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Abstract 
Cost reductions and policy support have led to rapid deployment of solar photovoltaic (PV), 

wind, and diurnal storage technologies in the United States. This deployment is expected to 

continue. In this work, we enhance a national-scale capacity expansion model to evaluate the 

interactions between PV, wind, and diurnal storage and examine how they affect the U.S. power 

system evolution through 2050. Our least-cost optimization framework captures investments 

with greater fidelity by evaluating storage and variable renewable energy operations for all hours 

of the year. We identify significant synergies between diurnal storage and PV, and to a lesser 

extent, wind. Modeled power system scenarios that result in more PV always have higher storage 

deployment, and scenarios that result in more storage always have higher PV deployment. This 

synergy is largely due to the diurnal alignment of PV generation with 4-hour to 8-hour storage, 

and to the ability of PV to narrow system peaks and allow shorter-duration storage to serve as a 

peaking resource. Interactions between storage and wind, which does not exhibit the same 

diurnal generation pattern as PV, are less pronounced, though we do observe that longer-duration 

storage resources appear to provide greater value for wind. 
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1 Introduction 
Over the past decade, cost reductions and policy support have led to increased deployment of 

wind and solar photovoltaic (PV) systems in the United States (Barbose et al. 2016; Bolinger, 

Seel, and Robson 2019; Wiser and Bolinger 2019). Wind and PV are anticipated to continue to 

play an increasingly larger role in the power system (BNEF 2019; IEA 2019; EIA 2020a; Cole, 

Corcoran, et al. 2020). With that assumption, improved understanding of systems with higher 

penetrations of variable renewable energy (VRE) is important, particularly considering the 

system requirements associated with VRE integration (Denholm and Hand 2011). 

Because the output from wind and PV generators is both variable and uncertain (Cole et al. 

2017), the challenge of integrating VRE grows with their penetration. That relationship means 

the value of flexibility grows in a power system along with the penetration of VRE (Denholm 

and Hand 2011; McPherson and Tahseen 2018; Denholm et al. 2016). Grid flexibility can be 

achieved in many ways, including from demand-side resources such as heating or electric 

vehicles (Schuller, Flath, and Gottwalt 2015; Bloess, Schill, and Zerrahn 2018), transmission 

(Schaber et al. 2012), VRE participation in grid services (Loutan et al. 2017; P. L. Denholm, 

Sun, and Mai 2019), changes to system operation (Bird and Milligan 2012), and energy storage 

(Denholm and Hand 2011; McPherson and Tahseen 2018). With recent cost declines in diurnal 

storage (Nykvist and Nilsson 2015) that are projected to continue (Schmidt et al. 2019; Cole and 

Frazier 2020), diurnal storage has an increasing potential to become a key source of grid 

flexibility. 

In this work we are particularly interested in the capturing the interaction of VRE and storage in 

models that represent interconnect-wide or multi-interconnect electricity systems. These models 

tend to be sufficiently large that the high-resolution chronological temporal resolution needed for 

storage is not possible within the traditional optimization framework. In the U.S., models such as 

the National Energy Modeling System (NEMS) (EIA 2020b) and the Integrated Planning Model 

(IPM) (EPA 2020) are regularly used for national-scale analyses such as the Annual Energy 

Outlook (EIA 2020a). These models have shown an increasingly large fraction of VRE and 

storage in their reference case projections over the past several years (Cole, Gates, and Mai 

2021), which has increased the need to understand how VRE and storage might interact in these 

large-scale models. 

We aim to improve understanding of how diurnal storage impacts large-scale power system 

evolution, particularly in futures with higher penetrations of VRE. We focus on the interaction of 

diurnal storage with wind and PV, and how these interactions differ from each other. 

Specifically, using a national-scale electric sector long-term planning model we evaluate how 

more deployment of wind, PV, or diurnal storage changes system build-out and operation 

through 2050. Prior work indicates that PV and storage can be synergistic (Denholm and 

Margolis 2016; Cole, Frew, et al. 2018; Frew et al. 2019; Mallapragada, Sepulveda, and Jenkins 

2020), but the drivers of that relationship have not been fully investigated. Synergies with wind 

are less clear because much of the work exploring wind-storage benefits was done before the 

price declines of batteries were realized (Zhao et al. 2015). 
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Conducting this analysis at a national scale required enhancements to a national-scale capacity 

expansion model in order to capture the interactions of storage with wind and PV, as well as to 

more accurately capture the energy arbitrage value of storage (Davies et al. 2019; Brijs et al. 

2019). For example, Mallapragada et al. (2020) find use representative regions with a high 

temporal resolution model to find that storage value changes based on the relative mix of wind 

and solar. We aim to extend that kind of modeling capability and analysis to a national-scale 

modeling platform. In the methods section, we describe how adjustments were made to allow for 

chronological, hourly representation of wind, PV, and diurnal storage within a national-scale 

model. We then discuss the scenario design used to examine the PV-wind-storage interactions, 

and finally we present results and discussion. 

The novel contributions of this work are to 1) demonstrate a method to represent high resolution 

modeling of storage capabilities within a national-scale capacity expansion model and 2) analyze 

the relationship of wind and PV with new diurnal storage deployment. 



3 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

2 Methods 

2.1 Modeling Overview 

To investigate the relationships between PV, wind, and diurnal storage, we added new 

capabilities to the Regional Energy Deployment System (ReEDS) model. ReEDS is a capacity 

expansion model that projects power system investment and operation through 2050 for the 

conterminous United States (Brown et al. 2020). It is a linear optimization model that uses a 

system-wide perspective to minimize total electricity sector system costs. The model is 

constrained to ensure physical limits, resource limits, and policy requirements are respected. The 

model includes 134 electricity supply-demand balancing areas and 356 wind resource regions, 

providing high spatial resolution that is important to adequately capture the behavior of PV, 

wind, and other resources (Krishnan and Cole 2016). Additionally, each balancing area and 

resource region has multiple technology and resource classes, which further improves the model 

fidelity. ReEDS models the following VRE and storage technologies: land-based and offshore 

wind, utility scale and residential rooftop PV, battery storage with durations of 2, 4, 6, 8, and 10 

hours, and pumped-storage hydropower (PSH), which is assumed to have a duration of 12 hours. 

Several aspects of ReEDS allow the interactions between wind, PV, and diurnal storage to be 

resolved. ReEDS includes high-resolution resource supply curves and resource profiles. These 

enable the model to represent regional variations between VRE resources, where these variations 

include differences in capital costs, grid capture connection costs, and production profiles which 

can influence an option’s value to the grid. ReEDS also represents transmission, including 

allowing for new transmission investment along existing corridors. It captures challenges related 

to increasing penetrations of VRE, including VRE curtailment, declining capacity credit (where 

capacity credit is defined as the fraction of capacity that contributes to the planning reserve 

margin, i.e., “firm capacity”) with increased VRE penetration, and the need to hold additional 

operating reserves as VRE penetration grows. And recently, detailed storage capacity credit 

calculations that use hourly data and respect chronology have been added to ReEDS (Frazier et 

al. 2020), and the data set for capacity credit calculations has been expanded from one to seven 

meteorological years (Cole, Greer, et al. 2020), increasing the capacity credit accuracy. 

