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In this paper, we develop a framework and metrics for estimating the impact of emission sources on regulatory com-
pliance and human health for applications in air quality planning and life cycle impact assessment (LCIA). Our frame-
work is based on a pollutant's characterization factor (CF) and three new metrics: Available Regulatory Capacity for
Incremental Emissions (ARCIE), Source CF Ratio, and Activity Health Impact (AHI) Ratio. ARCIE can be used to assess
whether a receptor location has capacity to accommodate additional source emissions while complying with regula-
tory limits. We present CF as a midpoint indicator of health impacts per unit mass of emitted pollutant. Source CF
Ratio enables comparison of potential new-source locations based on human health impacts. The AHI Ratio estimates
the health impacts of a pollutant in relation to the utilization of the source for each unit of product or service. These
metrics can be applied to any pollutant, energy source sector (e.g., agriculture, electricity), source type (point, line,
area), and spatial modeling domain (nation, state, city, region). We demonstrate these metrics through a case study
of fine particulate (PM2.5) emissions fromU.S. corn stover harvesting and local processing at various scales, represent-
ing steps in the biofuel production process. We model PM2.5 formation in the atmosphere using a novel reduced-
complexity chemical transport model called the Intervention Model for Air Pollution (InMAP). Through this case
study, we present thefirst area-source PM2.5 CFs that address the recommendations of several LCIA studies to establish
spatially explicit CFs specific to an energy source sector or type. Overall, the framework developed in this work pro-
vides multiple new ways to consider the potential impacts of air emissions through spatially differentiated metrics.
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1. Introduction

The process of siting, operating, and regulating new sources of pollutant
emissions (such as power plants and factories) often entails modeling local
and regional air quality impacts and predicting associated human health
impacts. There is also interest in assessing full life cycle environmental
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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impacts through life cycle impact assessment (LCIA) (Chester et al., 2010;
Bulle et al., 2019). Existing LCIA research efforts have used various model-
ing techniques (Rosenbaum et al., 2011; Hill et al., 2009; Thakrar et al.,
2017; Hill et al., 2019) and metrics such as pollutant intake fractions (iFs)
(Humbert et al., 2011; Fantke et al., 2017) (the proportion of mass emitted
that is inhaled by the exposed populations) and characterization factors
(CFs) (Fantke et al., 2019; Gronlund et al., 2015; Tang et al., 2018) (envi-
ronmental/health damage per unit of mass emitted) to analyze the air qual-
ity impacts of an energy system.

Assessing air quality and human health impacts for new emission
sources often requires addressing questions from different stakeholders,
such as air quality planners, project developers, and researchers. Stake-
holders could be interested in understanding the impacts of emissions
from new sources on the ability of counties and states to comply with regu-
latory requirements (such as National Ambient Air Quality Standards
[NAAQS] for criteria pollutants), (NAAQS Table, 2018) comparing esti-
mated impacts from the new source either to similar sources or to baseline
emissions in a region, or estimating tradeoffs related to resources or prod-
ucts developed at the source (e.g., 1 unit mass of product). Careful selection
of appropriate metrics for evaluation and comparison is important for an-
swering each question.

Within LCIA, existing metrics for evaluating air quality impacts (e.g., iF
and CF) are available at low-spatial-scale (resolution) emission and expo-
sure settings—such as indoor, outdoor-urban, or outdoor-rural settings—
collectively called “archetypal” environments (Humbert et al., 2011;
Sedlbauer et al., 2007). Applying these metrics at these scales in LCIA can
introduce significant uncertainty in the results owing to the inability to cap-
ture location-specific, pollutant-dispersion, and transformation effects.
Therefore, these metrics for broad archetypal environments may provide
an average estimate but generally are unsuitable for analyzing impacts for
health damage-oriented LCIA studies of a specific source type (e.g., point
vs. line vs. area source) or emitting sector (e.g., power generation vs. agri-
culture) (Humbert et al., 2011; Fantke et al., 2015). The existing process
of LCIA can benefit from a consistent framework and metrics to model spa-
tially explicit air quality and associated human health impacts of the life
cycle emissions of a product or service.

Emissions of fine particulate matter (PM2.5, which includes particles
smaller than 2.5 μm in aerodynamic diameter) represent one critical area
in need of improved LCIA approaches. Whether directly emitted from com-
bustion or other activities (primary PM2.5) or formed from precursors such
as volatile organic compounds (VOCs), sulfur dioxide (SO2), oxides of nitro-
gen (NOx), and ammonia (NH3) (secondary PM2.5), PM2.5 is the air pollut-
ant that produces the largest monetized human health impacts in the
United States (U.S.) and worldwide (Cohen et al., 2017; Health and
Environmental Effects of Particulate Matter (PM), 2016). However, the
air quality and health impacts of PM2.5 are sensitive to the characteristics
of the emitting source, geographic location, type of PM2.5 precursor, mete-
orology, topography of the region, population density in the region, popu-
lation age distribution, baseline mortality, and concentration-response
functions derived from the air quality-related epidemiology research
(Seinfeld and Pandis, 2006; Fann et al., 2009). For example, numerous
LCIA studies have quantified CFs for PM2.5 from distinct sets of archetypal
environments at regional, national, and global scales (Gronlund et al.,
2015; Tang et al., 2018; Hofstetter, 1998; Krewitt et al., 2001; Van Zelm
et al., 2008; Itsubo and Inaba, 2010; Kassomenos et al., 2013; Notter,
2015; Van Zelm et al., 2016; Frischknecht and Jolliet, 2016; Frischknecht,
2016; Jolliet et al., 2018). Yet these studies do not distinguish PM2.5 CFs
by ground-level source type or by emitting sector. It is necessary to distin-
guish PM2.5 CFs by source type (or emitting sector) to reduce uncertainty
in the estimates that can arise from neglecting factors (e.g., physics and
chemistry of particle formation, meteorology, characteristics of source
and source location) responsible for the formation of PM2.5 in the atmo-
sphere and its exposure among the population. LCIA studies often do not in-
corporate impacts from long-range transport of PM2.5 precursor emissions
owing to the high computational requirements of computer modeling of
particle formation in the atmosphere. The 2016 expert synthesis produced
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by the United Nations Environment Programme (UNEP) – Society of Envi-
ronmental Toxicology and Chemistry's (SETAC) Life Cycle Initiative pro-
vides global consensus PM2.5 CFs for several archetypal environments and
emission stack heights (Frischknecht and Jolliet, 2016). However, the
UNEP-SETAC report does not provide CFs for exposure to PM2.5 formed
from VOC emissions and does not distinguish CFs by source-type or emit-
ting sector.

Our study makes multiple contributions to existing knowledge about
characterizing air quality and health impacts in LCIA of any emission source
at any location. First, we develop a framework using CF and three newmet-
rics for estimating the impact of emissions sources on regulatory compli-
ance and human health (defined in Section 2). These metrics provide
important, new, source-specific information to quantify spatially explicit
life cycle impacts. Project developers and researchers could use this new in-
formation to improve their analysis of the impacts of proposed emissions
sources, which could informdecisions such as facility siting, design, and op-
eration.

