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Abstract 

This paper introduces the Highly Integrated Vehicle Ecosystem (HIVE), a transportation modeling tool developed 

by a research team within the Center for Integrated Mobility Sciences group at the National Renewable Energy 

Laboratory. HIVE is an agent-based supply/demand model for mobility on demand (MoD) that mixes agent-based 

modeling and centralized dispatch for automated and human-driven fleets and ride-hail passengers. Research ques- 

tions using HIVE span multiple categories, including intelligent fleet planning (e.g., assessing fleet, battery, and 

infrastructure investment decisions), intelligent fleet control (e.g., charge management, vehicle dispatching), and 

strategic business model decision-making (e.g., depot-based full-time drivers versus gig-based drivers, human-driven 

versus automated). The components of the HIVE model are explained and then HIVE is demonstrated in a case 

study using demand data from the New York City Taxi & Limousine Commission data set. 

Additional summary information describing how HIVE is used in support of NREL research can be found online: 

https://www.nrel.gov/transportation/data-tools.html. HIVE is used by transportation researchers as a standalone 

model and also informs assumptions within the EVI-OnDemand module in NREL’s EVI-X infrastructure tool suite. 
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1 Introduction 

The transportation industry is on the cusp of rapid transformation, with simultaneous trends of vehicle electrification, 

automation, and sharing representing a significant departure from the current paradigm of predominantly privately 

owned and operated gasoline vehicles. However, each trend poses unique opportunities and obstacles. Vehicle 

electrification can significantly reduce greenhouse gas and particulate emissions from the transportation sector [1] 

[2] and reduce operating costs [3], but successful electrification will require access to a robust network of charging 

infrastructure [4]. Vehicle automation can greatly reduce avoidable traffic injuries and fatalities [5], but with possible 

increases in the energy consumption at both the vehicle and fleet levels [6]. Vehicle sharing offers more convenient 

door-to-door transportation options and potentially reduces the need for private vehicle ownership [7], but it also 

increases vehicle-miles traveled through deadheading miles between productive trips [8]. 

Evaluated separately, there are opportunities and obstacles associated with each of the emerging trends of vehicle 

sharing, electrification, and automation. It is clear that attention will be needed toward mitigating potential nega- 

tive side effects, such as minimal ride pooling, insufficient and poorly planned recharging infrastructure, and the 

prominence of zero-passenger miles during operation of these services. Shared autonomous electric vehicle (SAEV) 

fleets—which will be more broadly referred to as mobility-on-demand (MoD) services—is an anticipated trans- 

portation technology development that combines each of these three trends into a transportation service that could 

potentially increase transportation efficiency and mobility options while also featuring low financial and environmen- 

tal costs. 

The performance of such fleets has been well researched in recent years, primarily through agent-based models 

simulating automated fleets as accommodating passenger-trip demand. Early research assessed fleet capabilities 

to service trip demand using gasoline vehicles in defined operating areas assuming the presence of a centralized 

dispatcher [9, 10] and often without incorporating a real-world roadway network [11–13]. More recent research has 

built upon these earlier dispatching models by considering a shared fleet of electric vehicles servicing trips, rather 

than gasoline-powered vehicles [14–17]. Battery electric fleets are more challenging to operate compared to gasoline 

fleets due to range constraints and the necessity of a recharging network. Additional topics of inquiry found in the 

literature relate to strategic siting of MoD charging infrastructure [18] and the implications of fleets comprising 

human drivers [19]. Each of these research topics utilizes distinct simulation platforms with varying strengths and 

limitations [20]. 

The complexities of these emerging transportation trends motivated the creation of the Highly Integrated Vehicle 

Ecosystem (HIVE), a transportation modeling tool developed by researchers in the Center for Integrated Mobility 

Sciences group at the National Renewable Energy Laboratory. HIVE is a fixed-increment, discrete-event, agent- 

based ride-hail simulation written in Python. The tool was conceived to support a rapid end-to-end research process, 

with a minimal level of effort sufficient to run simulation and analysis of MoD scenarios. Research questions using 

HIVE span multiple categories, including intelligent fleet planning (e.g., assessing fleet, battery, and infrastruc- 

ture investment decisions), intelligent fleet control (e.g., charge management, vehicle dispatching), and strategic 

business model decision-making (e.g., depot-based full-time drivers versus gig-based drivers, human-driven versus 

automated). 