In this work, we extend these capabilities to better represent energy arbitrage and curtailment 

avoidance of storage. Historically, ReEDS has evaluated storage arbitrage at its native temporal 

resolution of 17 time-slices, where those time-slices are comprised of four chronological time 

periods representing an average day in each season plus a summer peak period. This resolution 

has limited ability to model the energy arbitrage value provided by storage as intra-time-slice 

price variability was not adequately captured. Additionally, the ability of storage to avoid 

curtailment was represented using a parameterization of independent production cost modeling 

scenarios. This work improves the model’s ability to represent both energy arbitrage and 

curtailment avoidance of storage and adds an estimate of curtailment avoidance from new 

transmission.  

To better capture energy arbitrage and curtailment avoidance values, we built a module that 

operates between each year solved by ReEDS. For example, after ReEDS solves for the 2022 

build-out, we run the module to calculate parameters that will be used for the next year that is to 

be solved by ReEDS. The parameters need to be updated before each solve because they are 
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sensitive to system conditions such as load shape, PV penetration, and wind penetration. The 

module first solves a simplified dispatch model for the 134 regions over one year, 

simultaneously optimizing generation, transmission, and storage behavior at an hourly time 

resolution. The dispatch model provides hourly energy prices, transmission flows, storage 

operation, and conventional generation operation for each region. The dispatch model outputs are 

adjusted to account for start costs and minimum generation levels to provide more realistic 

pricing and generation levels. The hourly prices are then used to calculate the arbitrage value for 

new storage resources. The transmission flows, storage operation, and generation values are used 

to calculate both the curtailment of VRE resources and the potential for new storage to avoid that 

curtailment. Both the arbitrage value and curtailment rates are then passed into the core ReEDS 

optimization to inform the next solve year. The module provides the hourly granularity and 

chronology that allows for better valuation of storage resources. Additional details about the 

module, which we call the ReEDS Augur, are provided in the appendix. 

2.2 Scenario Design 

The scenarios used in the work are summarized in Table 1. They were selected to cover a range 

of outcomes across the space of PV, wind, and storage deployment. We chose to use cost 

sensitivities to explore alternative future deployment rather than prescribe exogenous 

deployment levels in order to avoid interfering with fundamental economic competition captured 

within the model. However, because we also wished to examine scenarios with high penetrations 

of renewable energy (RE), we ran the nine scenarios in Table 1 twice: once as is and once with 

an 80% RE generation requirement by 2050. This RE requirement was ramped linearly from 

20% in 2020 to 80% in 2050 and was applied at the national level. The RE requirement scenarios 

provide a perspective where the RE penetration level is fixed; therefore, storage will change the 

mix of RE but not the amount.  

Table 1. Scenarios Used in this Work. Each of these nine scenarios was run twice: once as is and once with a 
requirement of 80% RE generation by 2050.  

Scenarios are run as is 
and with an 80% RE 
requirement by 2050. 

VRE Cost Assumptions 

Low PV Cost Reference 
PV/Wind Cost 

Low Wind Cost 

S
to

ra
g

e
 A

s
s

u
m

p
ti

o
n

s
 Low Battery Cost Low Battery Cost 

+ Low PV Cost 
Low Battery Cost Low Battery Cost + 

Low Wind Cost 

Reference 
Battery Cost 

Low PV Cost Mid-case Low Wind Cost 

No New Storage No New Storage + 
Low PV Cost 

No New Storage No New Storage + 
Low Wind Cost 

The scenarios include reference and low-cost sensitivities on PV, wind, and battery technologies. 

The No New Storage scenarios are artificial but provide a counterfactual to understanding 

system evolution when additional storage is not allowed to be part of that evolution. In these 

scenarios, all existing storage (including nearly 23 GW of PSH) is included, but no new storage 

is allowed. 
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The capital costs for storage, utility-scale PV, and land-based wind that are used for the scenarios 

in Table 1 are taken directly from the 2020 Annual Technology Baseline (NREL 2020) and are 

shown in Figure 1. The Low Wind Cost scenarios also have lower costs for offshore wind. 

Capital costs for all other resource types did not vary for any other technology type, including 

PSH. Financing costs are also taken from the 2020 Annual Technology Baseline and are kept 

constant across all scenarios. 

 

Figure 1. Capital costs for storage, utility-scale PV (UPV) and land-based wind used in these 
scenarios (NREL 2020). These values are adjusted within the model based on regional capital cost multipliers 

(Brown et al. 2020). The wind values show the 10 resource classes modeled. Values are in 2018$. 

In addition to lower capital costs, the low-cost scenarios have lower fixed operation and 

maintenance costs. For PV and wind, the low-cost scenarios include performance improvements 

beyond those in the Mid-case. These performance improvements are represented within the 

model by capacity factor increases over time. 

Other scenario assumptions are consistent with the default values used by the ReEDS model in 

the 2020 Standard Scenarios (Cole, Corcoran, et al. 2020) and are described in the ReEDS model 

documentation (Brown et al. 2020). The scenarios include state and federal policies that were in 

place as of June 30, 2020. Key assumptions, including fuel prices and demand growth, are 

provided in the appendix. 
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3 Results 

3.1 Deployment Results 

The Mid-case scenario results in a 2050 power system with 707 GW of PV, 284 GW of wind, 

and 215 GW of storage, with a fleet-wide average storage duration of 5.3 hours (see Figure 2). 

This scenario is used as the basis for comparison to understand the interactions of storage and 

VRE. 

 

Figure 2. Generation (left) and capacity (right) by technology in the Mid-case scenario. PV includes 
UPV, distributed UPV, and distributed PV technologies. Wind includes land-based and offshore wind technologies. 
Other RE includes biopower, geothermal, and landfill gas technologies. CSP is concentrating solar power, O-G-S is 

oil and/or gas steam, Gas-CT is natural gas combustion turbine and Gas-CC is natural gas combined cycle 
generation technology.  

Figure 3 shows the capacity difference relative to the Mid-case scenario across the scenarios with 

no RE requirement and highlights many important interactions between system build-out and 

storage. We consider those differences here by looking at Figure 3, first across the rows (groups 

of battery cost sensitivities) and then the columns (groups of PV/wind cost sensitivities).  

Looking across the first two rows, storage deployment is always higher in the Low PV Cost 

scenarios than in the scenarios with reference or low wind cost. In other words, scenarios more 

favorable to PV deployment result in greater storage deployment for a given battery cost 

assumption, indicating a PV-storage synergy that we see repeated throughout our results and 

reported elsewhere in literature (Hartner and Permoser 2018; Denholm and Margolis 2016; 

Mallapragada, Sepulveda, and Jenkins 2020; Frazier et al. 2020). In the Low Wind Cost scenario 

with reference battery prices, storage actually decreases slightly relative to the reference case. 

Trade-offs with other forms of capacity are limited when only looking across the rows. 

Looking down the columns, we find the same PV-storage synergy. Scenarios with lower battery 

costs (and therefore more battery deployment) have higher levels of PV capacity. This trend can 

be seen even in the low wind cost column, though the magnitude of the PV deployment change is 

smaller. These scenario results suggest there is a positive feedback loop between PV and storage 
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deployment. PV capacity is higher in scenarios with more storage, and storage capacity is higher 

in scenarios with more PV. 

 

Figure 3. Capacity difference between the scenarios without an RE requirement and the Mid-case 
scenario. The scenario sensitivity groups are shown in bold as row and column titles.  