Second, we apply our new framework to a case study estimating the
impacts of area-source PM2.5 emissions from developing corn stover for cel-
lulosic biofuel production in the U.S. This work helps respond to Fantke
et al. (2015) andUNEP-SETAC (Frischknecht and Jolliet, 2016)who recom-
mended systematically analyzing the spatial variation in secondary PM2.5

formation rates using spatially explicit models, like the Intervention
Model for Air Pollution (InMAP), (Tessum et al., 2017) and recommended
estimating PM2.5 CFs at different geographic levels (e.g., region, county).
Through our case study, we develop the first estimates of area-source
PM2.5 CFs as well as the first sector-specific PM2.5 CF estimates for the
U.S. Our framework also estimates site-specific impacts on NAAQS compli-
ance and health—relative to both national average impacts and resource
production—for corn stover development. Future analyses based on these
methods could provide additional resolution on air quality and health im-
pacts by source type, sector, and location.

2. Air quality and health impacts analysis framework

Our air quality and health impacts framework is based on CF and three
new metrics: Available Regulatory Capacity for Incremental Emissions
(ARCIE), Source CF Ratio, and Activity Health Impact (AHI) Ratio. Fig. 1
illustrates the framework and metrics developed in this work. This frame-
work can be applied to any source type (point, line, area) or emissions-
producing sector to provide information for air quality planning and LCIA
efforts. In this section, we describe the metrics in generic terms. In
Section 3, we provide the specific metrics used in our case study.

2.1. Available regulatory capacity for incremental emissions (ARCIE)

ARCIE quantifies the difference between the pollutant concentration
allowed by regulations and the pollutant concentration at a receptor loca-
tion. It can be used to assess whether a receptor location has capacity to ac-
commodate additional source emissions relative to the applicable
regulatory limit. It is calculated as follows for a generic pollutant (PX):

ARCIE ¼ PX½ �regulated – PX½ �receptor ð1Þ

where [PX]regulated is the concentration of the pollutant allowed under ap-
plicable regulations, [PX]receptor= [PX]baseline + [PX]incremental, [PX]baseline
is the baseline concentration at the receptor location (prior to additional
emissions from the new source), and [PX]incremental is the incremental con-
centration of additional emissions from the new source.

Thus, ARCIE indicates the effects on the regulatory cap of adding the
new-source emissions. A positive value means there will still be room
under the regulatory cap after the new-source emissions are added,
whereas a negative value means the regulations will be exceeded after
the new-source emissions are added. A zero or a negative value indicates
no capacity to host additional sources that emit the pollutant. If the baseline
concentration already exceeds the regulatory cap at a receptor location,



Fig. 1. Framework and metrics developed in this work for use in air quality planning and LCIA. The LCIA boundary is defined by the life cycle analysis (LCA) of an emitting
source sector or type (e.g., biofuel production). The spatial modeling domain is a geographic area of which the emitting source sector or type is part and is considered for air
quality modeling (e.g., country, state). Incremental emissions are additional emissions from changes in activities at the source. Metric 1 relates the concentration limit of a
pollutant to the actual ambient pollutant concentration (shown separately by dashed line as it is not part of LCIA framework), metric 2 indicates impacts on the human pop-
ulation per unitmass of a pollutant emitted at the source,metric 3 is the ratio of CF for incremental emissions and CF for baseline emissions, andmetric 4 indicates impacts on
the human population per unit mass of product or service at the source.
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there is zero capacity before any new-source emissions are added (and
added emissions would make the ARCIE value more negative).

2.2. Characterization factor (CF)

CFs are commonly applied in the LCIA phase of LCA to quantify the
health impacts caused by emissions. CFs can be reported at the midpoint
or endpoint levels. A midpoint CF indicates the direct impacts of the con-
tributing pollutants emitted at the source, including health impacts per
unit of pollutant mass emitted (Van Zelm et al., 2016; Hauschild et al.,
2013). An endpoint CF indicates the severity of damage modeled by the
midpoint indicator, including years of life lost (YLL), years lost due to dis-
ability (YLD), and combined YLL and YLD expressed as disability-adjusted
life years (DALYs) (Frischknecht and Jolliet, 2016; Hauschild et al.,
2013). For this work, we focus on midpoint CF, defined as health impacts
(here, premature mortality) per unit mass of primary PM2.5 and precursor
pollutant emitted and calculated using Eq. (2) (Frischknecht and Jolliet,
2016). In LCIA of an energy system, CFs can be used to estimate total im-
pacts in a life cycle stage by multiplying the CF by the total mass of pollut-
ant emitted.

CF ¼ Premature mortality
Mass of pollutant emitted

ð2Þ

Prematuremortality is estimated using outdoor concentration-health ef-
fect response model explained in further sections.

2.3. Source CF ratio

Source CF Ratio quantifies the incremental CF for new-source emissions
in comparison to the CF for baseline emissions from all sectors in a spatial
modeling domain (e.g., nation, region). It enables comparison of potential
new-source locations based on human health impacts and thus can aid in
ranking desirable locations. It is calculated for each pollutant as follows:

Source CF Ratio ¼ CF incremental;pollutant;new−source locationð Þ
CF baseline;pollutant;spatial modeling domainð Þ

ð3Þ
3

where CF(incremental, pollutant, new-source location) is the CF from additional
emissions of each pollutant precursor at the new-source location, and
CF(baseline, pollutant, spatial modeling domain) is the CF from baseline emissions
of each precursor from all pollutant-emitting sources in the spatial
modeling domain. Source CF Ratio can only be used for comparison be-
tween multiple new-source locations if the spatial modeling domain in
the denominator is constant across sources. A Source CF Ratio greater
than one indicates that the new-source emissions have greater impacts
relative to the spatial modeling domain's average impacts from baseline
emissions. A Source CF Ratio less than one indicates the opposite.

2.4. Activity health impact (AHI) ratio

The AHI Ratio estimates the health impacts of a pollutant in relation to
the utilization of the source, calculated as follows:

AHI Ratio ¼ Health impact of pollutant
Unit of product=service

ð4Þ

This metric enables quantification of the health impacts of a pollutant
for each unit of product or service. For example, our case study (defined
in Section 3) presents an AHI Ratio of premature deaths due to PM2.5 per
kilogram of corn stover produced.

3. Case study data andmethods: impacts of PM2.5 emissions from U.S.
corn stover production

In this case study,we apply our framework from Section 2 to analyze the
impacts of PM2.5 emissions due to harvesting corn stover as a biofuel feed-
stock in the U.S. Corn stover—including the leaves, stalks, cobs, and husks
typically left in the field (for other uses such as animal grazing and soil
replenishment) after the ears of corn plants are harvested—is the most
abundant source of lignocellulosic biomass in the U.S. for biofuel produc-
tion (Aden et al., 2002; U.S. Department of Energy, 2016). Corn stover is
collected, stored, preprocessed, and transported from agricultural fields to
biofuel-producing facilities (commonly known as “biorefineries”),
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consuming energy and materials during each process (Atchison and
Hettenhaus, 2004).