HIVE has been designed from the ground up to facilitate co-simulation, the use of high-performance computing 

resources, and data-driven control. By maintaining a loose coupling between the state of the simulation and the 

execution of the simulation physics, it is easy to inject additional modules and even to externally control execu- 

tion of HIVE from a complementary model. By choosing immutable semantics on the state model, the state of the 

simulation more readily lends itself to message passing and rollback techniques used in distributed simulation. Ad- 

ditionally, these choices lead to simpler integration into popular learning environments such as OpenAI Gym [21] to 

explore artificial-intelligence-based control techniques such as deep reinforcement learning. 

The objective of this technical report is to introduce HIVE and demonstrate its functionality. Section 2 provides 

an overview of HIVE’s structure, illuminating how pieces of the model function and interact with each other. The 

model is then applied in a sample study in Section 3. Finally, Section 4 concludes with a future perspective detailing 

upcoming model developments in support of ongoing and planned research. 
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2 Model 

The HIVE model architecture is broken out into three distinct levels: execution, asset, and physics, as shown in 

Figure 1. The physics level consists of simulation representations of real-world concepts including energy, time, 

and space. The asset level consists of the building blocks that describe the various entities in the system including 

vehicles, requests, stations, and bases, as well as their relationship to one another. The execution level consists of the 

concepts and data structures that tie all of the entities together and rules to manage their interaction.

 

Figure 1. Architecture of the HIVE model 

In the following sections, each layer of the simulation is summarized, followed by an overview of the corresponding 

file inputs for the model. 

2.1 Physics-Level Modeling 

2.1.1 Energy 

Vehicle Types 

HIVE currently models two general vehicle types: battery electric vehicles (BEVs) and internal combustion engine 

vehicles. Each of these vehicle types utilizes a specific energy type: electricity (in units of kilowatt-hours) and 

gasoline (in units of gallons), respectively. In addition, the vehicle types model the unique vehicle dynamics for 

their respective vehicle class such as energy consumption and energy storage. Each general vehicle type can be 

configured to represent a specific vehicle model. For example, half of a vehicle fleet could be composed of BEVs 
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with a 50-kWh battery and a nominal energy consumption rate of 0.225 kWh per mile, whereas the other half could 

be composed of BEVs with a 25-kWh battery and a nominal energy consumption rate of 0.3 kWh per mile. 

Energy Storage and Addition 

Energy storage in HIVE is modeled by a simple capacity model in which each vehicle tracks their respective energy 

level, eveh, over the simulation in the range 0 ≤ eveh 

< cveh, where cveh 

is the energy capacity parameterized by the 

vehicle type. 

When adding energy to a vehicle, the simulation obeys a set of limits imposed by the rate of the charger and the 

vehicle type. In the case of the internal combustion engine vehicle type, energy is added at a constant linear rate as 

defined by the fuel source. For the BEV type, energy is added at the charger’s constant power if the power is below a 

charging tapering threshold. Otherwise, if the charger power meets or exceeds this threshold, energy will be added at 

diminishing rate proportional to the state of charge of the vehicle as defined by Equation 2.1. 

E+ = 

T 

∑ 

t = 0 

( p ∗ t ∗ r ( eveh)) (2.1) 

where E+ is the energy added over the fueling period, T ; p is the incoming fueling rate; and r ( eveh) is the rate- 

limiting factor as a function of vehicle energy level. See Figure 2a for the default rate-limiting curve, ( r ( eveh) ), for 

the BEV type. The rate-limiting curves are derived from observed charge tapering behavior in BEVs [22] and labeled 

as a Powercurve in the HIVE model. 

Energy Consumption 

Energy consumption in HIVE is modeled with an internal powertrain object and specifies consumption at the level of 

a traversed link (see Section 3.1.2) using Equation 2.2. 

E 

− = 

L 

∑ 

l 

r ( vl) ∗ dl 

(2.2) 

where E 

− is the total energy consumed in a time period, L is the set of all links traversed in the time period, r ( vl) is 

the energy consumption rate as a function of vehicle average velocity on link l , and d is the distance of link l . 

The energy consumption rates have been derived from vehicles simulated in the Future Automotive Systems Tech- 

nology Simulator (FASTSim) software [23]. Figure 2b shows the default energy consumption by speed for the BEV 

type. 

HIVE also models energy consumption while a vehicle is in the idle vehicle state (engine is on but vehicle is station- 

ary). This is computed as a constant energy consumption rate over the time that the vehicle is idling. The default idle 

energy consumption rate is 0.8 kWh/hour for the BEV type and 0.2 gallons/hour for the internal combustion engine 

vehicle type, but these values can be configured independently. 