We also see that storage deployment has a relatively moderate impact on natural gas 

technologies. Scenarios with less storage have more natural gas capacity, indicating a trade-off in 

how firm capacity is provided to the system (where firm capacity is defined as capacity that 

contributes to the planning reserve margin). This natural gas trade-off is less than one-to-one, 

such that more than 1 GW of storage is substituting for each gigawatt of natural gas capacity 

displaced in the alternative scenarios. 

These same trends are also seen in the scenarios with an RE requirement (see Appendix Figure 

25), and when looking at generation instead of capacity (see Appendix Figure 26 and Appendix 

Figure 27). For results presented as generation penetration values over time, see Appendix 

Figure 28 and Appendix Figure 29. 

To provide a clearer picture of the 2050 system build-out across each scenario, Table 2 

summarizes the VRE, wind and PV penetration levels as a percent of generation. The VRE 

penetration levels range from 43% to 73%, the wind levels from 13% to 48%, and the PV levels 

from 20% to 56%.  
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Table 2. VRE, Wind and PV Penetration Levels by Percent Generation in 2050 Across the Suite of 
Scenarios 

Scenarios with no RE Constraint 

VRE% (wind%/PV%) Low PV Cost Ref PV/Wind Cost Low Wind Cost 

Low Battery Cost 61% (13%/48%) 51% (20%/31%) 61% (40%/21%) 

Ref Battery Cost 57% (15%/42%) 50% (22%/28%) 60% (38%/21%) 

No New Storage 47% (16% (31%) 43% (19%/23%) 56% (36%/20%) 

Scenarios with an 80% RE Constraint 

VRE% (wind%/PV%) Low PV Cost Ref PV/Wind Cost Low Wind Cost 

Low Battery Cost 73% (17%/56%) 73% (27%/46%) 73% (47%/26%) 

Ref Battery Cost 73% (24%/49%) 72% (31%/42%) 73% (47%/26%) 

No New Storage 70% (34%/36%) 70% (38%/32%) 72% (48%/24%) 

3.2 Storage Utilization 

Storage utilization varies across the 12 scenarios that allow new storage to be built. Figure 4 

shows the 2050 storage utilization in average cycles per day across these 12 scenarios (for 

reference, Appendix Figure 30 shows the storage deployment by duration in each scenario in 

2050). This storage utilization is the capacity factor (based on generation) of the storage device 

divided by its duration and then multiplied by 24 hours. Across all scenarios, storage devices 

nearly always cycle less than once per day, on average. In the scenarios with reference battery 

costs and no RE requirement, storage utilization increases with duration, with PSH as an outlier. 

PSH has lower utilization because in ReEDS it has a lower assumed round-trip efficiency than 

batteries (80% versus 85%), which means batteries will be used before PSH. Also, PSH has a 

longer duration, which means it can move considerable amounts of energy with fewer average 

cycles per day.  

The longer-duration resources cost more than the shorter-duration resources.1 Unless they can be 

utilized more than the shorter-duration resources, it will be challenging for them to realize more 

value to justify the higher cost. The duration-utilization relationship is strongest with low wind 

costs, as higher wind penetrations lead to longer-duration curtailment events (Denholm and Mai 

2019). The higher utilization can come from avoiding curtailment during these longer 

curtailment duration events or from serving peak demand when the peaks become wider 

(Denholm et al. 2020).  

In the scenarios with reference battery costs and an 80% RE requirement, utilization is higher for 

nearly all durations than in the scenarios with no RE requirement. With the RE requirement in 

place, avoiding curtailment becomes more valuable, and storage utilization increases to prevent 

more curtailment. The increasing utilization with longer-duration storage is also very strong in 

the Low Wind Cost scenario with an 80% RE requirement. 

 
1 Relative to 2-hour storage, storage devices of 4-, 6-, 8- and 10-hour durations cost more by a factor of 1.7, 2.4, 3.1, 

and 3.8, respectively. See the 2020 Annual Technology Baseline (NREL 2020) for more details. 
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The low storage cost scenarios generally have lower utilization rates than the corresponding 

reference storage cost scenarios. With lower-cost storage, more storage is deployed, which 

spreads the storage utilization opportunity across a larger amount of storage. The same would be 

true of other grid resources—doubling the natural gas fleet would increase overall gas 

generation, but the fleet-wide utilization rate of natural gas would decrease. In addition, cheaper 

storage can be used less and still be worth building. 

Perhaps most significantly, we see that in nearly every scenario and storage duration, storage 

utilization is higher in the Low PV Cost scenarios than in the Low Wind Cost scenarios. This 

relationship demonstrates one element of why the PV-storage synergy exists. The diurnal 

patterns of PV generation are well-aligned with the capabilities of 2-hour to 8-hour storage 

(Denholm and Mai 2019), which enables storage to be more effectively utilized when coupled 

with PV than with wind. Similarly, we see that in the Low Wind Cost scenarios, storage 

utilization tends to be higher for the longer durations than for the shorter durations (even more so 

compared to the Low PV Cost scenarios). This trend follows the evidence that wind curtailment 

events tend to be longer than PV curtailment events (Denholm and Mai 2019) and are therefore 

better suited for longer-duration storage.  

 

Figure 4. Storage utilization rates in annual average cycles per day in 2050 across the 12 
scenarios that allow new storage. Utilization is shown by battery storage duration and for PSH. The Low PV 

Cost scenario does not deploy any 10-hr battery storage by 2050.  

Examining the generation by time-slice (Figure 5), we see why storage utilization is higher in 

cases with high PV penetration. Across all three scenarios shown, storage charges during the day 

and discharges at night. The charging profile takes this shape because PV generation occurs 

exclusively during the day, whereas wind generation is spread more evenly across all periods. 
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Storage is being used to shift energy in time, and the higher the PV generation the more storage 

is used to shift PV-generated electricity from daytime hours to evening and overnight hours.  

Together, storage and PV are able to displace Gas-CC generation in the Low PV Cost scenario. 

By contrast, in the Low Wind Cost scenario, the net Gas-CC generation remains similar to that of 

the Mid-case scenario, and wind generation displaces PV generation, leading to reduced storage 

utilization. These trends persist across each season, though they are most pronounced in the 

spring (which has the highest levels of curtailed energy) and the summer (which has the greatest 

solar resource). Increasing storage deployment by lowering the battery costs further enhances 

these trends (see Appendix Figure 31). 

 

Figure 5. Generation by time-slice for the scenarios indicated. Negative storage generation indicates 
storage is charging. Time-slice times are in local time. 

Hourly details, produced by the ReEDS Augur module, confirm these trends. Figure 6 shows 

hourly dispatch profiles in 2050 for the peak load, peak net load, and peak curtailment days 

(defined by the peak hour) across the same three scenarios examined in Figure 5. In the Low PV 

Cost scenario, storage charging is highest during the day, with discharging occurring primarily at 

night but also in the morning. The storage utilization is much less in the Mid-case scenario and 

especially the Low Wind cost scenario, with storage charging during the morning in both 

scenarios for the peak load and peak net load days. The ability of storage to avoid curtailment is 

highlighted in the peak curtailment days, with curtailment occurring mainly during the day in the 

Low PV Cost scenario and spread throughout the day in the Low Wind Cost Scenario. This 

highlights a trend in curtailment avoidance that will be explored later on, namely that energy 

storage of durations from 2-hours to 12-hours is better able to avoid curtailment caused by PV 

than by wind due to the difference in curtailment event duration. Finally, while the peak 

curtailment day occurs in the spring in all three scenarios, it is shifted earlier by nearly a month 

in the Low Wind Cost scenario.  
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Figure 6. Dispatch results from the ReEDS Augur module for selected “peak” days in 2050 for the 
Low PV Cost, Mid-case, and Low Wind Cost scenarios. The technologies indicate generation, and the y-
axis units are GW. Negative storage generation indicates storage is charging. Times are in Eastern Standard Time 

(EST). 