Harvesting corn stover for biofuels also results in increased emissions of
primary PM2.5 and its precursors, (Tessum et al., 2012) which affect human
health compared to the current practice (i.e., leaving corn stover in the
field). Several studies have analyzed the impacts of PM2.5 emissions related
to the life cycle production and use of second-generation biofuels (biofuels
derived from non-food feedstocks) (Hill et al., 2009; Thakrar et al., 2017;
Cook et al., 2011; Tessum et al., 2014; Ögmundarson et al., 2020). For ex-
ample, Hill et al. (2009) estimate that the U.S. PM2.5-related health costs
of cellulosic ethanol production are lower when using corn stover, switch-
grass, or miscanthus as feedstocks, compared with producing gasoline
or producing ethanol from corn using natural gas, coal, or corn stover
for process heat at biorefineries (Hill et al., 2009). Tessum et al.
(2014) model life cycle air quality impacts in the U.S. Midwest due to
vehicles powered by cellulosic ethanol produced from corn stover
(Tessum et al., 2014). Thakrar et al. (2017) show that the life cycle
PM2.5 health impacts from potential switchgrass production in the U.S.
are dominated by NH3 emissions from fertilizer application (Thakrar
et al., 2017).

The following sections describe the data andmethods we use to analyze
the impacts of PM2.5 emissions from harvesting corn stover for biofuels pro-
duction in the U.S. We only consider direct emissions from corn stover har-
vesting and local processing, including emissions from fuel used by
equipment (e.g., agricultural machinery, transport vehicles) for harvesting
corn stover, fertilizer applications to compensate for lost soil nutrients,
and fugitive dust emissions from machinery operations. We do not in-
clude upstream emissions, such as those related to field preparation
for corn production or producing agricultural chemicals or vehicle
fuels; transportation emissions due to delivering corn stover from fields
to the depot or storage facilities; and emissions from converting corn
stover to biofuels in a biorefinery. Fig. 2 shows various supply-chain
stages in the biofuel production life cycle. In the diagram, emissions
from harvesting and locally processing corn stover (highlighted in
green) are considered in this study.

3.1. Corn stover data

We use corn stover production and air pollutant emissions in select U.S.
counties based on the National Renewable Energy Laboratory's (NREL's)
Fig. 2. Life cycle of biofuel production showing supply-chain stages and emissions fr
considered in this study (highlighted in green). The emissions terminology used her
Energy's 2016 Billion-Ton (BT16) Volume 2 study (GEOS-Chem Model, 2018).
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Feedstock Production Emissions to Air Model (FPEAM) and a base case
from the BT16 Volume 2 study (2016 Billion-Ton Report Vol 2, 2018;
Efroymson et al., 2017). We do not include biorefinery emissions in this
work (Fig. 2). Key assumptions of the base case include an simulation
year of 2040, 1% annual crop yield improvement, and a farmgate corn sto-
ver price of $66 per dry metric ton (DMT; dry means 0%moisture content)
(Rosenbaum et al., 2011). Fig. 3 shows simulated annual county-level corn
stover production in 2040 estimated by the BT16 study. To protect soil
health, not all corn stover is available for bioenergy production; the fraction
available depends on the U.S. Department of Agriculture (USDA) tolerable
soil loss limit, wind and water erosion, maintenance of soil organic carbon,
and soil nutrient recycling. These factors vary by county, resulting in 0.2%–
69% of corn stover produced being available for bioenergy, with a mean of
37%. Fig. S1 in the supplement information (SI) provides county-level spa-
tial variation in percentages of total harvested corn stover available for
bioenergy. Additional details are available in the BT16 study (Efroymson
et al., 2017).

3.2. Scales of corn stover production and emissions estimation at each scale

We analyze the case study at three scales of corn stover production
equivalent to the amounts of feedstock required by three sizes of
biorefineries in terms of DMT (1 MT = 1000 kg) of corn stover per
day. We assume the stover will be used to produce infrastructure-
compatible hydrocarbon fuels via a biorefinery process, which is de-
signed to convert 2000 DMT/day of stover into 85,734 gal of renewable
diesel blendstock (RDB) per day (32.9 million gasoline gallon equiva-
lents [GGE]/year) (Davis et al., 2013). Because this throughput is very
small compared to the throughput of petroleum refineries in the U.S.,
and it may be inadequate to meet future biofuel production require-
ments, we analyze two larger corn stover production scales, which can
supply feedstock to two biorefinery sizes corresponding to the 5th and
10th percentiles of U.S. petroleum refinery sizes. We estimate petro-
leum refining capacities at these two percentiles based on the U.S.
Energy Information Administration (EIA) refinery capacity database,
(Refinery Capacity Report, 2018) and we calculate the required amount
of corn stover for the two biorefinery sizes that can produce RDB
volumes equivalent to the product throughputs (gasoline and diesel
combined in terms of GGE/yr) from the two petroleum refinery capacities.
The resulting three biorefinery sizes are 2000, 5200, and 9100 DMT/day.
om each stage. Emissions from harvesting and locally processing corn stover are
e follows the description of per-phase air emissions from the U.S. Department of



Fig. 3. Annual U.S. county-level corn stover production in 2040 from the Billion Ton 2016 base case, (GEOS-Chem Model, 2018) which assumes 1% annual crop yield
improvement and a farmgate corn stover price of $66/dry metric ton (DMT). In parentheses are the biorefinery sizes for the equivalent corn stover production, calculated
using Eq. (5).
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We estimate the annual corn stover requirements at 657,000, 1,708,200,
and 2,989,350 DMT/year (Eq. (5)).

Corn stover required DMT=yearð Þ ¼ biorefinery size DMT=dayð Þ
� 365 days=year
� on−stream operating factor ð5Þ

where on-stream operating factor is the percentage of time a biorefinery is
operational during a year for converting biomass feedstock to biofuels; we
use a factor of 90% (7884 h/year) fromDavis et al. (2013). Fig. 3 shows the
corn stover production for each county in the U.S. for the scenario de-
scribed in Section 3.1.

Emissions at each scale of corn stover production are estimated by linear
interpolation and extrapolation of BT16 emissions at the given production
levels. BT16 emissions are multiplied by the ratio of corn stover production
at the required scale to the production corresponding to the BT16 emis-
sions. Details of emissions estimation at the three scales of corn stover pro-
duction are provided in Section 1.2 of the SI.

3.3. County selection

From all counties in the contiguous U.S., we select 59 unique “ori-
gin” counties, defined as counties with hypothetical biorefineries lo-
cated at their centroids (Fig. 4). Based on the county-level, theoretical
potential supply of corn stover estimated in the BT16 study,
(Efroymson et al., 2017) we identify 20 origin counties that can supply
corn stover at a 2000 DMT/day scale, which we refer to as “self-suffi-
cient” counties. No individual counties are self-sufficient to supply at a
5200 DMT/day or a 9100 DMT/day scale. From the 20 self-sufficient
counties, we select eight (outlined in violet in Fig. 4) to represent the
geographic diversity across the full set of 20. We assess these eight
counties at all three corn stover production scales, keeping location
(and the associated meteorology and population) constant while
5

varying the scale. Section 1.3 of the SI details our county-selection
methods and provides a summary table of all selected counties
(Table S1).

