X X
100% X X X
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cathode to full-cell data. To support the analysis, one 50-Ah class
cell was disassembled, coin half cells were constructed and cycled at
the C/100 rate to measure the anode and cathode’s open-circuit
potential vs metallic Li.

Mathematical Model

We generalize a reduced-order life model framework20 and
summarize how to convert the fitted model (valid for simple cycling)
to time-series form (valid for complex cycling)53 with further details
given in Appendices. The model is identified by fitting degradation
mechanism trial equations to accelerated aging data. Degradation
mechanism and rate equations are selected that statistically best
represent the data and can be physically justified, for example with
incremental capacity analysis.

Degradation mechanism models.—Changes in a battery perfor-
mance metric, y, are represented as a mathematical combination of
degradation mechanism state equations xi shown in Table III. In
simple cases where a single degradation mechanism dominates
(e.g. LLI in the present work), a linear combination of state
equations often suffices,

∑= [ ]y x . 2
i

i

Performance metrics, y include battery relative resistance, r and
relative capacity, q. In more complex cases, multiple mechanisms
may control battery capacity fade and the dominant mechanism may
change during lifetime. An example20 is

= ( ) [ ]− +q q q qmin , , , 3Li

where separate submodels represent anode inventory, =− −y q ,
cathode inventory, =+ +y q , and lithium inventory, =y q .Li Li This
multi-mechanism model can mimic some types of sudden-death or
“rollover” behavior. Rollover is not evident in the present dataset or
considered in this work however.

In Table III, x is the state variable for degradation mechanism i, p
is the order of the fade mechanism (a constant in this work), k is the
rate of fade, and M is the magnitude of fade. Table III provides
degradation models in both ordinary-differential (valid for variable
fade rate) and time-integrated analytic-solution form (valid for
constant fade rate). Accelerated aging tests are generally conducted
at constant values of temperature T , depth of discharge DOD,
average state of charge SOC, and discharge/charge C-rates,

= /C I Ah ,rate 0 where I is current and Ah0 is cell nameplate capacity.
For individual aging tests under simple aging, k is constant and the
time-integrated analytical solution is used to select the mechanism
and fit its rate k. After k is determined for multiple aging conditions,

a rate-law function is developed to describe rate as a function of
aging condition, e.g. ( )k T SOC DOD C, , , .rate

Rate-law sub-models.—Table IV lists acceleration factors, θ ,h
commonly used in the literature in rate-law sub-models. These sub-
models are generally built as multiplicative combinations of accel-
eration factors,

∏ θ= [ ]k k , 4i i ref

h

h,

though in the case of multiple mechanisms, j, additive terms are also
possible,

∑ ∏ θ= [ ]k k . 5i

j

ij ref

h

hj,

Extension from simple to complex cycling.—Several accom-
modations are made to transform the model fitted to CC cycling with
static-aging conditions to a time-series form capable of handling
complex-cycling dynamic-aging conditions for arbitrary ( )T t ,

( )SOC t and ( )C t .rate Each state equation (Table III) is integrated
for varying rate k̄ where the overbar indicates a “normalized”
version of fade rate k. The norm of the fade rate allows for (1) time-
scale separation and (2) calculation of cycling damage accrued by
complex cycling. Normalization can be thought of as converting the
complex cycling damage that occurs at a fast time scale to an
average value that can be integrated at a slower time-scale.

Timescale-separation.—For cases where the electrochemical
simulation of short-term cycling behavior is computationally in-
tensive, timescale separation relaxes the need to simulate thousands
of cycles to predict lifetime. Using the forward Euler method,56 only
a handful of representative cycles need be simulated to represent
changes throughout lifetime.57 For time-varying states, ( )x t , the
normalized fade rate k̄ is simply the time average of the variable fade
rate ( )k t

∫=
Δ

( ) [ ]
Δ

k
t

k t dt
1

. 6t

t

t
0

Cumulative damage accrued by complex cycling.—Cycle-varying
states, ( )x N , cannot be continuously integrated over time. For any
life-prognostic model in which number of cycles, N , is an
independent variable, the user must make either make the restrictive
assumption that cycles are accumulated proportional to instanta-
neous current or come up with some method to count cycles accrued
over a given time-period. These two normalization methods are
current integration and Rainflow cycle counting58 and are further

Table II. Cycle-aging conditions, listing charge C-rate. Discharge C-rate is 1C for all cases.

ΔSOC/T 10 °C 25 °C 45 °C 55 °C 60 °C

40%–60% (20% DOD) 0.33
10%–50% (40% DOD) 0.33 0.33
30%–70% (40% DOD) 0.33
50%–90% (40% DOD) 0.33 0.33
20%–80% (60% DOD) 0.33
30%–90% (60% DOD) 0.33
10%–90% (80% DOD) 0.33 0.33 0.33 0.33 0.33

1 1 1
0.33 (50% duty cycle)

20%–100% (80% DOD) 0.33
0%–100% (100% DOD) 0.33
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Table III. Degradation mechanism models.

Mechanism State equation Analytical solution Conversion from cycle- to time-based
degradation rate

• Valid for complex aging (vari-
able k)

• Valid only for simple aging (constant k)

• Solved via time integration • Used for model identification
1) Mixed diffusion/kinetic-limited side

reactiona,b)
⎛
⎝⎜

⎞
⎠⎟

⎜ ⎟⎛
⎝

⎞
⎠

̇( ) = ¯ ¯
−

x t k p
k

x
t

t

p
p

1 ( ) =x t k tt
p ⎛

⎝⎜
⎞
⎠⎟¯ =

¯
Δ

k
k

t
t

N
p

( ) =x N k NN
p

2) Site lossc)
⎜ ⎟
⎛
⎝

⎞
⎠̇( ) = ¯x t k

x

x
t

p
0 ( ) = − [ − ( + ) ]+ +x t x x k x p t1p

t
p p0 0

1
0

1
1

⎛
⎝⎜

⎞
⎠⎟¯ =

¯
Δ

k
k

t
t

N

( ) = − [ − ( + ) ]+ +x N x x k x p N1p
N

p p0 0
1

0

1
1

3) Break-in processd,b) ̇( ) = ¯ ( [ − ( )])x t k M x tmax 0,t ( ) = ( − (− ))x t M k t1 exp t ⎛
⎝⎜