3.3 Storage Revenue and Impact on Prices 

We next consider economic summary metrics to better understand why the resulting capacity 

expansion decisions are made. Within our modeling framework, storage can provide capacity, 

energy, and operating reserve services to the national electric grid. Figure 7 shows the fraction of 

revenue that storage receives over time from each of these services by duration across the 

scenarios indicated. These revenues are computed from the storage generation and grid service 

prices, which prices will be shown later in the section. 
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Figure 7. Fraction of storage revenue from providing operating reserves, capacity (resource 
adequacy for annual peak load), and energy services for the scenarios (columns) and storage 

durations (rows) indicated. Op Res is operating reserve. Missing revenue fractions indicate a given technology 
was not deployed in that year. 

In 2020, capacity prices within the model are low because most regions have generation capacity 

that is greater than the planning reserve assumptions used in ReEDS (NERC 2018). The 

operating reserve fraction is highest in 2020 because the amount of storage is lower and the 

market for this service has not yet been saturated. The operating reserve provision is the smallest 

of the three value streams (Denholm, Sun, and Mai 2019); so over time, as storage deployment 

increases the operating reserve market becomes saturated and operating reserve prices fall. 

Additionally, the operating reserve provision is increasingly shared among a larger fleet of 

storage resources, so the relative value of providing the service is diminished. 

As the storage fleet evolves over time, longer-duration storage is added, and a greater fraction of 

the storage value is derived from providing capacity. This shift reflects a greater need for firm 

capacity over time, which results in higher firm capacity prices in the model. Additionally, 



13 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

increased storage deployment suppresses on- and off-peak price differences, diminishing the 

value of energy arbitrage. Shorter-duration storage gets a greater fraction of its value from 

providing firm capacity in part because longer-duration storage has more energy potential. That 

additional energy capability is used to provide additional energy value, and it increases the share 

of revenue from energy services. 

In the Low Battery Cost sensitivity scenarios, the share of revenue that storage gets from 

capacity decreases and the share from energy increases relative to the corresponding reference 

battery cost scenarios (see Appendix Figure 38–Figure 40 for a more granular comparison). This 

shift is driven by at least two factors: 1) increased storage deployment causes the capacity credit 

of storage to decline, making it more difficult to provide capacity services and 2) lower battery 

prices reduce firm capacity prices in the model, which lowers the revenue opportunity for 

providing capacity. 

The first factor is demonstrated in Figure 8 for 4-hour storage (see Appendix Figure 32–Figure 

35 for other durations). The average capacity credit of storage falls as penetration increases in all 

scenarios. The rate of decline depends on the amount of PV in the system, with the Low PV Cost 

scenarios seeing a slower decline and the Low Wind Cost scenarios seeing a more rapid decline 

(see Appendix Figure 28 and Appendix Figure 29 for a detailed breakdown of VRE penetration 

by technology across scenarios). This relationship means the exact same amount of storage 

receives higher capacity credit with low PV costs than it does with low wind costs, which 

supports the observed PV-storage synergy. 

 

Figure 8. National average summer capacity credit of 4-hour storage as a function of total 
storage capacity 
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This factor is further explained by looking at the different ways the net load profiles develop 

over time in scenarios with high PV penetration compared with high wind penetration. Figure 9 

shows the national average hourly net load profiles over time for a day in winter and a day in 

summer for the Low PV Cost, Mid-case, and Low Wind Cost scenarios. High PV penetration 

decreases the net load during the mid-day and increases it at every other time, leading to a 

narrowing of the evening peak and a larger difference between the evening peak and the mid-day 

valley. These conditions increase the value of diurnal storage. By comparison, high wind 

penetration decreases the net load throughout day. These conditions lead to a smaller difference 

between the mid-day valley and the evening peak net load and result in a smaller arbitrage 

opportunity for diurnal storage. The Mid-case scenario net load is a mix between the two, with a 

pronounced decrease during the mid-day and a minor increase at every other time in 2050.  

 

Figure 9. National average net load by year for a day in the winter and summer for the Low PV 
Cost, Mid-case, and Low Wind Cost scenarios. Times are in EST. 

The second factor driving the capacity value of storage is illustrated in Figure 10, which shows 

the national average capacity price that generators receive for providing firm capacity within the 

model (this capacity price is the marginal value from the planning reserve margin constraint). 

Across every scenario, capacity prices are lower in scenarios that have higher storage 

deployment. Wind and PV deployment also affect the capacity prices. Scenarios with high PV 

deployment have lower capacity prices than the base case, whereas scenarios with high wind 

penetration have higher capacity prices. Additions of PV and storage both lead to lower capacity 

prices, so the lower PV and storage deployment in the high wind penetration scenarios lead to 

those higher capacity prices. This trend is starker in the 80% RE cases where wind and PV trade 

off with one another more directly. 
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Figure 10. Modeled national average capacity price across the suite of scenarios 

Figure 11 shows the impact of storage and VRE costs on modeled energy prices (this energy 

price is the marginal from the load balancing constraint). Not allowing new storage deployment 

results in higher energy prices relative to scenarios where storage deployment is allowed, with 

the greatest difference occurring in scenarios with higher levels of PV deployment. These higher 

energy prices result from less-efficient use of generators than would otherwise be the case if 

storage could shift energy in time. Though low battery costs lead to more battery deployment and 

a reduction of overall system costs, they have limited effect on energy prices; this is due in part 

to the lower overall storage utilization in the Low Battery Cost scenarios (refer to Figure 4) and 

because more storage cannot necessarily move a low-cost fossil unit from being the unit on the 

margin. 

 

Figure 11: Modeled national average energy price across the base case scenarios. 
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Modeled operating reserve prices are highly affected by the presence of storage (see Figure 12). 

Scenarios that do not allow for new storage see flat or increasing operating reserve prices. This 

relationship is most pronounced in scenarios with the 80% RE requirement because the operating 

reserve requirement is larger in scenarios that have more VRE (Cole, Eurek, et al. 2018). The 

scenarios with low battery costs have operating reserve prices that are even lower than those with 

reference battery costs. The additional storage deployment further reduces operating reserve 

prices. This price suppression occurs because storage deployment motivated by capacity and 

energy services can also serve the much smaller market of operating reserves. 

 

Figure 12. National average operating reserve prices across the suite of scenarios. These reserve 
prices are presented here as the sum of the prices for the three different reserve products represented in the model. 

For a breakdown of each reserve price see Appendix Figure 41-Figure 43. 

3.4 Impacts of Storage on Curtailment and Transmission 

Storage, VRE curtailment, and transmission are highly interrelated. Absent system changes, 

increased VRE will lead to increases in VRE curtailment (Denholm and Margolis 2007; 

Denholm and Hand 2011; Mills and Wiser 2013). Both storage and transmission are flexibility 

options that can reduce curtailment, and in that way they are substitutes for one another. 

However, the way they offset curtailment is different. Storage shifts energy in time, while 

transmission shifts energy in space. Additionally, storage is a source of firm capacity, while 

transmission generally can only facilitate the trading of firm capacity. 