3.4. Air quality modeling

Many air quality models are used in regulatory and research communi-
ties, each with strengths and weaknesses. Complex chemical transport
models (CTMs) represent state-of-the-science models and provide the
most robust estimates available when time and computational constraints
are not limiting (Photochemical Air Quality Modeling, 2017; CMAQ,
2018; Comprehensive Air Quality Model with Extensions (CAMx), 2016;
GEOS-ChemModel, 2018; WRF-CHEM, 2018). However, because complex
CTMs are time and resource intensive, modelers can use reduced-
complexity air quality models (RCMs) instead. RCMs can take a CTM-
based, (Tessum et al., 2017; Buonocore et al., 2014; Carnevale et al.,
2009; GEOS-Chem Adjoint Model et al., 2014; DDM/RSM Model et al.,
2014; Hakami et al., 2007; EASIUR Model et al., 2016; Technical Support
Document for the Proposed PM NAAQS Rule, 2006; Particle Source
Apportionment Tool (PSAT) et al., 2008; Zhang et al., 2012) gaussian,
(Cimorelli et al., 2005; Guttikunda, 2009; Logue et al., 2011; APEEP
Model andMuller, 2014; User’sManual for the Co-Benefits RiskAssessment
Health Impacts Screening and Mapping Tool (COBRA), 2012; Revision to
the Guideline on Air Quality Models, 2015) lagrangian, (Draxler and
Hess, 1997; Scire et al., 2000) or chemical mass balance (CMB8.2 Users
Manual, 2004) approach. Although less accurate than complex CTMs,
RCMs have the flexibility to allow for a greater number of sensitivity anal-
yses, Monte Carlo approaches, an understanding of source and receptor ef-
fects, use of smaller-sized grid cells, and longer simulated periods (Hill
et al., 2019; Levy et al., 2007; Keeler et al., 2016; Gourevitch et al., 2018;
Millstein et al., 2017; Holland et al., 2016). Three commonly used RCMs
provide comprehensive estimates covering the contiguous U.S. at relatively
high spatial resolution (county level or finer): the Air Pollution Emission



Fig. 4. Origin counties selected for air quality modeling. (A) Origin counties
selected for hosting 2000 DMT/day corn stover production scale (n = 34),
(B) origin counties selected for hosting 5200 DMT/day corn stover production
scale (n = 25), and (C) origin counties selected for hosting 9100 DMT/day corn
stover production scale (n = 18). Counties outlined in violet are “self-sufficient”
counties (see text for further explanation) analyzed at all three scales of corn
stover production (n = 8). Rest of the origin counties (outlined in black, that are
not “self-sufficient”) are surrounded by a cluster of neighboring counties (not
shown in these maps) that contribute to the total requirement of the respective
corn stover production scale in the origin county used in the calculations in the
analysis described below (n = 51).
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Experiments and Policy (APEEP/AP2) model, (APEEP Model and Muller,
2014) the Estimating Air pollution Social Impacts Using Regression
(EASIUR) model, (EASIUR Model et al., 2016) and InMAP (Tessum et al.,
2017). Gilmore et al. (2019) compare these three models. Among the
three, APEEP/AP2 has county-level spatial resolution, EASIUR uses a
36 km × 36 km grid covering the contiguous U.S., and InMAP employs
smaller-sized grid cells at much finer-scale spatial resolution than any
other RCMs. While APEEP/AP2 can model concentrations from all PM2.5

precursors, EASIUR cannot model formation of secondary organic aerosols
(SOA) from VOC emissions; hence, EASIUR cannot currently be used to es-
timate total PM2.5. APEEP/AP2 has lower spatial resolution (county-level)
than InMAP does, which is not desirable for estimating metrics developed
in this work.

Therefore, we use InMAP for our analysis. InMAP is designed to esti-
mate the annual average PM2.5 concentration and health impacts result-
ing from incremental changes in pollutant emissions (Tessum et al.,
2017). It estimates average pollutant concentrations from emissions
by estimating a steady-state solution to a mass-balance equation depen-
dent on reaction, advection, and diffusion parameters. Geographic loca-
tions in InMAP can be specified as polygon, line, or point sources
(including stack-height and plume-rise attributes, where relevant).
InMAP uses a variable spatial grid, where the grid cell size is a function
of the gradient in population density and pollutant concentrations,
varying from 1 km × 1 km (typically, in urban areas) to 48 km ×
48 km (typically, in rural areas). As described below, InMAP uses a
Concentration-Response (C-R) function to estimate health impacts
from the resulting pollutant concentration. The output from InMAP pro-
vides pollutant concentration (μg/m3) and number of premature deaths
from long-term PM2.5 exposure for each grid cell based on underlying
gridded population and mortality data.

The following are the three main inputs to InMAP for our case study:

(1) County-level annual emissions of VOCs, NOx, NH3, SO2, and primary
PM2.5 for selected counties. Separate area-source Geographic Informa-
tion System (GIS) shapefiles are created for a county or group of
counties producing corn stover at three scales, and InMAP is run for
each county or group of counties separately. InMAP allocates emissions
from area (county) shapefiles to the underlying grid cells using area
weighting.

(2) Census data on population at the block group level for 2013 from the
2013 American Community Survey (ACS, 5-year data between 2009
and 2013) (The IPUMS National Historical Geographic Information
System (NHGIS), 2018).

(3) Baseline all-cause mortality data at the county level for 2013 from the
National Center for Health Statistics Office of Analysis and Epidemiol-
ogy at the Centers for Disease Control and Prevention (CDC Wonder,
2018).

Consistent with prior research (Buonocore et al., 2014; GEOS-Chem
Adjoint Model et al., 2014; Fann et al., 2013; Penn et al., 2017; Levy
et al., 2009) and in keeping with United States Environmental Protec-
tion Agency (US EPA) norms, (U.S. EPA, 2019; Expanded Expert
Judgment Assessment of the Concentration-Response Relationship Be-
tween PM2.5 Exposure and Mortality (Final Report), n.d.; Health
Benefits of the Second Section 812 Prospective Study of the Clean Air
Act, 2010) we assume that all particles are equally toxic in estimating
health impacts from total PM2.5. InMAP is capable of estimating health
impacts from any user-defined C-R function. For this work, we employ
the standard, commonly used expression in InMAP—from Krewski
et al. (2009)—for our PM2.5C-R function, which is used to estimate
PM2.5-related health impacts as shown in Eq. (6). The Krewski et al.
(2009) equation is based on the standard Cox proportional-hazards
model to calculate hazard ratios for various cause-of-death categories
associated with the levels of air pollution exposure in the study cohort.
The default C-R equation in InMAP is a standard and is commonly used
in regulatory (U.S. EPA, 2019) and academic air quality research in the
U.S. (Thakrar et al., 2017; Hill et al., 2019) Premature death is defined
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as a death that would have occurred later in a population in the absence
of PM2.5 pollution (Schwartz et al., 2018).