⎞
⎠⎟¯ =

¯
Δ

k
k

t
t

N

( ) = ( − (− ))x N M k N1 exp N

a) Order p = 0.5 for diffusion-limited SEI growth, p = 1.0 for kinetic-limited and 0.5 < p < 1.0 for mixed cases. Typical m-norm value (see Section 3.3.2), = ∞m relates mechanical damage to SEI surface.
b) Appendix A provides numerical considerations for integration. c) Order p = 0 for linear fade. p ⩾1 for accelerating fade. At p = 1, the rate of site loss is inversely proportional to the amount of remaining
electrode sites. An m-norm value, =m 1 sums the cumulative damage of individual microcycles (Miner’s rule54). Root sum of squares, =m 2, or maximum damage, = ∞m , may also be used. d) Typical m-
norm value, = ∞m , accounts for damage due to break-in processes.
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described in Appendix B. Appendix C introduces a convolution
formula as an alternative to Rainflow cycle counting. It allows
integration of current with respect to fractional powers of time.

For rates that are functions of Rainflow microcycles =i 1 to n,
the modified m-norm calculates a normalized degradation rate valid
over the aging period Δt

( )∑¯ = ∥ ∥ = ∣ ∣ [ ]
=

/
k k N k . 7N N m i

n
i N i

m
m

1 ,
1

With m = 1, 2 … ∞, the m-norm is similar to respective L ,1 L2 …

∞L norms, but with accommodation to account for whole or half
cycles, Ni = 1.0 or 0.5. With m = ∞, ¯ = ∥ ∥ = ∣ ∣∞k k kmaxN N N i,

selects the part of the cycle that causes the maximum damage. With
m = 1, the norm sums the damage of all microcycles, equivalent to
Miner’s Rule.54

The present time-series model integrates all state equations with
respect to time (Table III, column 2). Cycle-based fade, k̄ ,N is
converted to time-based fade, k̄ ,t using the chain rule (Table III,
column 4).

Results

Figure 1 shows capacity fade for the 11 calendar aging tests, 19
simple-cycling aging tests, and 2 complex-cycling aging tests carried
out over 200–300 d on the 50-Ah-class prismatic graphite/NMC cell.
Here, we develop a physically relevant reduced-order life model
describing C/3 capacity fade and highlight observed degradation
mechanisms. Incremental capacity analysis, conducted on C/20
capacity fade data, is first used to diagnose the main capacity fade
mechanisms. Compared to C/20, the C/3 data has 0.7 to 1.0 Ah less
capacity at beginning of life (Fig. 2). This C/20 vs C/3 capacity
difference reduces slightly in some cases but mostly stays constant
throughout life, ranging from 0.5 to 1.0 Ah at end of test. An
exception is the 45 °C 100% DOD cell #30 which has 2.3-Ah less
capacity at C/3 vs C/20 at end of test. Compared to other cells with
−5% to 25% 10-second direct-current (DC) resistance growth
during the aging campaign, the 45 °C 100% DOD cell experienced
50% resistance growth, contributing to its additional capacity fade. It
is our hope that degradation mechanisms observed here will
motivate enhancement of physics-based models that directly capture
the interplay of resistance growth and capacity fade across multiple
rates other than the single C/3 rate considered here. This might be
accomplished by introducing physical or empirical fade-rate equa-
tions for health-relevant parameters of a pseudo-2D electrochemical
model. Data from all figures are published in the Supplemental
Information (available online at stacks.iop.org/JES/168/100530/
mmedia) accompanying this paper.

Incremental capacity analysis.—Illustrated in Fig. 3a, incre-
mental capacity or dQ∙dV−1 analysis quantifies the impact of
individual thermodynamic mechanisms—LAMNE, LAMPE, and
LLI—in controlling C/20 capacity fade. Following the work of
Dubarry,21 three variables were fit to C/20 data: positive electrode
capacity, QPE, negative electrode capacity, QNE, and the offset,
OFS, between the fully lithiated cathode and fully delithiated anode,
either of which can limit discharge capacity. Based on these fitted
variables, we observe a strong correlation (Fig. 3b) between C/20
capacity loss and LLI, expressed as

= ( − ) − ( − ) [ ]LLI QPE QPE OFS OFS . 8initial deg initial deg

Typical for Li-ion cells, this correlation suggests that Li inventory
controls capacity for the present 50-Ah class cell and dataset. But
even though this correlation is good, the LLI is consistently lower
than the actual capacity loss, indicating the need to include
additional loss mechanisms to fully account for the lost capacity.
These observations support the hypothesis that capacity loss can be
modeled as the sum of Li loss due to Li-consuming side reactions
(time-dependent, with uncertain coupling to cycling condition) and
positive electrode loss (cycling dependent).

Model identification.—The capacity fade model identified here
captures C/3 capacity as a function of time, cycles, temperature,
DOD, charge C-rate, and SOC. Unlike typical model identification
or parameter optimization problems, the equations that describe
capacity fade across all test conditions are not known a priori. A
hierarchical procedure is used to identify both equations and
parameters:

1) Local model—Identify mechanisms (trial equations from
Table III) that best match data and have physical justification.
Identify the rate of fade, k, for each separate aging condition.

2) Rate model—Visualize how fade rate, k, depends on stress
factors T, SOC, DOD, Crate, etc. Select acceleration factor
models (Table IV) that describe the rate of fade across multiple
aging conditions.

3) Global model—Substitute rate models into local model equa-
tions. Refit selected model parameters to all datasets simulta-
neously.

Custom-developed Matlab© code partly automates the process,
with functions to visualize and perform calculations on the data,
filter and down-select subsets of data, build model equations,
perform parameter fitting (function nlinfit), visualize fitted model
results and evaluate quality-of-fit statistics (R-squared, adjusted R-
squared, root-mean-square error). A shortcoming of the present

Table IV. Acceleration factors used for building degradation rate laws.