2.1.2 Space 

H3 

Space is modeled in HIVE using the H3 hierarchical spatial indexing system [24], in which the atomic spatial unit is 

a hexagon with a fixed diameter (the default is a hexagon with a diameter of approximately 1 meter but can be con- 

figured to any H3 spatial resolution). This system of representing space allows for quick testing of spatial equality 

for various simulation entities. In addition, the hierarchical nature of the indexing allows for more efficient search 

algorithms. To this end, HIVE stores simulation entity IDs in two data stores: One data store indexes entities by the 

simulation H3 resolution, and the other indexes them at a coarser search H3 resolution. 
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(a) Charge tapering curve

 

(b) Energy consumption by speed 

Figure 2. Default energy consumption and charge tapering for the BEV type 

Link 

The next level up in HIVE’s spatial representation system in the link. The link represents a road as a directed edge 

in which the start and end nodes are represented as H3 hexagons. Each link stores relevant properties such as link 

distance (in kilometers) and link speed (in kilometers/hour), which are exogenous to the model. 

Entity Position 

Combining the abstractions of the H3 geoid and the link, the instantaneous location of each entity is represented 

in HIVE using an EntityPosition object, which includes a link ID and an H3 geoid. The link provides context with 

respect to direction and the geoid represents the physical location of the entity. Thus, to compare the locations of two 

distinct entities, the test is a simple equality of both the link ID and the geoid. Figure 3 demonstrates the concept of 

an EntityPosition.

 

Figure 3. Conceptual representation of an EntityPosition 

Road Network 

The final level in HIVE’s spatial representation system is the road network graph, which is composed of a collection 

of links. The model enforces that the graph must be strongly connected such that there is a path between all vertices 

in the graph, as well as planar—a constraint imposed by the H3 index. 

There are currently two distinct types of road network graphs in the HIVE model: a pseudo-Euclidean graph and a 

graph derived from OpenStreetMap (OSM) data. 

The pseudo-Euclidean graph is a complete digraph in which every pair of H3 hexagons is connected by a pair of 

unique links. This graph effectively allows the vehicles to travel in a straight line between any two hexagons in the 
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system. Links are generated dynamically when required so as not to incur a large memory overhead. All links in this 

road network are assigned a constant speed derived to represent a system-level average speed. This simplification of 

the road network representation is useful for running quick model tests. 

The OSM graph uses links from the OSM data model sourced using the open-source OSMnx software library [25]. 

The links derive speed and distance properties from OSM. When introducing new entities into the road network with 

geospatial information (e.g., latitude and longitude), the entity location is snapped to the nearest link vertex. 

Routing 

A route object is a collection of links that represents a vehicle’s planned course of travel to a destination along the 

road network. During each time step, the vehicle traverses the route according to the link speed property. As the 

vehicle traverses over the links in the route, these are passed into the vehicle powertrain, which estimates energy 

consumption for the vehicle’s movement. 

Vehicle routing is computed within the scope of the road network. For the pseudo-Euclidean graph, all routes consist 

of a single link that directly connects the origin and destination. In the case of the OSM graph, routes are computed 

using Dijkstra’s shortest path algorithm with travel time as the link weight. 

2.1.3 Time 

The atomic time unit in HIVE is a discrete time step that represents one or more seconds (configurable). Then, 

bounds for a simulation start time and end time are specified and the simulation is stepped over each time step that 

lies within these bounds. For example, in a 24-hour simulation with a time step size of 60 seconds, HIVE will be 

stepped 1,440 times. 

2.2 Asset-Level Modeling 

HIVE currently models four unique types of entities: vehicles, requests, stations, and bases. These four entity types 

interact in an agent-based model setting. 

2.2.1 Vehicle 

The vehicle in HIVE is the primary type of agent in the HIVE agent-based model. Internally, the vehicle state is 

modeled by a pair of disjoint finite-state machine models that represent behaviors of the driver and vehicle. As a 

result, all agents in HIVE will have a driver state and a vehicle state. All persistent vehicle and driver attributes are 

also stored on the vehicle. In the following sections, the persistent attributes of a vehicle are discussed, followed by 

subsections on the driver and vehicle finite-state machines. 