No:of premature deaths ¼ e PM2:5 Linear Coefficient� PM2:5½ �ð Þ − 1
� �

� P

� All − Cause Mortality Rate
100; 000

ð6Þ

where PM2.5 Linear Coefficient = ln (1.078)/10= 0.00751, i.e., a 7.8%
increase in the number of premature deaths for every 10 μg/m3 increase
in the concentration of PM2.5. [PM2.5] is the concentration of PM2.5. P is
total population.

3.5. Case study metrics

We express the results of our analysis in terms of the metrics defined in
Section 2, for each selected origin county and corn stover production scale;
see Section 2 for general definitions of the variables used in the equations
below. We define the case-specific ARCIE for the selected origin counties
of corn stover production as follows. For this metric, we chose EPA's
outdoor air quality monitor locations—used for measuring PM2.5

concentrations and designating areas as attainment, maintenance, or non-
attainment (Air Quality Designations for Particle Pollution, 2018) —as
our receptor locations.

ARCIE ¼ PM2:5½ �NAAQS – PM2:5½ �receptor ð7Þ

where [PM2.5]NAAQS is the annual ambient PM2.5 concentration limit under
EPA's 2012 NAAQS, 12.0 μg/m3 (annual mean, averaged over 3 years), as a
primary standard for providing public health protection, (NAAQS Table,
2018) [PM2.5]receptor = [PM2.5]baseline + [PM2.5]incremental, [PM2.5]baseline
is the annual average baseline PM2.5 concentration at the monitor locations
(background annual average PM2.5 concentration, prior to additional emis-
sions from the corn stover production), and [PM2.5]incremental is the annual
average incremental PM2.5 concentration of additional emissions from the
corn stover production at the monitor location. We use 2017 data (most re-
cent available at the time of the analysis) for annual average PM2.5 concen-
tration (from real-time measured values) at each monitor as [PM2.5]baseline
(Air Data, 2018). Thus, [PM2.5]receptor is the total annual average PM2.5 con-
centration at the monitor locations accounting for baseline emissions from
all emissions source sectors, plus the incremental concentration from the
new source—corn stover production.

As per EPA rules, (40 CFR Parts 50, 2013) the annual PM2.5 NAAQS is
met when the “annual PM2.5 NAAQS design value (DV)” is less than or
equal to 12.0 μg/m3 at each eligible monitoring site. The “annual PM2.5

NAAQS DV” is the 3-year average of PM2.5 annual average mass concentra-
tions for each eligible monitoring site (40 CFR Parts 50, 2013). The DV is
rounded to the nearest tenth of a μg/m3, that is, the actual highest value
possible that is below the standard is 12.04 μg/m3. Intermediate calcula-
tions for estimating DVs are not rounded as per EPA rules (40 CFR Parts
50, 2013). In this work, we make two assumptions for comparing with
the NAAQS limit of 12.0 μg/m3 ([PM2.5]NAAQS): (1) at each monitor loca-
tion, we use a 1-year annual average PM2.5 concentration ([PM2.5]baseline,
[PM2.5]incremental), not the 3-year average, and (2) we do not use any
rounding convention for the 1-year annual average [PM2.5]receptor, assum-
ing this estimation is analogous to an intermediate step in EPA's procedure
for estimating DV. In addition, EPA's relative response factor (RRF) ap-
proach to reduce uncertainty of concentration estimates has not been con-
sidered for the InMAP modeled concentration here (Modeling Guidance
for Demonstrating Air Quality Goals for Ozone, 2018). With these simplify-
ing assumptions, the ARCIE metric cannot be used as a true indicator of
available capacity for the selected corn stover production cases. Rather, it
serves as an initial, screening-level indicator to identify sites that might
face challenges complying with PM2.5 NAAQS owing to new emissions
and may require additional analysis.

Counties are deemed capable of hosting additional corn stover produc-
tion if ARCIE is greater than zero for all EPA air quality monitors. For
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monitors that are already in EPA NAAs, (2012 Annual PM2.5
Designations, 2018) any increase in modeled incremental concentration
would lead to additional challenges in meeting the NAAQS.

We define the case-specific CF for the origin counties of corn stover pro-
duction via Eq. (8), using themidpoint CF of premature deaths per kg PM2.5

precursor emitted:

CFsource;precursor ¼ Premature deaths
Mass of PM2:5 precursor kgð Þ ð8Þ

We report CF for each selected origin county discussed in Section 3.3
(Fig. 4), at the national scale and for each downwind U.S. county. For
each downwind county, we compute total premature deaths from each
PM2.5 precursor by aggregating premature deaths in each InMAP grid cell
to the county scale. Similarly, to report CF at the national scale, we aggre-
gate premature deaths in each grid cell to the national scale. Mass of
PM2.5 precursor (kg) in the denominator is estimated by aggregating emis-
sions from each source county supplying corn stover at each scale.

We define the case-specific Source CF Ratio for the origin counties of
corn stover production as follows, where the CF in the denominator relates
to all PM2.5 precursor source emissions at the national level (contiguous
U.S.):

Source CF Ratio ¼ CF incremental;precursor;locationð Þ
CF baseline;precursor;nationalð Þ

ð9Þ

We estimate the Source CF Ratio for each PM2.5 precursor separately.
The baseline emissions for estimating the denominator of CFbaseline, precursor,
national are from 2014 EPA National Emissions Inventory (NEI) data (2014
National Emissions Inventory (NEI) Data, 2019). We aggregate emissions
from each PM2.5-emitting source in the contiguous U.S. for estimating
total baseline emissions. We calculate total premature deaths from each
PM2.5 precursor at national scale by aggregating deaths in each InMAP
grid cell across the U.S. CF(incremental, precursor, location) for each origin county
location is estimated similarly to CFsource, precursor at the national scale
(Eq. (8)).

Finally, we define the case-specific AHI Ratio for each origin county as
follows:

AHI Ratio ¼ Premature deaths from total PM2:5

Corn stover production kgð Þ ð10Þ

Premature deaths from total PM2.5 are estimated by aggregating deaths
from total PM2.5 (all precursors) in each InMAP grid cell to the national
scale. Corn stover production (kg) is estimated using Eq. (5) (multiplied
by the factor of 1000 kg/DMT) at each corn stover production scale.

4. Case study: results and discussion

We provide results in terms of the four metrics defined in our analytical
framework: ARCIE, CF, Source CF Ratio, and AHI Ratio. The results pre-
sented in our case study are based on a subset of counties to demonstrate
our methods and metrics identified—they should not be taken as conclu-
sive. The metrics are useful at the screening level to inform decisions
about areas that are suitable or unsuitable for siting new emissions sources.