Figure 13 shows the curtailment rate in each scenario as a function of VRE penetration. 

Curtailment rates are higher in scenarios without new storage than in scenarios that allow new 

storage. For scenarios that allow new storage, curtailment rates are higher in the Low Wind Cost 

scenarios than in the Low PV Cost scenarios, even for the same VRE penetration level. This 
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lower curtailment rate is because storage is better able to reduce PV curtailment than wind 

curtailment for the reasons discussed above. Curtailment never goes to zero because removing 

curtailment entirely is less cost-effective than allowing an optimal level of curtailment 

(O’Shaughnessy, Cruce, and Xu 2020). 

In the scenarios with the 80% RE requirement, the relationship between storage and curtailment 

is especially strong. Absent the ability to build new storage, average curtailment rates are at or 

near 10% in 2050, which means marginal curtailment rates are much higher.  

 

Figure 13. National average curtailment rate versus VRE penetration, where penetration is the 
fraction of total generation from VRE. For the same data plotted over time, see Appendix Figure 44. 

Cumulative long-distance transmission capacity is shown in Figure 14. Storage reduces the need 

for transmission investments, particularly in the 80% RE scenarios. When storage is not 

available to provide flexibility and reduce curtailment, transmission builds are much higher. 

Scenarios with low-cost storage always have lower transmission builds than the other scenarios 

for a given VRE penetration. 

Scenarios with low wind costs have higher transmission capacity relative to scenarios with 

reference wind or low PV costs, which is indicative of the synergy between wind and 

transmission (Jorgenson, Denholm, and Mai 2018). The effect of battery costs on transmission 

capacity is greater in the Low PV Cost scenarios than in the Low Wind Cost scenarios. This 

relationship suggests storage is particularly important in facilitating the economic use of PV, as 

without it, an outsized amount of transmission capacity is needed to attempt to provide the 

flexibility that would otherwise come from storage. By contrast, the absence of new storage has 

less effect on transmission investments in the Low Wind Cost scenarios.  
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Figure 14. Cumulative long-distance transmission capacity versus VRE penetration, where 
penetration is the fraction of total generation from VRE. These values do not include spur lines built to 

connect wind and solar plants to the grid. For the same data plotted over time, see Appendix Figure 45. 

3.5 Impact of Storage on Emissions 

Annual power sector CO2 emissions are shown in Figure 15. In the scenarios without an RE 

requirement, the scenarios that have more storage also have lower CO2 emissions. The greatest 

difference occurs in the scenarios with low PV costs, reflecting once again the PV-storage 

synergy. The CO2 emissions reduction generally follows the deployment results presented in 

Figure 3, where scenarios with more storage also have more PV. That additional PV offsets some 

fossil-fueled generation and leads to lower emissions. This CO2 reduction effect results from the 

change in investments induced by storage, and not just the change in system operations (Bistline 

and Young 2020). 
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Figure 15. Annual CO2 emissions across the suite of scenarios 

The scenarios with an 80% RE requirement have the opposite result, though to a lower 

magnitude and mainly in the mid-term: scenarios without storage have the lowest annual 

emissions throughout most of the years and scenarios modeled. Because of the rapid growth in 

RE forced into the model by the 80% requirement, there is a high demand for flexibility to help 

integrate that RE. The model finds some flexibility by reducing reliance on coal-fired generators 

and increasing reliance on gas-fired generators. These gas-fired generators can ramp more 

effectively over the course of a day because of shorter start-up and shut-down times and different 

minimum generation levels. The flexibility of gas-fired generation thus reduces RE curtailment 

rates and leads to fewer emissions. Additionally, the scenarios without storage have more wind 

and less PV generation, which changes the regional mix of resources in a way that can lower 

emissions. 

This emissions analysis includes combustion-only emissions and does not include the full life-

cycle scope of generator manufacturing and decommissioning, fossil fuel extraction or 

transmission line construction, which may become more important with high deployments of PV 

or storage capacity. With that caveat in mind, more storage enables a lower-carbon grid.  
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4 Conclusion 
In this work, we used a national-scale capacity expansion model to examine the interactions 

between PV, wind, and storage. We found significant interactions among these three 

technologies, with the strongest interactions occurring between PV and storage. 

Scenarios that had more PV always had more storage, and scenarios with more storage always 

had more PV. This analysis did not demonstrate the causality of that relationship, but it provides 

clear evidence of the correlation and identifies contributing factors, such as PV narrowing the net 

load peaks and increasing the difference between low and high prices. Wind and PV also traded 

off with one another, as scenarios with more wind had less PV and vice-versa, though this trade-

off was always less than one-to-one. 

Storage utilization was highest in scenarios with more PV and in scenarios that required a higher 

amount of VRE generation. In scenarios with more wind generation, longer-duration storage 

resources were utilized more heavily than shorter-duration resources. In scenarios with low 

storage costs, overall storage utilization was lower because of a much larger build-out of storage. 

Storage generally receives a larger fraction of value from providing firm capacity services than 

from providing energy, but both are important factors of total storage value across all scenarios 

and durations. Longer-duration storage resources tend to receive a larger fraction of their revenue 

from providing energy services (e.g., energy arbitrage) than shorter-duration resources. 

Operating reserve values tend to be small, as the market is saturated by the large amount of 

storage deployed. In the absence of new storage, modeled prices for firm capacity, energy, and 

operating reserves all increase relative to scenarios that allow new storage. In other words, 

storage can have a significant downward impact on operating reserve, energy, and capacity 

prices.  

Storage serves to lower curtailment rates of both wind and solar resources but has a stronger 

impact on reducing PV curtailment than wind curtailment. Wind deployment appears to be more 

strongly correlated with transmission than PV deployment. 

Finally, we see that storage leads to lower power sector CO2 emissions, primarily by enabling 

higher penetrations of PV, and we note that life-cycle emissions from manufacturing additional 

PV are outside of the scope of this work. 
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Appendix 
This section includes a description of the ReEDS Augur module, Augur methodology validation 

efforts, and additional scenario results to supplement the body of the paper.  

ReEDS Augur Module 

ReEDS includes four types of diurnal storage technologies: batteries (with 2, 4, 6, 8, and 10 

hours of duration), PSH (with 12 hours of duration), concentrating solar power (CSP) with 

thermal energy storage (with 10 and 14 hours of duration), and compressed air energy storage2 

(with 12 hours of duration). Longer duration storage technologies are not currently represented. 

An important revenue source for diurnal storage is energy arbitrage, where storage charges when 

prices are low and discharges when prices are high. Arbitrage opportunities require fine time 

resolution to capture price deltas between high and low-price periods. Aggregating to time-slices, 

such as is done in ReEDS and other large-scale capacity expansion models, can “average out” 

these price deltas and underestimate the arbitrage opportunity for storage. Local arbitrage 

opportunities can also be lost by aggregating in space. To accurately capture the energy arbitrage 

value that storage can provide, storage must be modeled at a fine enough resolution in time and 

space to capture these dynamics. Aggregation can significantly undervalue energy storage 

arbitrage potential. However, modeling with high resolution in time and space can be 

computationally expensive. Ideally, the energy arbitrage value of storage would be computed by 

using an hourly production cost simulation alongside the investment decision. However, such an 

approach would make the ReEDS model intractable, even if some simplifications to the 

production cost formulation were applied. To balance the competing demands of both temporal 

and spatial resolution with solve time and accurately value energy storage arbitrage in the 

ReEDS model, the Augur module was developed. Though the Augur module is used to calculate 

parameter relevant for storage, VRE, and transmission, we primarily focus on how it supports 

improved storage modeling. 