Vehicle Attributes 

The persistent variables of a vehicle include fixed , stateful , and accumulative fields. Fixed attributes include the 

vehicle’s unique identifier, the number of seats available for passengers, and the memberships the vehicle supports 

(none, by default). These are understood to be held constant through a HIVE simulation. Stateful attributes include 

the vehicle state, the driver state, vehicle energy, and its current link on the road network. Each time step, these 

attributes govern the behavior of the agent and may be updated based on the vehicle’s interaction. The default vehicle 

state is an idle state, in which a vehicle is on but immobile. The default driver state, AutonomousAvailable, is a 

driver that can always respond to instruction. Over the lifetime of the vehicle, the currency balance and distance 

traveled are accumulated in vehicle attributes. Currency balance incorporates all service payments from requests 

(revenue), as well as all operating costs (station charges). The complete set of vehicle attributes is listed in Table 1. 

Driver State 

The driver state of a HIVE agent is a simple model responsible for making the personal choices of an agent. Table 

2 shows the full list of possible states for HIVE driver agents, which may be autonomous or human-driven. Au- 

tonomous drivers will accept all instructions from dispatch, and will return to base after some period of inactivity. 
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Attribute

 

Life Cycle

 

Type

 

Default

 

id

 

fixed

 

Id (String)

 

total_seats

 

fixed

 

int

 

membership

 

fixed

 

Membership

 

Ø 

vehicle_state

 

stateful

 

VehicleState

 

Idle 

driver_state

 

stateful

 

DriverState

 

AutonomousAvailable 

vehicle_energy

 

stateful

 

Map[EnergyType, float]

 

position

 

stateful

 

EntityPosition

 

currency

 

accumulative

 

float

 

0.0 

distance_traveled_km

 

accumulative

 

float

 

0.0 

Table 1. Vehicle Attributes 

A human driver will only work within some provided time schedule and will return to their home at the end of their 

shift. To instantiate human drivers, additional parameters must be provided. A home_base_id (a valid base ID) 

signifies that a driver has a home, where they may have private charging capabilities. A schedule_id references a cor- 

responding work schedule that describes the time range when the driver is willing to respond to dispatch instruction. 

Driver State

 

Shift Behavior

 

Autonomous

 

Always available to work 

Human Available

 

On-shift driver 

Human Unavailable

 

Off-shift driver 

Table 2. Driver States and Their Shift Behaviors 

Vehicle State 

The vehicle state model describes the intent or task applied to an agent at a given time. The complete list of vehicle 

states is listed in Table 3. Beginning from the default idle state, a driver will transition to various vehicle states 

throughout the simulation as their role in the fleet and circumstances change. 

Vehicle State

 

Moving?

 

Description

 

Idle

 

No

 

Vehicle engine is on, but not performing any task 

Repositioning

 

Yes

 

Deadheading without servicing any request 

DispatchBase

 

Yes

 

Driving to a base 

ReserveBase

 

No

 

Vehicle engine is off, parked at base/home 

ChargingBase

 

No

 

Plugged in and charging at a base 

DispatchStation

 

Yes

 

Driving to a station 

ChargeQueueing

 

No

 

Waiting at a station for a free stall 

ChargingStation

 

No

 

Plugged in and charging at a station 

DispatchTrip

 

Yes

 

Driving to pick up a request 

ServicingTrip

 

Yes

 

Delivering a request to its destination 

DispatchPoolingTrip

 

Yes

 

Driving to pick up the first request in a pooled trip 

ServicingPoolingTrip

 

Yes

 

Traveling along a pickup/drop-off sequence of a pooled trip 

OutOfService

 

No

 

Vehicle out of fuel and unable to move 

Table 3. Vehicle States 

Most vehicle state transitions are triggered when the fleet control system submits an instruction to a vehicle (see 

Section 2.3.2), and are referred to as active state transitions. For example, if a DispatchTripInstruction is sent to 

an idle autonomous vehicle (and, trivially, on shift), then it will immediately execute that transition. The interface 

between dispatcher and vehicle is further described in Section 2.3. 
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Some vehicle state transitions occur without external influence and are referred to as passive state transitions. For 

example, if a vehicle in a DispatchTrip state reaches its target request and that request is still there, then the vehicle 

will automatically transition into a ServicingTrip state with passengers aboard. Another example is the OutOfSer- 

vice state, which can occur when any agent reaches a fuel level of zero. This is possible due to time spent in any 

movement state, as well as idle, which can have an idling fuel cost (configurable). 

A diagram of the vehicle states and the primary set of allowed state transitions is shown in Figure 4, with detail 

showing the pathways due to active and passive transitions. In some cases, additional transitions are allowed. If a 

vehicle state is interruptible, it is possible for the dispatcher to pass new instructions to override that behavior. If a 

vehicle runs out of energy during the simulation, it is transitioned to OutOfService, regardless of the previous vehicle 

state.