4.1. ARCIE: impact of corn stover production on regulatory compliance

We estimate ARCIE for locations downwind of all the origin counties
across the three corn stover production scales. We develop maps for
spatially visualizing the regulatory impact at EPAmonitor locations. An ex-
ample origin county in Illinois (IL), McLean county (Federal Information
Processing Standard [FIPS] county code: 17113, self-sufficient at a corn
stover production scale of 2000 DMT/day) was selected for illustrative
purposes because it is analyzed at all three scales of corn stover production.
Fig. 5 shows example results for theMcLean county, IL, for each corn stover



Fig. 5. Example of Available RegulatoryCapacity for Incremental Emissions (ARCIE) results depicting total PM2.5 concentration (μg/m3) and incremental PM2.5 concentration
(μg/m3) from harvesting and local processing emissions from an example origin county (FIPS 17113: McClean County, Illinois) at three corn stover production scales. The
maps show only those monitors that have incremental concentrations greater than 0.0001 μg/m3. Variations in colors at the monitor locations show the incremental
PM2.5 concentration between 0.0001 μg/m3 and 0.13 μg/m3 (maximum incremental concentration for the 9100 DMT/day scale). Circle sizes show the total PM2.5

concentration ([PM2.5]receptor) at the monitor location, which is the sum of baseline and incremental PM2.5 concentrations. Our analysis is designed to test whether new
emission sources cause changes in monitor concentrations such that a monitor concentration at baseline below the NAAQS annual average PM2.5 concentration limit
(12.04 μg/m3) might potentially increase to above the NAAQS limit. Implementing this design in creating an ability to visualize such a circumstance, we chose ranges of
total concentrations as explained here. We focus on total concentration changes around the PM2.5 annual NAAQS of 12.0 μg/m3 at the accuracy of one tenth of a μg/m3

applicable in the NAAQS criteria (Burnett et al., 2018). That is, the actual highest value possible that is below the standard is 12.04 μg/m3. The threshold value of 11.91
μg/m3 is the difference between 12.04 μg/m3 and the maximum incremental concentration value, 0.13 μg/m3. This value helps in identifying any cases of “flipping” for
the 9100 DMT/day scale. In this example, we find no cases of flipping in any of the corn stover production scales. All of the monitor locations show only the lowest
incremental increase in PM2.5 concentration, except those closest to the source counties. The red circles highlight monitors with total PM2.5 concentrations (as well as the
baseline concentrations) above the NAAQS limit, yet none of these locations exceeded the NAAQS limit because of the additional corn stover production.
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production scale. Not surprisingly, as the scale increases, the incremental
concentration increases at the nearest monitor locations. We also identify
any cases of monitor “flipping”—a monitor is considered flipped if the
PM2.5 concentration at the monitor location increases to above the PM2.5

NAAQS limit of 12.0 μg/m3. For McLean county, no monitor location is
flipped. Fig. 5 also shows the PM2.5 NAAs (available at the time, shown
with diagonal stripe pattern) for 2015 and [PM2.5]receptor > 12.04 μg/m3 at
a monitor location (shown with red circles). PM2.5 NAAs and monitors
with [PM2.5]receptor > 12.04 μg/m3 may not overlap, because we use 2017
data for PM2.5 baseline concentrations, and PM2.5 NAAs are a function of 3-
year averages of PM2.5 annual average concentrations during 2013–2015.
Not surprisingly, incremental concentrations are very low atmonitors distant
from the source county because the source emissions are at ground level.
Thus, for this example, the impact on PM2.5 NAAs is negligible. Results for
the other origin counties are presented in SI Figs. S3, S4, and S5.

Table S2 shows example ARCIE values for all the monitors in Illinois
that are impacted by corn stover production at a scale of 9100 DMT/day
from the origin, McLean county. The ARCIE values range from 1.7–4.9
μg/m3, indicating that the overall maximum capacity for additional PM2.5

emissions is 1.7 μg/m3, considering impact on in-state monitors only.
ARCIE values for the other origin counties at each scale are also provided
in the SI (as Excel files).
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Fig. 6 summarizes the maximum incremental PM2.5 concentrations and
maximumARCIE values at monitor locations within the 17 corn stover pro-
ducing states across the seven USDA regions. In Fig. 6, we focus on in-state
monitors for two reasons: (1) State Implementation Plans (SIPs) are devel-
oped for emission sources within the state boundaries, and (2) emissions
from corn stover production are at ground-level and demonstrate negligible
impact on monitors far from the source counties. Among all the corn stover
production cases considered here, the most impacted in-state (and overall
U.S.) monitors have incremental PM2.5 concentrations of 0.08 μg/m3 for
2000 DMT/day, 0.1 μg/m3 for 5200 DMT/day, and 0.13 μg/m3 for 9100
DMT/day. Maximum in-state ARCIE varies between 0.7 and 4.4 μg/m3

for all cases and does not vary significantly across corn stover production
scales. ARCIE is positive for all the monitors that are already below the
NAAQS limit; that is, all origin counties have capacity to host new activities
at the three scales of emissions tested. For monitors that have baseline con-
centrations greater than the NAAQS limit, incremental concentrations vary
and are higher if the origin counties are nearby. A few origin counties in
Ohio are near 2015 PM2.5NAAs inOhio; for those origin counties, the incre-
mental concentration at the monitors in NAAs varies from 0.03–0.04 μg/
m3. The air quality planners in the NAAs can benefit from these results
when developing SIPs to ensure the plans account for the impact of distrib-
uted area emissions that are near the NAAs.



Fig. 6. Maximum in-state incremental PM2.5 concentration (shown on left y-axis, solid circle) and maximum in-state ARCIE (shown on right y-axis, solid x) at a monitor
location from all origin counties in the 17 corn stover producing states across seven USDA regions (shown on x-axis below state abbreviations). USDA regions are APLN:
Appalachian, CB: Corn belt, DS: Delta states, LS: Lake states, MTN: Mountain, NE: North East, NP: Northern plains, and SP: Southern plains. Symbol colors differentiate
results for each corn stover production scale. Listed below x-axis in the table are the number of origin counties in each state that are analyzed at each corn stover
production scale: 2000, 5200, and 9100 DMT/day. For example, in Kentucky, only one origin county is analyzed, at the 2000 DMT/day scale.
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Across all the origin counties assessed, none of the monitors at any pro-
duction scale are flipped by the additional corn stover emissions. To evalu-
ate complete impacts on the regulatory limit from the biofuel production
supply chain, emissions from biorefineries (as point, elevated sources)
and other parts of the supply chain (see Fig. 2) can be added to observe
any flipping of the monitors. Additionally, annual PM2.5 monitors do not
cover locations in the entire U.S., so impacts at the receptor locations
where monitors do not exist cannot be evaluated. As a sensitivity analysis,
we use Land Use Regression (LUR) model estimates of PM2.5 at each
centroid of census blocks (at ~1 km scale) (Kim et al., 2020) as baseline
concentrations and find that some receptor locations flip owing to incre-
mental concentration from the source counties. However, if EPA's rounding
convention for estimating PM2.5 DVs is used, we observe no flipping of
monitors.

Although ARCIE is useful to gain a screening-level understanding of
the impacts of increased PM2.5 emissions on the PM2.5 regulatory limit,
many factors contribute to PM2.5 NAA designations, which limits the
use of this metric in our case study. Some general factors—in addition
to the air quality data of monitors that set the area boundaries—are
Table 1
Midpoint PM2.5 characterization factors (CFs; in deaths per kg pollutant emitted at the so
scale of 9100 DMT/day (results for the two other scales can be found in the SI).