Rate/magnitude dependence Type of Stress Acceleration factor, θh
a-d

Temperature Chemical & Mechanical
(1.1)

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥= −

( )
−Arr

E

R T t T
exp

1 1
E

a

ug ref
a

SOC Chemical
(2.1)

⎡
⎣⎢

⎤
⎦⎥

α η( )
( )

F

R

t

T t
exp

ug
where η( ) = ( ) −±t U t Uref

C-rate Chemical (2.2) … whereη( ) = ( ) − − ( )±t U t U C t Rref rate film

Mechanical (3.1) =C t DOD Crate i pulse i i rate i, , ,
55

DOD Mechanical (4.1) ( )βDODi

(4.2) γ( + ( ) )βDOD1 i

(4.3) γ( ( ) )βDODexp i

a) i is cycle index from Rainflow algorithm. b) Fitting parameters are k ,ref E ,a α, R ,film γ, β. c) Constants are =Rug 8.314 J K−1 mol−1, =F 96485 C mol−1,
and arbitrary user choice of Tref and U ,ref with units of [K] and [V], respectively. d) −U and +U , respectively negative and positive electrode equilibrium
potentials, are functions of SOC.
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work, however, is that model selection requires significant expert
judgement and human labor. Future work will include machine
learning concepts including multi-level optimization, symbolic
regression, penalized regression, cross validation, and uncertainty
quantification to automate the model development process and
reduce human bias. Our recent work, for example, applied machine
learning to identify a calendar fade model for an iron-phosphate/
graphite Li-ion battery.17 Several restrictions on that method’s
allowed equation formats must be relaxed to capture cycle aging
for the present dataset.

Based on incremental capacity analysis, we hypothesize that
relative capacity can be modeled as the sum of LLI due to calendar
fade and cycling fade, together with a break-in mechanism that
captures an initial shift in capacity early in life,

τ= − − − [ − ( / )] [ ]q b t b N b t1 1 exp 9p z
1 2 3

To help determine the exponent p, Fig. 4a shows a log-log plot of C/
3 capacity fade vs time. Reference lines show example square-root-
of-time and linear-with-time trends. Figure 4b shows C/20 capacity
fade vs time. Focusing first on the C/3 rate (Fig. 4a), most aging
cases appear to eventually converge to square-root-of-time behavior,

=p 0.5, albeit from different directions and with a long convergence
time, 100 to 200 d. Calendar- and cycle–aging conditions converge
towards =p 0.5 with a different slope. Calendar aging cases have a
shallow slope that indicates negligible initial fade and/or offsetting
mechanisms. An example offsetting mechanism is long-term SEI-
growth-induced Li loss that is initially compensated by a short-term
break-in mechanism that increases Li capacity. The C/3 data also
shows that several cycling conditions with negligible calendar fade,
specifically combinations of low temperature and low SOC, may
have an exponent as high as =p 1.0. However, with just 1%–2%
fade after 300 d, this is within the measurement noise. Despite clear
trends across the data set, the variation of the exponent p vs both
time and testing conditions is quite substantial, so it is difficult to
assign a single value to p from the C/3 data.

Fortunately, the C/20 data (Fig. 4b) show a clearer picture, with
less influence of break-in mechanisms. Here, most cycling condi-
tions converge in around 100 d to p = 0.5. Although there are only
three C/20 fade datapoints, there is very little noise in the data, and
all calendar aging conditions show a consistent slope close to p =
0.5. To keep RPT capacity checks short, most aging campaigns
conduct the “normal” RPT capacity check at the device-relevant rate
(here, C/3). Less frequently, “supplemental” RPTs measure capacity
at a slow rate (here, C/20) for incremental capacity analysis. Since
C/20 data converge faster to a long-term trend and are more
informative (Fig. 4), we suggest that in the future, a quick pseudo-
low-rate capacity measurement be included as part of each normal
RPT capacity check. A fast way to estimate C/20 capacity is to run a
cascade discharge, whereby the normal C/3 discharge is followed by

Figure 1. C/3 capacity vs time.

Figure 2. Correlation between C/20 and C/3 relative capacity.
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additional discharge steps at progressively lower rates down to C/20,
each proceeding to the cutoff voltage. The pseudo-C/20 capacity
would be taken as the sum of capacity removed at all rates, from C/3
down to C/20. In this manner, C/20 capacity could be estimated with
minimal additional test time.

The C/20 data do not support the use of a variable exponent
calendar aging model. Early-life deviations from a constant ex-
ponent can be handled with break-in mechanisms. The constant
exponent =p 0.5 suggests diffusion-limited SEI growth is the
dominant long-term calendar-aging mechanism. To fit calendar-
aging, we simplify the overall model (Eq. 9) by eliminating the
cycling term b Nz

2 and retaining only the steady-state of break-in
magnitude b ,3

= − − [ ]/q b t b1 101
1 2

3

Parameters b1 and b3 are fit to calendar aging data at long times, t >
100 d. Figure 5a shows the results of this local-model fit.

Figure 5b shows calendar fade rates, ( )b T SOC, ,1 for the calendar
aging conditions. For graphite negative electrodes, fade rate typi-
cally increases monotonically with SOC and is described with a
Tafel equation (Table IV, Eq. 2.1) whose functional dependence on
negative electrode equilibrium potential results in a monotonic rate
increase with SOC. At 25 °C however, data show the fade rate is
non-monotonic, increasing slightly from 50% to 90% SOC, but then
decreasing from 90% to 100% SOC. At 45 °C, fade is almost
identical at 90% and 100% though both are much less than 50%
SOC. And at 55 °C, fade is greater at 100% than 90%. Given the
plethora of literature on graphite SEI growth, graphite SEI is

doubtless a prominent Li-loss fade mechanism here. It is likely
some secondary cathode reaction is present. Regarding apparent
capacity increase, Deshpande50 proposed an electrolyte oxidation
mechanism at high SOC where LiPF6 salt reacts and Li intercalates
into the cathode, supplementing the cell’s cyclable Li inventory.
Rodrigues et al. discuss solvent oxidation occurring at high cathode
potentials resulting in increased Li inventory from charge neutrality
and capacity gain for lithium titanate (LTO) cells during storage.59