 

Idle

 

Repositioning

 

OutOfService

 

DispatchStation

 

ChargingStation

 

ChargeQueueing

 

DispatchBase

 

ReserveBase

 

ChargingBase

 

DispatchTrip

 

DispatchPoolingTrip

 

ServicingTrip

 

ServicingPoolingTrip

 

Active Transition

 

Passive Transition

 

Uninterruptible State

 

Figure 4. Finite-state machine of vehicle states in HIVE 

2.2.2 Request 

A request is an instance of a mobility-on-demand trip that appears at an origin entity position for some departure 

time. A request will also have a destination entity position and a number of passengers. All requests will cancel after 

some globally set duration if they are not serviced. Each request may have a set of unique memberships (see Section 

2.2.5), but if not provided, any vehicle may service the request. If the request allows pooling, the passengers may 

enter into a pooling trip with other requests. The complete set of attributes of a request is listed in Table 4. 

A globally defined rate structure determines how the price of a request is determined. This is based on a base price 

along with a price per unit distance, which must meet at least some minimum price. 

2.2.3 Station 

A station represents a location where vehicles can go to refuel. A station can have one or more chargers of variable 

energy type and energy addition rate. For example, a single station could have five electric chargers with a power of 

50 kW and another 10 electric chargers with a power of 7.2 kW. The station locations, as well as the charger types 

and quantities, are specified as a user input. The complete set of attributes for a station is listed in Table 5. 
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Attribute

 

Description

 

Default

 

id

 

Unique identifier

 

origin_link

 

Graph location where request is waiting

 

destination_link

 

Graph location where request is headed

 

departure_time

 

Simulation time the request is activated

 

passengers

 

Number of passengers associated with request

 

membership

 

Set of memberships

 

Ø 

price

 

Price request is paying for service

 

0.00 

Table 4. Attributes of a Request 

Attribute

 

Description

 

Default

 

id

 

Unique identifier

 

link

 

Graph location where station is sited

 

total_chargers

 

A map of charger ID to number of total chargers of that type

 

available_charger

 

A map of charger ID to number of available chargers of that type

 

on_shift_access_chargers

 

Set of charger IDs that are accessible to vehicles “on-shift”

 

charger_prices_per_kwh

 

Price of energy for each charger ID (dollars)

 

0.00 

enqueued_vehicles

 

A map of charger ID to the number of vehicles queued for that charger type

 

membership

 

Set of memberships

 

Ø 

Table 5. Attributes of a Station 

2.2.4 Base 

A base represents a location where vehicles can park while not actively seeking out requests. This may represent a 

fleet depot with several parking spaces and chargers at each space, or a personal garage with a single charger. It may 

also represent a home location for a human driver where they may have their own private charging capabilities. A 

base can have an optional station sited at the same location and parked vehicles can access all chargers associated 

with that station. The complete set of attributes for a base is listed in Table 6. 

Attribute

 

Description

 

Default

 

id

 

Unique identifier

 

link

 

Graph location where base is sited

 

total_stalls

 

The number of total parking spaces

 

available_stalls

 

The number of available parking spaces

 

station_id

 

An optional identifier for an associated station

 

membership

 

Set of memberships

 

Ø 

Table 6. Attributes of a Base 

2.2.5 Membership 

In order to enable the modeling of multiple fleets and distinguish between private and public entities (such as a home 

charger or a public charger), HIVE entities may belong to zero or more memberships. Each entity in the simulation 

is assigned a membership object that contains a set of membership IDs. The default membership for all entities is an 

empty set that represents a public membership. During any interaction between two distinct entities (e.g., plugging 

into a charger or picking up a request) the simulation then compares membership sets to enforce that the interaction 

is legal. 

Public memberships will grant access to any requesting entity, regardless of the membership set of the requesting 

entity. Private memberships will only grant access to those entities that share at least one membership ID. For exam- 

ple, in order to represent a one-to-one relationship between a human driver and a home charger, each entity would 
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be assigned a shared membership ID unique to those two entities. Any other vehicle in the simulation would then be 

restricted from using the home charger due to not holding the unique membership ID.

 

v0 

Fleets A + B

 

v1 

Fleet A

 

b0

 

s0

 

r0

 

Fleet A

 

b1

 

s1

 

r1

 

Fleet B

 

s2

 

r2

 

r3

 

No Fleet Assigned

 

Figure 5. Example of memberships in HIVE 

Memberships allow for the modeling of multiple fleets in which entities could belong to one or more fleets, as shown 

in Figure 5. In the example, vehicle v0 

has a membership to Fleet A and Fleet B and has access to the relevant in- 

frastructure and requests for both fleets. Vehicle v1, however, only has a membership to Fleet A, and therefore is 

restricted from utilizing infrastructure or picking up requests belonging to Fleet B. Both vehicles have access to 

entities that are not associated with any fleet. 