The Augur module is a new capability in ReEDS that is run in between ReEDS solve years. The 

module computes several nonlinear parameters that are then fed back into ReEDS as marginal 

linear values for the next solve year (see Figure 16). The primary purpose of Augur is to 

accurately compute these marginal values using chronological, hourly data of wind, PV, and 

load. Augur computes the following parameters: 

• Storage energy arbitrage revenue 

• Amount of storage by duration that can receive full capacity credit 

• Marginal capacity credit of wind and PV 

• Ability of storage to recover otherwise curtailed energy (differentiated by curtailment from 

existing generators versus from new generators) 

• Curtailment from existing VRE generators 

• Marginal curtailment rate of new VRE generators 

• Firm capacity contribution of existing VRE generators 

 
2 Compressed air energy storage is modeled in ReEDS but was not considered in the scenario analysis presented in 

this work. 
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• Marginal capacity credit of new VRE generators 

• Curtailment reduction potential of new transmission lines 

These parameters require a finer time resolution than the ReEDS time-slices provide and are 

particularly important for accurately modeling storage and VRE deployment in capacity 

expansion. The ReEDS Augur module workflow is summarized in Figure 16.  

 

Figure 16. Summary workflow of the ReEDS Augur module. BA is balancing area, CF is capacity factor, 
GDX is GAMS (General Algebraic Modeling Language) Data eXchange, and SOC is state of charge. The names of 

the different elements of the flow chart correspond to the names of the scripts that are part of the ReEDS model. See 
https://www.nrel.gov/analysis/reeds/request-access.html to get access to the ReEDS repository. 

A core piece of the ReEDS Augur module is a linear program we call Osprey that optimizes 

generation, transmission, and storage at the regional level across the entire United States at an 

hourly time resolution. This yields hourly prices by region which are then used in a dynamic 

program we call Condor to compute the energy arbitrage value of marginal storage. The storage 

deployment from Osprey is used to compute existing and marginal curtailment rates. The storage 

capacity credit contribution is computed from ReEDS results as previously described in (Frazier 

et al. 2020). The Augur results are aggregated to the time-slice level before being passed back to 

ReEDS, giving it the marginal values for the next solve year.  

ReEDS Output Processing 

After each ReEDS solve year, the relevant ReEDS outputs are prepared for Augur. In particular, 

the load growth for the following year is applied, and the generators scheduled for retirement in 

the next year are removed. Hourly net loads are computed for the entire year using resource 

profiles from the Renewable Energy Potential (reV) model (Maclaurin et al. 2019), and these are 

converted into EST so that energy trading among regions is not being distorted by differences in 

time zones. Generators with less than 5 MW of capacity are dropped and thus ignored in Augur. 

Generator operating costs are computed from ReEDS’ fuel costs, heat rates, and variable 

https://www.nrel.gov/analysis/reeds/request-access.html
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operations and maintenance (VOM) costs. Exports to Canada are represented as additional load 

in regions where that occurs. These ReEDS outputs are then formatted and passed to Osprey. 

Osprey Linear Program 

Osprey is a linear program (LP) that optimizes generation, transmission flows, and storage 

operation across the 134 model regions at an hourly resolution. It does this quickly enough to run 

in between each ReEDS solve year without significant computational expense. This is 

accomplished because each day is solved independently, with storage generators being required 

to start and end at the same state of charge but being allowed to choose that state of charge. 

Furthermore, the following generator constraints are not enforced to reduce solve time: minimum 

generation levels, ramp rates, mean time between start-up and shut-down, start-up costs., and 

operating reserves. Despite these omissions, the transmission and generation behavior and the 

resulting hourly regional price profiles are sufficient to enable energy arbitrage values to be 

computed accurately (see Method Validation below). Additional adjustments to account for start-

up costs and minimum generation levels are applied downstream in other Augur components.  

To get accurate generation behavior while ignoring start-up costs and minimum generation 

levels, certain generators are treated as must-run generators and are given seasonal capacity 

factors according to their seasonal outage rates. These include nuclear, geothermal, and non-

dispatchable hydropower. To simplify the optimization problem, the contribution of these must-

run generators is removed from the net load profile and the adjusted net load profile is used in 

Osprey. For dispatchable hydro, the seasonal hydro energy budget is used to create a minimum 

daily generation requirement. Canadian imports are treated in the same way as dispatchable 

hydro. 

Transmission losses are modeled using the same loss values as ReEDS (1% losses per 100 miles 

of transmission distance). Dropped load is allowed in order for the model to always be feasible. 

And in order to reduce degeneracy among transmission losses, storage losses, and VRE 

curtailment, we apply a small cost ($0.001/MWh) to storage discharging and to transmission 

flows.  

To solve the Osprey linear program efficiently, the GAMS Gather-Update-Solve-Scatter (GUSS) 

method is used to loop through the days while keeping the optimization program in memory. The 

parameters for each day are updated, including the adjusted net load profile, the maximum 

generation capacity available, and the daily required dispatchable hydro generation. As 

mentioned previously, the storage generation is constrained to start and end at the same level, 

effectively giving the optimization a circular boundary condition where it views future days as 

being identical to the current day.3 This method does not allow interday energy arbitrage and 

thus is currently unsuitable for long-duration storage.  

 
3 This assumption was tested under a wide range of scenarios, including scenarios with up to 100% renewable 

energy, and it was never found to result in meaningful differences with other options that solved for 48 hours but 

only implemented the first 24 hours. 
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Osprey Results  

Osprey outputs include hourly prices, transmission flows, generation levels, storage charging, 

and storage levels, all by region and generator. The prices are taken as the marginal from the 

load balance constraint.  

These results are processed for use in further analysis downstream. The transmission flows are 

aggregated to the region level, and the transmission-adjusted net load is computed by adjusting 

the regional net load for the regional transmission, with the must-run generators’ contributions 

added back in.  

The hourly prices that come out of Osprey are adjusted to account for generator start-up costs. 

For each hour, the number of transmission-connected regions4 are computed using the 

NetworkX5 Python package (Hagberg, Swart, and S Chult 2008). For each generator start, the 

start cost is applied by spreading it across the number of hours that the generator is on for a given 

day. Each generator’s “bid price” is computed as its operating cost plus the amount needed to 

recover the start costs for that day. In each transmission-connected region and for each hour, the 

maximum generator bid price is computed, and the new price is the maximum of either the 

original Osprey price or the maximum generator bid price. Validation against PLEXOS 

production cost modeling results indicated that the start-costs are primarily responsible for the 

hourly price spikes, and removing start-costs from PLEXOS yielded price profiles that were very 

similar to those of Osprey. As the primary purpose of these prices is to compute the energy 

arbitrage value of storage using a price-taking dynamic program, spreading the start costs over 

the hours the generator was on compared to applying them all at once at the start will on average 

have a reasonably similar effect. 

Existing Curtailment 

With the generation profiles from Osprey, the curtailment from existing VRE resources can be 

computed. This method includes an adjustment for minimum generation levels that were ignored 

in the Osprey linear program. The curtailment of existing VRE resources is computed as follows: 

• Generators that are on but below their minimum generation level are ramped up to that level. 

• Generators that are on but above their minimum generation level are ramped down to that 

level. 