Regarding capacity decrease, manganese dissolution is another
possible secondary reaction, where Mn dissolves from the NMC
cathode and migrates to the graphite anode, accelerating graphite
SEI growth.44 We were unable to find any physically reasonable
two-reaction Tafel model that could fully describe the dataset.
Instead, we fit an empirical polynomial in SOC, multiplied by an
Arrhenius temperature dependence shown in Table V, rate model
(A). The formulas and activation energy, Ea = 36,000 J mol−1 are
consistent with graphite SEI growth.60 To keep notation compact,
Table V abbreviates the Arrhenius formula as:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥= −

( )
−Arr

E

R T t T
exp

1 1
E

a

ug ref
a

where the subscript Ea corresponds to the activation energy of the
modeled reaction. Also regarding notation, subsequent cycling
models (B) through (D) in Tables V and VI reference calendar
fade rate model (A) as ( )b .t A1, This calendar fade model is later
slightly improved to improve the overall fit to cycle aging data
which include several additional levels of average SOCs. In the
following discussion, subsequent improvement in local, rate,
and/or global models is denoted in alphabetical order, labeled
(A) through (F).

To model cycling fade, we must first estimate the exponent z in
the cycling term b N .z2 Figure 4c isolates “pure capacity fade” by
subtracting off fade due to calendar aging and break-in mechanisms.
Most aging conditions at 45 °C and above rapidly converge to
square-root-of-full-equivalent cycles, /N .100

1 2 One exception is
45 °C 100% DOD, which initially displays a superlinear trend
before converging to /N100

1 2 beyond 1000 cycles. For all cells
cycling at 25 °C and below, pure cycling fade is initially superlinear,
z > 1.0, up to around 400 cycles and then transitions to linear, z ≈
1.0, from cycles 400 to 900. Beyond 900 cycles, low temperature
C/3 data are inconclusive whether the final exponent is z = 0.5.
Compared to C/3 data, the C/20 data (Fig. 4d) provides insight. The
C/20 data more quickly and uniformly converge to z = 0.5. It
remains an open question whether some low-temperature cycling
conditions will eventually reach z = 0.5 beyond 1000 cycles. But
given the long-term convergence behavior shown for cases with a
higher number of accumulated cycles, we assume z = 0.5 for the
entire dataset. The exponent indicates this cycling-driven mechanism
is likely coupled to a diffusion-limited process. Possibilities include
SEI microcracking, Mn dissolution from the cathode with precipita-
tion on the anode accelerating SEI growth, cathode cracking and
grain isolation from diffusion-induced stress and/or cathode surface
reconstruction.

Given that all aging conditions accumulate charge/discharge
cycles proportional to time, N ∼ t, so far it is not possible to tell
whether the b1 term is solely attributable to calendar fade, /t ,1 2 with
some acceleration factor to account for, e.g., micro-cracking of the
graphite surface; or if it also depends on square-root of cycles, /N ,1 2

for cycle aging tests. We thus test three different hypotheses.
Table V compares three SEI local/rate model combinations—(B),
(C), and (D)—that couple calendar-dependent SEI growth, b ,t1, with
cycling-driven SEI damage, b ,N1, in different ways:

(B) Multiplicative: /b b tt N1, 1,
1 2

(C) Additive, proportional to partial-cycle count: +/b tt1,
1 2

/b NN1,
1 2

Figure 3. (a) Schematic showing relationship between LLI and fitted dQ/dV
variables QPE, QNE, and OFS for cells in their initial and degraded states.
(b) LLI closely correlates with C/20 capacity fade for all cells throughout
aging.
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(D) Additive, proportional to equivalent-full-cycle count: +/b tt1,
1 2

/b NN1, 100
1 2

All three cycling-driven fade-rate models use the same functional
form,

[ ]

= [ ( )( + ) − ]
+

11

b b Arr DOD C a SOC b

b Arr DOD

max 0, 1N N ref E chg

N ref E
c

1, 1, , 1
0.5 0.5

1, , 2

a

a

1

2

with fitted parameters b ,N ref1, , 1 E ,a1 a, b, b ,N ref1, , 2 E ,a2 and c. While
not exclusive, this chosen function matches well with trends
observed in the rate data when interpreted with the three different
local models, (B) through (D):

• At a fixed temperature and SOC, rate b N1, is nearly linear with
=C t DOD C .chg chg chg

0.5 0.5 This stress factor serves as a proxy for
Li concentration gradient severity within an active material
particle55 which correlates with diffusion-induced stress.8 To aid
visualization, Figs. 6a and 6b plot b N1, on log and linear scales,
respectively.

• Plotted vs DOD C ,chg
0.5 0.5 a straight line fit to rate b N1, does not

pass directly through the origin (Fig. 6b). A slight offset, b, is

required, which can be interpreted as a threshold below which
diffusion-induced stress does not cause damage.

• At 40% DOD, for which the dataset includes several different
average SOCs, we note that fade rate increases with SOC which,
lacking more data, we capture as a linear function of SOC, with a ∼
2. Indeed, nano-indentation measurements show NMC532 elastic
modulus, hardness and interfacial fracture toughness all decrease
with increasing SOC,61 by factors of 1.3, 1.2 and 1.8, respectively
from 0% to 100% SOC.

• Temperature dependence follows the Arrhenius formula with
activation energies ∼ −30 to −50 kJ mol−1 having negative values
due to increased transport limitations (e.g., 45 kJ mol−1 for NMC62),
diffusion-induced stress and material embrittlement at lower tem-
peratures.

• Finally, the single 100% DOD test case at 45 °C could not be
fit without including a power-law term, DOD ,c with a value of c ∼ 6.
This term slightly improves the overall fit and can be interpreted as a
strain-induced particle damage that is independent of rate. Recall
that this 100% DOD case experienced substantially more resistance
growth than all other cells.