Origin county FIPS Origin county state Primary PM2.5

17141 IL 2.2 × 10−5

17011 IL 1.7 × 10−5

17113 IL 9.2 × 10−6

18007 IN 8.6 × 10−6

19141 IA 3.5 × 10−6

19163 IA 1.3 × 10−5

19069 IA 5.2 × 10−6

19109 IA 3.9 × 10−6

19167 IA 3.6 × 10−6

27047 MN 4.5 × 10−6

27105 MN 3.4 × 10−6

27127 MN 4.5 × 10−6

31121 NE 3.9 × 10−6

31159 NE 4.4 × 10−6

31003 NE 2.9 × 10−6

31185 NE 3.8 × 10−6

46083 SD 3.9 × 10−6

46101 SD 3.4 × 10−6
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population density, expected population growth, and degree of
urbanization.

4.2. CF: health impacts per unit of PM2.5 from corn stover production

Table 1 shows midpoint CFs by precursor type for 18 origin counties
that can host a biorefinery at a scale of 9100 DMT/day corn stover produc-
tion. CFs for the 2000 and 5200 DMT/day cases are shown in SI Tables S3
and S4. The CFs vary by origin county and precursor. For example, the SO2

CF for origin county FIPS 17141 is four times higher than it is for origin
county FIPS 46101. PM2.5 CFs by precursor type for each impacted county
downwind of source counties are included in the SI as GIS shapefiles. Exam-
ple maps of county-scale CFs for primary PM2.5 at the 9100 DMT/day scale
are presented in SI Fig. S6.

4.3. Source CF ratio: health impacts of different corn stover production locations

Fig. 7 shows Source CF Ratios by PM2.5 precursor type for 18 origin
counties at a corn stover production scale of 9100 DMT/day. Results for
urce) by precursor type for all the origin counties selected at a corn stover production

SO2 NOx NH3 VOC

8.2 × 10−6 3.1 × 10−6 1.7 × 10−5 1.0 × 10−6

7.4 × 10−6 2.8 × 10−6 1.3 × 10−5 8.8 × 10−7

4.5 × 10−6 2.5 × 10−6 7.7 × 10−6 7.3 × 10−7

4.5 × 10−6 2.6 × 10−6 7.5 × 10−6 7.0 × 10−7

2.1 × 10−6 1.7 × 10−6 3.4 × 10−6 3.8 × 10−7

6.3 × 10−6 2.6 × 10−6 1.0 × 10−5 7.8 × 10−7

3.4 × 10−6 2.0 × 10−6 4.9 × 10−6 4.7 × 10−7

2.6 × 10−6 1.7 × 10−6 3.8 × 10−6 3.9 × 10−7

2.0 × 10−6 1.7 × 10−6 3.4 × 10−6 3.9 × 10−7

2.2 × 10−6 1.7 × 10−6 3.7 × 10−6 4.2 × 10−7

2.0 × 10−6 1.6 × 10−6 3.2 × 10−6 3.6 × 10−7

2.3 × 10−6 1.5 × 10−6 3.5 × 10−6 3.8 × 10−7

2.3 × 10−6 1.8 × 10−6 3.8 × 10−6 4.6 × 10−7

2.6 × 10−6 1.8 × 10−6 4.1 × 10−6 4.8 × 10−7

2.1 × 10−6 1.6 × 10−6 3.2 × 10−6 3.5 × 10−7

2.4 × 10−6 1.8 × 10−6 3.8 × 10−6 4.3 × 10−7

2.0 × 10−6 1.8 × 10−6 3.4 × 10−6 4.2 × 10−7

1.9 × 10−6 1.5 × 10−6 3.0 × 10−6 3.5 × 10−7



Fig. 7. Source CF ratios (y-axis of each plot) by PM2.5 precursor type (x-axis) for all origin counties at a corn stover production scale of 9100 DMT/day. Origin counties
outlined in violet are the “self-sufficient” cases at the corn stover production scale of 2000 DMT/day (see text for further explanation). The title for each plot is the county
FIPS code. Figures for the other two scales can be found in SI.
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the 2000 and 5200 DMT/day cases are provided in SI Figs. S7 and S8. A
Source CF Ratio greater than 1 suggests that relative health impacts for
the origin county are greater than the national-average impact per kg of
precursor emitted. In Fig. 7, for example, the relative impacts of primary
PM2.5 are greater than national-average impacts for origin counties FIPS
19163, 17,141, and 17,011. Source CF Ratios can aid in site selection. For
example, almost all origin counties in Illinois and Indiana and one in
Iowa (19163) have larger relative impacts than the rest of the origin
counties in Minnesota, Nebraska, South Dakota, and Iowa. Thus, origin
counties in Illinois and Indiana may not be the desirable locations to site
new-source emissions considering the larger relative human health im-
pacts. If, for example, a decision-maker must site production in Illinois,
then county FIPS 17113might be the best choice owing to its lower relative
impact compared to the state's other locations.

4.4. AHI ratio: health impacts per unit mass of corn stover production

Fig. 8 shows the AHI Ratio for each of the 18 origin counties at a corn
stover production scale of 9100 DMT/day. Results for the other production
scales are presented in SI Figs. S9 and S10. On average, cases of corn stover
production in Illinois have the largest health impact per kg of production.
The AHI Ratio pattern is similar to the Source CF Ratio pattern across origin
counties and production scales.

4.5. Health impacts at different corn stover production scales

We analyze eight origin counties at all three corn stover production
scales. As expected, CF, Source CF Ratio, and AHI Ratio generally increase
with increasing scale. For example, for McLean county (origin county, FIPS
17113) in Illinois, CF and Source CF Ratio increase by 2%–8% across pre-
cursors as the scale increases (with the exception of NOx and VOC, which
demonstrate a slight decrease as the scale increases from 2000 to 5200
DMT/day); see Table 2. AHI Ratio follows the same general pattern. Metric
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comparisons between scales for all eight origin counties are provided in SI
Tables S6 and S7.

5. Discussion and conclusions

In this work, we develop a framework based on CF and three new met-
rics (ARCIE, Source CF Ratio, and AHI Ratio) to characterize air quality im-
pacts of a pollutant for use in air quality planning and LCIA of any emitting
sector or source type, in any spatial modeling domain, and to aid in siting
new-source emissions. We illustrate use of these metrics through a case
study of PM2.5 emissions fromU.S. corn stover harvesting and local process-
ing at various scales, representing steps in the biofuel production process.
PM2.5 formation is modeled using InMAP, a novel reduced-complexity
and computationally inexpensive air quality model that offers high-
spatial-resolution analysis. Using spatially explicit exposure and health ef-
fect outputs from the InMAP model, this work attempts to respond to rec-
ommendations from the UNEP-SETAC report to estimate spatially explicit
PM2.5 CFs (Frischknecht and Jolliet, 2016).

Each metric serves a different purpose. Although the simplifying as-
sumptions underlying the ARCIE metric make it unsuitable for direct appli-
cation in the regulatory context, ARCIE provides an initial indication of
whether anticipated pollutant emissions from an emitting sector or source
type could lead to nonattainment of regulatory concentration limits,
yielding a capacity for additional emissions in terms of pollutant concentra-
tion. Future work could formulate a similar metric in terms of additional
pollutant mass that can be emitted without violating regulatory limits at
the receptor locations.