• The adjusted generation level is computed by summing the generation for each region. 

• Storage generation is added to the transmission-adjusted regional net load. 

 
4 A transmission-connected region is a set of balancing areas that do not have transmission congestion between 

them. These transmission-connected regions are necessary for handling degeneracy in estimating curtailment. For 

example, if region A and B are connected with a 100 MW transmission line, but using less than 100 MW of that 

line, they would be a transmission-connected region. If region A is curtailing VRE, then that means region B does 

not have the capability to accept that energy, otherwise the transmission line would be used to move the curtailed 

power to region B. This also means that if new VRE is added in region B (which has no curtailment), the new VRE 

would have to be curtailed because region B already has the opportunity to import free power from region A. 

Transmission-connected regions can be different in each our because the transmission lines that are congested can 

change each hour. 
5 https://networkx.org/ 

https://networkx.org/
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• Curtailment is computed by subtracting the transmission-and-storage-adjusted net load from 

the adjusted generation levels for each region. 

• The curtailment is required to be less than or equal to the VRE generation in that region. 

In recognition that some aggregated ReEDS generators are much larger than actual generators, 

the minimum generation level is computed differently for generators above 500 MW of capacity. 

For these large generators, the hourly minimum generation level is computed as a fraction of the 

generation. For all other generators, it is computed as a fraction of the generator capacity. For 

large generators in hours when the generation is below 500 MW, the minimum generation level 

is computed as a fraction of 500 MW instead of the generation. Figure 17 summarizes this 

minimum generation level adjustment method. The minimum generation fractions used are 

shown in Table 3, and come from the Western Electricity Coordinating Council Transmission 

Expansion Planning Policy Committee Database (WECC 2015). 

 

Figure 17. Summary of hourly minimum generation (min-gen) level adjustment used to compute 
existing curtailment. Example shown for a generator with a 50% min-gen fraction. 
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Table 3. Generator Properties Used in Augur. Systems with carbon capture and sequestration (CCS) use the 
same values as the corresponding non-CCS systems. 

Technology Type 
Start Cost 
($/MW) 

Minimum Generation Level 
(fraction of capacity) 

Biopower 5.3 0.3 

Coal 155.8 0.4 

CSP 0 0.2 

Gas-CC 83.7 0.55 

Gas-CT 33.9 0.45 

Geothermal 0 0.5 

Landfill-gas 5.3 0.3 

Nuclear 116.6 1 

Oil/gas steam 33.9 0.45 

Marginal Curtailment 

Several different marginal curtailment parameters are computed from the Osprey results and the 

existing curtailment calculation. The regional net load adjusted for transmission and storage is 

further adjusted so that negative values represent hourly curtailment. The marginal PV and wind 

curtailment are computed by adding 1,000 MW of PV and wind capacity in each region and for 

each resource class. The marginal curtailment rate is computed as the fraction of this additional 

energy that cannot be used by the system, measured by subtracting the added generation from the 

adjusted net load profile and re-computing curtailment. These 1,000-MW marginal additions are 

done separately for each region and resource class. 

The marginal storage curtailment recovery potential is computed using the same adjusted net 

load profiles from Osprey. One hundred megawatts of storage are added in each region to 

calculate the curtailment that can be reduced in that region via new storage. This is done 

separately for each storage duration. Cross terms are also calculated by adding both new storage 

and new wind or PV to each region to calculate the curtailment from new wind or PV that can be 

recovered by new storage.  

Transmission is considered during these calculations by evaluating whether new wind or PV 

generation can be shared with other regions. For example, if a neighboring region has a net load 

of 1,000 MW in a given hour, and the transmission line to that region has 1,000 MW of unused 

capacity, up to 1,000 MW of PV or wind generation can be shared with that region during that 

hour. 

Marginal curtailment reduction rates are also computed for transmission by adding 1,000 MW of 

new transmission between regions and determining the curtailment impacts from that new 

transmission. 
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Condor Dynamic Program 

The storage energy arbitrage value is computed by Condor, a price taker model that finds the 

optimal storage dispatch given hourly energy prices and an amount and a duration of storage. It 

works by discretizing the storage dispatch problem and dividing it into independent subproblems 

of identical form, solving them all exhaustively and recursively using backward induction and 

then constructing the optimal storage dispatch given a starting condition. It uses the regional 

prices from Osprey that have been adjusted for start costs and dispatches storage of each duration 

separately to find the maximum possible revenue. It runs at an hourly resolution for the entire 

year, making decisions in each hour that respect constraints on energy capacity and power. Since 

Condor uses perfect foresight, the storage capacity of each storage resource is reduced by one 

hour in order to make the values more realistic. This is consistent with estimates that forecast 

accuracy accounts for roughly 20% of the energy value of storage (Dunbar et al. 2014). In order 

to avoid double-counting the energy arbitrage benefits of storage that was charged on otherwise 

curtailed energy and the curtailment recovery itself, the energy value of storage is reduced by the 

fraction of hours in each transmission-connected region that storage was charged when there was 

curtailment.  

A central assumption of Condor is that prices are fixed. This assumption allows the decoupling 

of the balancing areas and storage devices when calculating arbitrage potential, because storage 

in one region is not allowed to influence prices for storage devices in other regions, and neither is 

storage within a region allowed to influence prices within that region. This price-taking 

approximation will become less accurate when storage deployment is very large in a given solve 

year. For large amounts of storage our approach will tend to over-estimate the energy arbitrage 

value, as it does not capture the smoothing effect of the storage deployment on prices. Capturing 

this more accurately would be computationally expensive. Future work is needed in this area to 

better understand the importance of this approximation. 

Discretization is a requirement of dynamic programming, which suffers from the curse of 

dimensionality, and finer discretization increases the solve time exponentially. We performed 

tests on the results sensitivity to the discretization strategy and selected values accordingly. The 

storage energy levels are discretized in a manner that fixes the distance between each level, such 

that smaller duration storage has fewer discrete levels and larger duration storage has more. This 

causes the dynamic program to treat storage durations equally, instead of under-valuing longer 

duration storage relative to shorter duration storage (which would occur using a fixed number of 

discrete levels). In this work, the number of discrete energy levels for 2-hr duration storage is 15, 

which means that 4-hr duration storage has 30, on up to 12-hr duration storage (PSH) which has 

90.  

Figure 18 shows a sample week-long dispatch from Condor for a 4-hr battery for a region in the 

winter. Storage arbitrages between periods of low price and high price with perfect foresight 

subject to charge and discharge constraints. The effect is a smoother net load profile. The total 

storage level is 600 MWh due to the perfect foresight adjustment one-hour subtraction from the 

4-hr duration 200 MW battery. The expenditure savings are computed as the cumulative 

difference between the cost to charge the battery and the revenue from discharging the battery at 

each hour. The storage efficiency penalty is applied to the storage charging, and the rate of 

charge doesn’t quite reach 200 MW because of this.  
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Figure 18. Condor dynamic program dispatch results for a 4-hr battery in a region during 
the winter 

To decrease solution time, Augur defaults to running Condor for 4-hour and 8-hour duration 

battery storage and then uses linear interpolation to compute the energy arbitrage revenue for the 

other storage durations for each region (with PSH modeled as 12-hour duration storage). This is 

done with the revenues normalized by duration, which makes the linear interpolation a 

reasonable approximation. The storage arbitrage revenue is exact for 4-hour and 8-hour duration 

storage, and in general slightly underestimates the value of 2-hr, 10-hr and 12-hr storage and 

overestimates the value of 6-hr storage. Using interpolation appreciably reduces the Condor 

solve time and is suitable for general ReEDS analysis. For storage-focused analysis, Condor can 

be run for each storage duration individually, which is the setting used for the results in this 

work.  