While the R2 of models (B) through (D) are similar, two other
metrics support the selection of model (D). As a test for how well the
model extrapolates accelerated cycling (100% duty cycle) to real-

Figure 4. Log-log plots of (a) C/3 capacity fade vs time, (b) C/20 capacity fade vs time, (c) C/3 pure cycling fade vs cycles, and (d) C/20 capacity fade vs cycles.
Trendlines show Linear and square-root behavior with each x-axis variable. In (c), pure cycling fade subtracts the model-estimated calendar fade from capacity-
fade data.
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world cycling, where there is rest between each charge/discharge
cycle, the aging test matrix included one 50% duty-cycle case at 45 °
C and 80% DOD. This 50% duty-cycle cell cycled half of each day
and rested the other half of the day, with rest evenly distributed at
end of discharge and end of charge. For the model to be consistent,
the cycling fade rate b1,N should be the same for both the 50% and
100% duty cycles. Table VI shows this is exactly the case for
additive models (C) and (D) with b1,N differing less than 0.6%
between the 50% and 100% duty-cycle cells. In contrast, the
multiplicative model (B) has 16% difference between the 50% and
100% duty-cycle cells. While further validation is still desired, this
provides strong evidence that calendar-driven SEI growth is additive
with cycling-driven damage.

Models (C) and (D) track cycling damage differently, vs partial
cycles N and full-equivalent cycles N ,100 respectively. Table V
shows RMSE decreases 27-fold when using full equivalent cycles
(D) compared to partial cycles (C). Full-equivalent cycles is also a
more convenient metric to extrapolate the model from simple to
complex cycling; the cycle-counting algorithm, (e.g., Rainflow, is
not needed to count partial cycles).

With the SEI-growth models identified, we move to fitting the
break-in mechanisms’ steady-state magnitude, b .3 This parameter
captures the y-intercept offset in capacity beyond the first tens of

days. Since capacity is Li-inventory limited, this equates to a loss or
gain of Li, or similarly, a degradation or improvement of particle-
scale Li transport that saturates early in life. Figure 7 plots break-in
magnitude for the 30 test conditions fit using local model (E) in
Table VII. Two trends are apparent:

1) For calendar-aged cells, b3 follows a non-monotonic trend
where it is negative at low SOCs—an apparent Li-inventory
gain, and positive at high SOCs indicating a Li-inventory loss
(Fig. 7a).

2) For cycled-aged cells, b3 generally decreases—indicating a Li-
inventory gain—monotonically with the diffusion-induced
stress acceleration factor, DOD C .chg

0.5 0.5 Temperature also
plays a role (Fig. 7b).

For the calendar-aged cells, model (E) in Table VII for b t3,

captures the SOC-dependent trend. Useable Li-inventory gain
increases from 10% to 30% SOC, decreases from 30% to 90%,
then slightly increases again from 90% to 100% SOC. As mentioned
in the introduction, this small capacity shift is likely reversible,
caused by Li re-distribution to/from the excess anode
overhang19,51,52 and/or partially isolated cathode particles. Quickly
passivating side reactions could also cause small shifts in capacity at
break-in, albeit irreversibly.

For the cycle-aged cells, the diffusion-induced-stress increase in
C/3 li inventory is captured by b N3, in Table VII. It shares a similar
functional form to ( )b N D1, in Table V. We attribute this apparent Li
gain to relaxation of transport losses in the positive due to reduction
of positive particle solid-diffusion transport length with cycling.
Apparently, the particles remain electrically connected to the
electrode as they pulverize. The outcome is a reduction in effective
particle size, shortening the NMC active material diffusion length
which increases Li-ion availability for capacity measured at the C/3
rate.

To finalize the capacity fade model, we make slight improve-
ments to the b t1, rate model (Fig. 8), including both calendar- and
cycle-aging datasets. Adding cycle-aging datasets improves the
calendar-fade model by introducing additional values of average
SOC. SOC trends are more consistent across the tested temperatures.
With all model equations identified, the improved calendar-fade sub-
model yields global model (F) in Table V. Figure 9 plots the global
model along with all test data. Residuals are nearly flat, indicating
reasonable extrapolation into the future. Quality of fit is R2 = 0.990,
with an RMSE of 0.52% of capacity.

Complex cycling validation.—Two cells aged under an EV drive
cycle—withheld from the fitting process—are used to validate the
model for complex cycling. Unlike CC discharge cycles used for
model fitting, 3 repetitions of the WLTP EV drive cycle (Fig. 10a)
discharge the cell. CCCV charging is at the C/3 rate. To convert the
model to handle complex cycles, time-based model states b t1, and
b t3, are normalized using Eq. 6. Cycling-based states b N1, and b N3,

are normalized using m = ∞ in Eq. 7. The interpretation is that the
Rainflow microcycle that creates the maximum damage represents
the average damage rate for the entire composite WLTP cycle. The
convolution Eq. C·3 from Appendix C provides time-series values
for C DODchg

0.5 0.5 and DOD whose maximum values are identical to
that from the Rainflow algorithm. The identical results eliminate the
need for Rainflow cycle counting.

Applied to the complex WLTP cycle, the capacity fade model
(Fig. 10b) overpredicts the capacity loss with 2% error after 180 d of
testing. A second replicate cell showed similar results. Beyond 180
d, the 2% error stays approximately constant for the remaining 110 d
of testing. Given that the error is a constant offset, the model might
be improved by including discharge current as an additional damage
factor in the b N3, model. Discharge current was not varied in the

Figure 5. (a) Local model “(A)” in Table V, with two separate parameters,
b1 and b3, individually fit to each of the 30 aging test conditions. (b) Rate
model “(A)” in Table V describing calendar fade rate vs T and SOC for the
10 storage aging test conditions.
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Table V. SEI-growth-rate model identification using hierarchical local/rate/global model-fitting procedure.

b t1, (day−1/2) b N1, (various units) R2 RMSEa)

A) Local model (DOD = 0, t > 100 d):b) = − −/q b t b1 t1,
1 2

3

A) Calendar fade
rate

( ) = (− + − + )b Arr soc soc soc0.082 2.81 5.15 2.77t A k1, 36
2 3 0.950 4.76e-4 day−1/2