CF is a useful weighting factor employed in LCIA for estimating damage
from various impact categories. For our case study, we report estimates of
area-source PM2.5 CFs by each precursor type. Estimated CFs vary by source
county location, size, and scale. We are the first to quantify area-source CFs
for an area-source sector. Our area-source CFs for corn stover harvesting
can be put into context of CFs for other source types, for instance to point



Fig. 8.ActivityHealth Impact (AHI) ratio for all the origin counties at a corn stover production scale of 9100DMT/day; total PM2.5 includes primary and secondary PM2.5. The
x-axis shows the county FIPS code and the state of the origin county. Figures for the other two scales can be found in SI.
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sources hypothetically emitting either from ground level or a tall stack
(such as a power plant or industrial facility). For this comparison, we
retrieve CFs provided in InMAP's Source-Receptor Matrix (ISRM)
(Download, 2021) for the two comparison source types assumed to be emit-
ting from the same source counties as evaluated for corn stover production
(Table S8). We find that the median of our CFs is of the same order of mag-
nitude as those reported in the ISRM, with a small higher directional bias
(higher by 8–42% and 3–68% than typical ground-level and high stack
point source, respectively). This comparison indicates that harvesting
corn stover at the magnitude of production scales analyzed in this work
could have comparable or potentially higher health damages per unit pre-
cursor mass (CF) than a point source emitting either at ground-level or
from a high stack. The comparison reflects a balance of the differences
between the two source types compared (source type (point vs. area) and
release height (elevated or ground-level)): point sources concentrate emis-
sions at the release point, which can lead to higher downwind concentra-
tions within the zone of influence whereas area sources spread emissions
across large areas; ground-level emissions lead to higher ground-level con-
centrations than do emissions released at significant height off of the
ground. Our comparison is illustrative for the counties and specific charac-
teristics of the sources studied (e.g., a single, hypothetical stack height was
chosen) and may not be more generally true for all configurations of either
area or high stack point sources. Future research efforts could more syste-
matically compare the CFs between area, line, and point source types.

Source CF Ratio aids in site selection based on the health impacts of
source locations compared with national average impacts by pollutant
type. AHI Ratio provides a simple factor that links human health impacts
to products or services created at the source. For our case study, Source
CF Ratio by precursor type and AHI Ratio vary across origin counties and
scales of production—an expected result, because PM2.5 health impacts de-
pend on many factors including emission source strength, location and
emitting source characteristics, wind speed, meteorology, and population
density. Future work could explore the sensitivity of these metrics to
changes in source strength.
Table 2
CF, Source CF Ratio, and AHI Ratio comparisons between production scales for one exa
“self-sufficient” counties can be found in SI.

CF

Primary PM2.5 SO2 NOx NH3

2000 DMT/day 8.4 × 10−6 4.2 × 10−6 2.4 × 10−6 7.2 × 10−6

5200 DMT/day 8.6 × 10−6 4.4 × 10−6 2.4 × 10−6 7.3 × 10−6

9100 DMT/day 9.2 × 10−6 4.5 × 10−6 2.5 × 10−6 7.7 × 10−6

% change 2000 to 5200 2% 6% −2% 2%
% change 5200 to 9100 7% 2% 3% 5%

11
In this work, we do not provide central tendency estimates for the cases
tested in our case study becausewe haven't explored enough cases to derive
representative central tendency estimates. We test only limited cases to
demonstrate our methods. Additionally, the air quality model used in this
work does not allow for uncertainty analysis of the model outputs.

In this work, we estimate CFs using ambient PM2.5 concentration as the
exposure metric. Prior studies have recommended the use of population in-
take fraction as the default exposure metric for computing PM2.5-related
health impacts in LCIA. However, our approach is appropriate for our
case study which is centered in the US where the average PM2.5 concentra-
tions are low (typically less than 12 μg/m3 annual average PM2.5 concentra-
tion) and where the US EPA continues to use and recommend a linear
concentration-response function (U.S. EPA, 2019). In the future, the CF
cases examined here could be replicated using a full impact pathway (emis-
sions - fate - intake - effect factors) utilizing intake fractions as a measure of
the population's ambient PM2.5 exposure and compared to the results re-
ported here (Fantke et al., 2019). Such future, being beyond the scope of
this study, could enhance understanding of the sensitivity of CFs to the
choice of estimation approach.

Our selection of concentration-response (C-R) function reflects the one
most commonly used in the scientific literature (Thakrar et al., 2017; Hill
et al., 2019) and by the US EPA (e.g., U.S. EPA, 2019): a mortality hazard
ratio of 1.078 for all-cause mortality from the American Cancer Society
(ACS) re-analysis study (Krewski et al., 2009) which is a linear C-R function
with no threshold. To understand the impact of alternativemortality hazard
ratios on the CFs calculated in this work, a sensitivity analysis can be per-
formed using a range of alternative values from Lepeule et al. (2012)
(i.e., reanalysis of the Harvard Six Cities (H6C) study) [1.14, 95% CI =
1.07–1.22], Vodonos et al. (2018) [1.129, 95% CI = 1.109–1.150], and
Pope et al. (2019) [1.12, 95%CI=1.08–1.15]. These alternative hazard ra-
tios increase the CFs estimated in this work by: 75% (Lepeule et al., 2012),
62% (Vodonos et al., 2018), and 51% (Pope et al., 2019). Detailed quanti-
fication of uncertainty in the C-R, via meta-analysis or other techniques, is
outside the scope of research for this article, however, these comparisons
mple origin county, McLean county (FIPS 17113) in Illinois. Tables for the other 7

Source CF Ratio AHI Ratio

VOC Primary PM2.5 SO2 NOx NH3 VOC Total PM2.5

7.0 × 10−7 0.91 1.5 1.5 1.2 0.91 6.5 × 10−9

6.8 × 10−7 0.93 1.6 1.5 1.3 0.88 6.6 × 10−9

7.3 × 10−7 1.00 1.6 1.5 1.3 0.95 6.9 × 10−9

−3% 2% 6% -2% 2% -3% 2%
8% 7% 2% 3% 5% 8% 4%
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suggest that our CF results are conservative relative to other options for C-R
function available in the literature, i.e., likely underestimate the true health
impacts per unit pollutant emitted from the source. Future work can test the
results using state-of-the-science C-R functions including functions that are
non-linear in nature (Pope et al., 2015; Burnett et al., 2018). In addition, fu-
ture research on PM2.5C-R functions could explore whether C-R function
might depend in part on source sector, geographical region, or chemical
constituents.

In conclusion, the framework and metrics developed in this work could
be applied in air quality planning process to quantify the available regula-
tory capacity as well as damage caused by pollutant emissions in different
supply-chain stages of an LCA. The methods can guide industrial strategic
planning and procedures such as siting, facility design, and facility opera-
tion. At the same time, themethods can be used toweigh tradeoffs between
the benefits of development (such as increased employment or reduced
greenhouse gas intensity) and the impacts (such as degraded air quality
and health outcomes).
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