Capacity Credit 

Storage and VRE capacity credit calculations are folded into Augur, and computed using the 

methods described Frazier et al. (2020) and Brown et al. (2020), respectively. The capacity credit 

calculation now uses 7 years of load and weather data to determine the firm capacity of existing 

VRE resources, which it does for each capacity credit region.  

Method Evaluation 

To assess the performance of the ReEDS Augur module, we compared Augur outputs with those 

from equivalent systems in the PLEXOS production cost model (Energy Exemplar 2019; Frew et 

al. 2019). Figure 19 shows the comparison of energy prices before the start costs were applied 

for the p64 model region in Texas in 2050. Prices follow the trends seen in PLEXOS except for 
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the price spikes. These PLEXOS price spikes are a result of unit starts within the model, which 

we verified by removing start costs in PLEXOS. 

 

Figure 19. Energy prices from the Osprey LP (before start costs were applied) and from PLEXOS 
for the p64 region in Texas in 2050. The LP results can follow the PLEXOS results with high accuracy. 

To validate the energy value of storage calculation, we ran the Condor dynamic program with 

both Augur and PLEXOS hourly prices for each region and compared the total storage revenue. 

With the start cost adjustment made to the Osprey prices, the values matched fairly well across 

multiple years and scenarios. Figure 20 shows the impact of adding start costs to the Osprey 

prices. Before adding start costs, the storage arbitrage value was much lower because of the 

missing price spikes. After including start costs, the arbitrage value matched much better with 

the arbitrage value seen in PLEXOS. And the storage revenue from Augur matched PLEXOS far 

better than the storage revenue from ReEDS in the prior model version.  

 

Figure 20. Annual storage arbitrage revenue from Osprey LP versus from PLEXOS. The blue dots 
show the values before start costs were applied to the Osprey LP outputs and the yellow dots are after. Each dot is 

one of the 134 regions in the ReEDS model. 
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To assess the curtailment calculation, we compared the Augur curtailment values with the values 

from PLEXOS and the former method used in ReEDS. Because there is degeneracy in the 

optimization problem between deciding whether to curtail energy or incur storage losses, we 

compared the sum of curtailment and storage losses. We did this at the season and Regional 

Transmission Organization (RTO) level to reduce the spatial effect of the degeneracy. Figure 21 

shows the results of this comparison. The curtailment from Augur is better able to match the 

curtailment seen in PLEXOS. For reference, the former method used in ReEDS relied on 

convolutions of VRE and load distributions (Short et al. 2011). 

 

Figure 21. Curtailment (in TWh) in the former version of ReEDS (left) and using Augur (right) 
versus PLEXOS for scenarios spanning low and high RE costs. The Augur curtailment results better 

match the PLEXOS curtailment. Values represent the sum of curtailment and storage losses aggregated by season 
and RTO. 

In addition to validation efforts comparing Augur prices, storage energy value and curtailment 

with PLEXOS, we are able to use Augur results to reproduce some of the findings of Denholm 

and Mai (Denholm and Mai 2019) who show that both the length of curtailment events and the 

number of large curtailment events increase in scenarios with high wind penetration. Figure 22 

shows the distribution of curtailment event duration and length across nine scenarios. In every 

case, the Low Wind Cost scenarios have both longer duration and larger curtailment events than 

both the Reference PV/wind Cost and the Low PV Cost scenarios. Since our results come from a 

national analysis with different VRE penetration levels and the Denholm and Mai results come 

from analysis on an ERCOT system with fixed VRE penetration levels and no storage, the 

absolute distributions are different, but the trends across scenarios are the same. Because their 

results have no storage, the closest analogue is the No New Storage scenarios, which clearly 

show the trend of longer duration and larger curtailment events occurring in scenarios with high 

wind penetration. We observe the opposite trend in scenarios with high PV penetration (and 

hence low wind penetration). Both trends become more pronounced in scenarios with low battery 

costs. 
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Figure 22. Distributions of duration (top row) and energy (bottom row) of curtailment events in 
2050 across the nine scenarios without an RE constraint 

Additional Model Inputs 

Capital costs are taken from the 2020 Annual Technology Baseline (NREL 2020). The reference 

costs are from the projections labeled “moderate” and the low costs are from the projections 

labeled “advanced.” Figure 18 shows the fuel price input assumptions, and Figure 19 shows the 

demand growth assumptions. 

 

Figure 23. Fuel price inputs. Natural gas prices are elastic within the model. Coal and uranium 
prices are inelastic. 

0

1

2

3

4

5

6

7

2020 2030 2040 2050

F
u

e
l 

P
ri

c
e
 (

2
0
1
9
$
/M

M
B

tu
)

Natural Gas 

Coal 

Uranium 



36 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 

Figure 24. Demand growth trajectory 

Additional Scenario Results 

Figures 25–45 provide scenario results that supplement those in the body of the paper. 

 

Figure 25. Capacity difference between the 80% RE scenarios and the 80% RE reference scenario 
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Figure 26. Generation difference from the Mid-case scenario across the scenarios without an 
RE constraint 
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Figure 27. Generation difference from the 80% RE scenario across the scenarios with an 80% 
RE constraint 

 

Figure 28. Penetration over time for VRE, PV, and wind (by generation) and storage (by capacity) 
for the base case scenarios 
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Figure 29. Penetration over time for VRE, PV, and wind (by generation) and storage (by capacity) 
for the scenarios with an 80% RE constraint 

 

Figure 30. Storage deployment in 2050 across the 12 scenarios that allow new storage 
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Figure 31. Differences in generation (GW) by time-slice in the Low PV Cost and Low Wind Cost 
scenarios for both increasing and decrease storage deployment 
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Figure 32. National average capacity credit in the summer for 2-hour battery storage as a function 
of total storage capacity deployed. Two-hour storage capacity credit begins low because many of the storage 
mandates in early years are satisfied by the model using 2-hour storage, and 2-hour storage often has a low capacity 

credit in those regions. Capacity credit grows as economic builds of 2-hour storage occur in regions with a higher 
capacity credit. 
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Figure 33. National average capacity credit in the summer for 6-hour battery storage as a function 
of total storage capacity deployed 

 

Figure 34. National average capacity credit in the summer for 8-hour battery storage as a function 
of total storage capacity deployed 
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Figure 35. National average capacity credit in the summer for PSH as a function of total storage 
capacity deployed 

 

Figure 36. National average utility-scale PV (UPV) summer capacity credit as a function of total 
PV penetration 
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Figure 37. National average summer capacity credit for land-based wind as a function of wind 
penetration 
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Figure 38. Fraction of storage revenue from providing capacity services 
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Figure 39. Fraction of storage revenue from providing energy services 
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Figure 40. Fraction of storage revenue from providing operating reserves 

 

Figure 41. Modeled national average price for providing the flexibility operating reserve 
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Figure 42. Modeled national average price for providing the regulation operating reserve 

 

Figure 43. Modeled national average price for providing the spinning operating reserve 
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Figure 44. National average curtailment rate across the suite of scenarios 

 

Figure 45. Transmission capacity in TW-mi across the suite of scenarios 
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