B) Local model (DOD > 0, t > 100 d):c) = − ( ) −/q b b t b1 t A N1, 1,
1 2

3

B) Cycling da-
mage rate,
multiplicative
with time

( ) = [
× ( + )
+ ] +

−

−

b Arr

DOD C soc

DOD

max 0, 6.44

1 2.02

0.33 7.7 Arr

N B k

chg

1, 42

0.5 0.5

53
7.2

0.997 0.311

C) Local model (DOD > 0, t > 100 d):d) = − ( ) − ( ) −/ /q b t b b N b1 t A t A N1,
1 2

1, 1,
1 2

3

C) Cycling da-
mage rate, ad-
ditive with
time, ∼N

( ) = [
× ( + )
− ] +

−

−

b Arr

DOD C soc

DOD

max 0, 2.74

1 1.63

0.263 5.15 Arr

N C k

chg

1, 46

0.5 0.5

57
6.3

0.998 0.166
(cycle/day)−1/2

D) Local model (DOD > 0, t > 100 d):e) = − ( ) − ( ) −/ /q b t b b N b1 t A t A N1,
1 2

1, 1, 100
1 2

3

D) Cycling da-
mage rate, ad-
ditive with
time, ∼N100

( ) = [ × ( + )− ]

+
−

−

b Arr DOD C soc

DOD

max 0, 3.24 1 2.10 0.099

1.44 Arr

N D k chg1, 58
0.5 0.5

13
6.0

0.999 0.00604 (equiva-
lent full
cycle/day)−1/2

F) Global model (T < 60 °C):f) ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥= − [ + ( ) ] − ( ) − −/ /q b t b N b

t
1 0.985 1 exp

10
t N D E1,

1 2
1, 100

1 2
3

F) Calendar fade
rate

( ) = (− + − +

− × + × ( − )− −

b Arr soc soc soc

soc T T

0.000197 0.0101 0.0157 0.00835

4.06 10 3.32 10 max 0, 328.15

t F k1, 37
2 3

6 5

0.985 0.00604

a) Root-mean-square error. b) Fitting parameters: b t1, and b .3 c) Fitting parameters: b t1, and b .3 d) Fitting parameters: b t1, and b .3 e) Fitting parameters: b t1, and b .3 f) Fitting parameters: =m 0.985 as well as all
individual parameters in the b t1, rate law.
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aging design of experiments, though, so the impact of discharge
current on the value of b N3, cannot be parameterized. Calendar fade
SEI growth accounts for just 2% of the 10% fade observed over the
290 d test period. The cycling damage term, = /q b N ,N N1, 1, 100

1 2

accumulates 11% fade, an overprediction. The magnitudes of
break-in terms, b t3, and b ,N3, are small, causing offsetting −1%
and +2% shifts in initial capacity, respectively.

While model accuracy is reasonable, further research is war-
ranted to identify how to reliably map constant-current test results to

complex real-world-relevant usage. There are multiple ways to
interpret a simple-cycling model and apply it to complex cycling.
The present work does this by normalizing the cumulative damage of
cycling-based terms (Eq. 7). With the convolution Eq. C·3 providing
a time-series interpretation of cycling stress, it is also possible to
recast the present model so that it can be continuously integrated
with time. Similar to Delacourt (Eq. B·1), for example, the

= /q b NN N1, 1, 100
1 2 state of the model would be calculated by integrating

Table VI. Cycling damage rate b1,N for 50% and 100% duty-cycle aging, where duty cycle is the ratio of cycling time to total calendar time. Unlike
model (B), models (C) and (D) provide a consistent rate across the two duty cycle conditions, important to correctly extrapolate accelerated cycle
aging to real-world scenarios with more rest time.

Cycling damage rate (45 °C, 80% DOD, 50% SOC, C/3 charge)
b1,N (various units)

100% duty cycle 50% duty cycle Difference

B) Multiplicative with time: /b b tt N1, 1,
1 2 2.897 2.432 16%

C) Additive with time; proportional to partial cycles: +/ /b t b Nt N1,
1 2

1,
1 2 0.7665 0.7620 0.58%

D) Additive with time; proportional to equivalent full cycles: +/ /b t b Nt N1,
1 2

1, 100
1 2 0.8570 0.8520 0.58%

Figure 6. Rate model “(D)” in Table II describing cycling fade rate vs
magnitude of concentration gradient, DOD C .chg

0.5 0.5 (a) All cycling condi-
tions plotted on log scale. (b) Subset of cycling conditions plotted on linear
scale. Trendlines are guide for the eye of diffusion-induced stress vs
temperature.

Figure 7. Rate model “(E)” in Table VII showing Li loss (positive values)
and gain (negative values) during break-in period. Data vs (a) SOC and (b)
concentration gradient magnitude, DOD C .chg

0.5 0.5 Trendlines are guides for
the eye to visualize (a) SOC-dependent calendar and (b) diffusion-induced
stress-dependent cycling changes.
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the ODE

=
( ( ( ) ( ) ( )))

∣ ( )∣

[ ]

dq

dt

b T t SOC t I t

q Ah
sec

hr

I t
, ,

2

1 1

2 3600
.

12

N N

N

1, 1,
2

1, 0

At that point the model would cease to be algebraic, however, and
would require the use of ODE solvers to optimize the different
model parameters embedded in ODEs, a logical next step.
Additional future work is needed to improve methods that char-
acterize the multitude of relevant degradation mechanisms and
establish the most straightforward path to incorporate them into
reduced- or full-order physics-based models.

Additional validation tests are needed to demonstrate model
accuracy under path-dependent aging. Relevant real-world mixed-
use cases might include slow charging interspersed with occasional
fast charging, periods of storage at severe calendar aging (e.g. high
temperature and SOC) followed by periods of realistic complex
cycling (at normal temperature and SOC), and variable degradation
with seasonal temperature changes.

Conclusions

This paper presents a framework to identify reduced-order
algebraic life models from accelerated aging data. Mechanism and
degradation rate/magnitude trial equations are selected based on

Table VII. Lithium inventory break-in mechanism model identification with separate calendar- and cycling-dependent terms, respectively b t3, and
b .N3,

b t3, b N3, R2 RMSE

E) Local model (t > 40 d):a) = − ( ) [ − ( ) ] − = +/ /q b t b N b b b b1 t A N D t N1,
1 2

1, 100
1 2

3 3 3, 3,

E)
Rate

( ) = − + ( − )
+ ( − )
− ( − )

b soc

soc
soc

0.0303 0.269 1 1.360
0.208 max 0, 0.3
0.272 max 0, 0.9

t E3, ( ) = [
× ( + )
− ] + ( − )

−b Arr

DOD C soc

DOD

max 0, 0.0791

1 1.143

0.0386 0.178 max 0, 0.85

N E k

chg

3, 8.8

0.5 0.5

0.971 0.0071

a) Fitting parameter: b .3

Figure 8. Rate model “(F)” in Table V for calendar fade including all data
from both calendar- and cycle-aging tests.

Figure 9. (a) Global model (F) in Tables II and III vs all data. (b) Model error vs training data.
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physical and statistical analysis of electrochemical data. The paper
analyzes aging of a Li-ion graphite/NMC EV battery, uncovering
well- and lesser-known capacity fade mechanisms. Incremental
capacity analysis showed Li inventory loss controls capacity fade,
with both side reactions and positive electrode loss contributing to Li
inventory loss.

Analysis of the capacity fade data suggests dominant aging
mechanisms:

1) Calendar fade tracks with square-root-of-time, due to diffusion-
limited SEI growth:

• Temperature-dependence shows typical Arrhenius behavior.
• SOC-dependence is non-monotonic and does not follow typical
Tafel behavior. Instead, the rate increases from 10% to 50%,
decreases from 50% to 90% SOC, and then again increases
from 90% to 100% SOC.

• Regarding the square-root-of-time dependence, if analyzing C/3
data only, one might conclude variable kinetic/diffusion lim-
iting modes are present and vary the time exponent (½ for
square root) across aging conditions as some authors choose.
However, C/20 data on a log-log plot show quick convergence
to the square-root trajectory, requiring just 100 d and 2% fade.
In contrast, C/3 data require at least 200 d and 4% fade to
converge. Since it is important to accurately deduce the long-
term aging mode as quickly as possible, we recommend that
low-rate capacity be measured at every capacity check. To keep
test time short, this can be via a CV hold at end of C/3 discharge
or a cascade discharge at progressively lower CC C-rates,
ending around C/20.

2) Cycling fade tracks with square-root-of-cycling throughput due
to an unknown mechanism:

• As this is the main degradation mechanism for the present cell,
it is important to better understand in the future. Similar to
calendar fade, C/20 cycling fade converges to the ½ exponent
twice as fast as C/3 data. For tracking cycling fade, full
equivalent cycles, N ,100 provides a more accurate model than
the counting of partial cycles, N

• Given the ½ exponent, this mechanism is likely coupled with
SEI growth. As further support, the cycling fade-rate sub-model
is more accurate when pre-multiplied by the SEI calendar-fade
temperature- and SOC-dependent rate model. Plausible cou-
plings with SEI growth are:

• Microcracking of the graphite negative and/or SEI layer with
cycling

• Cathode cracking, surface area growth or surface reorganization
that causes transition metal dissolution, its transport and
deposition on the negative, where it catalyzes/accelerates SEI
growth.

• Two factors capture aging-rate dependence, both suggesting
electrode cracking is a root cause of accelerated cycling fade:

• Fade rate is nearly linear with =C t DOD C .chg chg chg
0.5 0.5 This

metric tracks active-material concentration-gradient magni-
tude, a proxy for diffusion-induced stress. Fade rate accel-
erates with low temperature.

• An extra term captures additional fade for 80% to 100% DOD
cycling, likely linked to excessive resistance growth observed
for 100% DOD cycling.

3) Calendar/cycling coupling:

• Incremental capacity analysis shows side reactions and positive
electrode loss contribute to Li inventory loss in an additive
manner.

• An additive model provided better quality of fit compared to a
multiplicative calendar/cycling-coupled model. The multiplica-
tive model had 16% fade-rate error on a 50% duty-cycle mixed-
aging test case. The additive model had less than 1% error.

Lessor magnitude mechanisms include:

4) Break-in mechanisms cause initial shifts in measured capacity—
either increasing or decreasing capacity—over the first 100 d.

• These mechanisms obscure the long-term fade-rate trajectory.
They are important to understand if one hopes to develop an
accurate life-predictive model from a brief aging test campaign.

• SOC dependence tracks non-monotonically similar to SEI
growth: Initial capacity rises by several percent when the cell
is stored from 10% to ∼40% SOC, then begins to decrease from
40% to 90% SOC, but again increases from 90% to 100%. This
behavior could be related to excess Li in anode overhang
regions becoming accessible at certain SOC ranges or passi-
vating side reactions at either electrode.

• Cycling dependence tracks similar to the electrode-cracking
cycling-fade model, with magnitude nearly linear with

=C t DOD C .chg chg chg
0.5 0.5 Additional fade occurs at DODs

greater than 80%.

To extend life predictions from simple (lab tests) to complex
(real-world) cycling, fatigue models using number of cycles as an
independent variable must resort to cycle counting or some current-
integration assumption. Here, a convolution formula involving
current/time superposition overcomes limitations with the Rainflow

Figure 10. EV validation cycle. (a) SOC and current history for one cycle.
(b) Model compared to observed capacity fade.
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cycle-counting algorithm and calculates a cumulative time-series
signal that is a proxy for diffusion-induced stress. Previous work15

tracked a linear cycling fade mechanism whose rate was dependent
on Crate and C ;rate The present work provides evidence for a
square-root-of-cycling fade mechanism whose rate depends on

= / /C t C DODrate pulse rate
1 2 1 2.

The pathway beyond empirical cycling-fade correlations is to
pursue a physics-based model approach that calculates transport,
concentration-gradient-induced stress, and tracks damage accumu-
lated based on that stress history. Several authors already use their
mechanics models to calculate stress, but, to our knowledge, none
has yet coupled stress to fatigue-driven damage accumulation. The
recent review by Howey8 suggests that minimal additional work is
required to couple stress with damage and capacity fade. The present
analysis helps motivate additional mechanisms that must be included
in physics-based models in order to predict lifetime. Future work is
also needed to directly learn physical or empirical fade-rate
equations for health-relevant parameters of an electrochemical
model. Such a model could more widely describe evolving capacity
rate capability and resistance changes over lifetime.
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Appendix A. Numerical Integration

Numerical integration of mixed diffusion/kinetic-limited side
reaction model in Table III

⎜ ⎟⎛
⎝

⎞
⎠

⎜ ⎟⎛
⎝

⎞
⎠̇ ( ) = [ · ]

−

x t k p
k

x
A 1

p
p

1

requires special consideration at [ ]t 0 = 0 where initial condition
=[ ]x 00 and Eq. A·1 is singular. To integrate from [ ]t 0 = 0 to [ ]t ,1 the

analytical solution should be used,

= ( ) [ · ][ ] [ ]x k t . A 2p1 1

Numerical integration of break-in process model in Table III

̇ ( ) = ( [ − ( )]) [ · ]x t k M x tmax 0, A 3

requires special consideration when the model is integrated across
time periods with rising and falling levels of maximum damage, M.
Care must be taken to ensure damage is irreversible. Equation A·3
partly takes care of this, ensuring rate of fade ̇( ) ⩾x t 0, ensuring
damage is irreversible. When integrating (A·3) from timestep [ − ]t i 1

to [ ]t i however, one also needs to ensure the result [ ]x i does not step
beyond the maximum permissible level of damage, [ ][ − ]M xmax , .i 1

To accomplish this, first calculate a temporary result = ( )*[ ] [ ]x x t .i i

In the case of explicit time integration, the temporary result is

= + ( [ − ])(Δ ) [ · ][ ]* [ − ] [ ] [ ] [ − ]x x k M x tmax 0, A 4i i i i i1 1

Then calculate the final result, [ ]x i by checking that the temporary
result does not exceed the maximum permissible level of damage,

= [ [ ]] [ · ][ ]* [ ]* [ − ]x x M xmin , max , A 5i i i 1

Appendix B. Cumulative Damage Accrued by Complex Cycling

Unlike physics models that integrate electrochemo/mechanical
states with respect to time, most reduced-order life models track
damage with number of charge/discharge cycles. Described in
Section 3.3, cycle-varying states cannot be continuously integrated
with time for complex cycling. Instead, the user must assume that
cycles are accumulated proportional to instantaneous current or use a
method for cycle counting, such as the Rainflow algorithm.

Current integration accumulates damage based on the integral of
current, square-root-of-current, energy or similar. Delacourt,15 for
example, proposed an empirical formula for rate of active material
loss,

= ( )∣ ( )∣ + ( ) ∣ ( )∣ [ · ]dLAM

dt
C T I t C T I t , B 11 2

where ( )C T1 and ( )C T2 are fitted functions.
Current integration conveniently avoids the need to count

individual microcycles. For this reason, many authors track full-
equivalent cycles rather than individual partial cycles. Partial cycles,
N , are transformed to equivalent full cycles using = ·N DOD N.100
Equivalent full cycles can be continuously calculated by integrating
charge current, discharge current, or the average of both directions:

⎜ ⎟⎛
⎝

⎞
⎠
∫= ( ) [ · ]N

Ah
hr

I t dt
1

3600
sec

B 2chg100

0

⎜ ⎟⎛
⎝

⎞
⎠

∫= ( ) [ · ]
Ah

hr

I t dt
1

3600
sec

B 3dis

0

⎜ ⎟⎛
⎝

⎞
⎠

∫= ∣ ( )∣ [ · ]
Ah

sec

hr

I t dt
1

2 3600
. B 4

0

Rainflow cycle-counting58 is popular in the mechanical fatigue
discipline to discretize large and small stress/strain cycles, count
them, and calculate their cumulative damage. The Rainflow algo-
rithm transforms time-varying ( )SOC t into discrete microcycles

= ΔDOD SOCi i each counted as either a whole or half cycle, =Ni
1.0 or 0.5, respectively.

Disadvantages of Rainflow cycle-counting are that damage
cannot be calculated in real-time—the representative period of
cycling history must first be stored and processed—and that it
occasionally returns drastically different aging results for two
slightly different cycling histories. For instance, the counting of a
half cycle with very small DOD at the end of a time-step,
accumulated over many time-steps, could lead to a much larger
partial cycle count than a cell with almost identical charge
throughput but a slightly different voltage response. This much
larger partial cycle count would not accurately reflect the accumula-
tion of diffusion-induced stresses.

Appendix C. Convolution Alternative to Rainflow

In practice, the Rainflow algorithm occasionally discretizes
complex cycling history into microcycles that are not physically
relevant to diffusion-induced stress, as noted prior. We seek an
alternative method to calculate stress acceleration functions invol-
ving DOD and C-rate (e.g., Table IV, Eq. 3.1) from current time-
series data, ( )I t . DOD of a CC microcycle, i, can be expressed as the
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product of C-rate, C ,i and pulse time, t ,i as

= [ · ]DOD C t C 1i i i

which means that acceleration factors involving products of DOD
and C-rate can be written in terms of current and pulse time,

⎛
⎝⎜

⎞
⎠⎟= [ · ]

+

C DOD
I

Ah
t C 2i

m
i

n i
m n

i
n

0

valid for simple cycling. For complex cycling with a time-series of
current Ii at timestep t ,i a time-superposition formula can be
expressed as

⎛
⎝⎜

⎞
⎠⎟∑=

−
( − ) [ · ]

=
−

+

−C DOD
I I

Ah
t t C 3i

m
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i j j
m n

i j
n

1

1

0
1

Each change in current experiences its own exponential decay with
respect to time raised to the fractional power n. This type of formula
is used, for example, in oil field analysis to extend an analytical
model for flow rate vs constant pressure to estimate flow rate for a
complex pressure history.63
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