2.3 Execution-Level Modeling 

The highest level of modeling in HIVE consists of a collection of entities interacting with each other over a set of 

discrete time steps. At each slice in time, the state of the model is represented with an immutable data structure 

referred to as the simulation state, which holds the current data for all entities in the model as a snapshot in time. In 

order to influence the state, a control module must dispatch instructions that capture intent to modify the simulation. 

This separation of concerns guarantees that the physical and asset-level model behaviors are influenced only by code 

internal to HIVE, and that user-developed control module extensions do not affect the correctness of the underlying 

HIVE simulation. All of this occurs within an execution context, which is responsible for “turning the crank” to 

advance the simulation between discrete simulation time steps. 

The overall simulation update process between some simulation state, St , and its successor, St + 1, is shown in Figure 

6. Each phase is explained in the following sections, where the interaction between the simulation state, control 

module, and execution context is described.

 

St

 

Vehicle 

Update 

(see Fig. 7)

 

∀ v ∈ Vehicles

 

Request 

Updates

 

Cancel 

Requests

 

Charging 

Price 

Updates

 

St + 1

 

Figure 6. HIVE update process 

2.3.1 Simulation State 

All of the entities in HIVE (vehicles, requests, stations, and bases) are stored in the simulation state data structure, 

which maintains simulation-level state information and supports quick entity access by indexing entity IDs and 

geospatial IDs. Modification of the state is restricted to the internal simulation functions, which govern allowable 

state transitions and expose those transitions via the instructions abstraction. 

Any instance of a simulation state corresponds to a specific, discrete time between simulation events. It contains an 

instance of each active entity in the simulation at that time, using a collection of indices that support various lookup 
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operations. Each entity in the simulation is stored in the simulation state within a Hash Array Mapped Trie (HAMT) 

that supports lookup by the entity ID. This data structure was selected to support the immutability of the simulation 

state while still providing fast random access. 

The simulation state also maintains two HAMT collections of location-based indices. The location index maps an 

H3 index to an entity ID at a precise resolution, by default using an approximately square-meter hex grid. This index 

allows the simulation to quickly assess which entities are in the same location. The search index maps an H3 index 

to an entity ID at a coarser resolution than the first index. This index allows for efficient searching of entities that are 

nearby to a given entity location due to a property of the H3 index system that allows quick traversal between levels 

of resolution. By default, this is set at a resolution that produces hex grids that are approximately 5 km2. 

2.3.2 Control Module 

The problem of controlling a fleet in HIVE is typically a multi-objective optimization between fleet and driver utility. 

In HIVE, the interface for all control is the instruction, which is issued by either a fleet dispatcher with a global 

perspective or a driver with a local perspective. 

Instructions 

The instruction represents the intent to modify the state of the system by transitioning a specific vehicle to a new 

vehicle state, as depicted in Figure 7. Each active transition shown in Figure 4 has a corresponding instruction. In- 

structions are generated by the control module at each time step, and are interpreted by an internal update mechanism 

that validates and processes instructions and “steps” the simulation one discrete time step into the future.

 

Figure 7. Vehicle update 

Instructions are validated before they are applied to vehicles; the transition has to meet the preconditions of exiting 

the previous state as well as any requirements for entering the new state. In this way, the control module does not 

have a direct means of interfering with the simulation physics, which protects from invalid or illegal transitions. For 

example, no instruction can be applied to a ServicingTrip Vehicle, since any transition would leave the on-board 

passengers stranded. Additionally, only one instruction can be issued to a vehicle at each time step of HIVE, and any 

driver-level instructions can always override any dispatch-level instructions. 

Dispatcher-Level Control 

The dispatcher module is responsible for generating instructions for the vehicle fleet. The design of HIVE allows for 

users to contribute their own control modules to solve the fleet-level control problem. 
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The default dispatcher module in HIVE is a two-phase algorithm for charging and matching dispatch. The charging 

phase conducts a greedy station search for vehicles with less than 20% energy storage. This search leverages the 

hierarchical nature of the H3 index for fast tracking of position at higher levels of aggregation, as shown in Figure 

8. The matching phase solves the request-to-vehicle matching problem by way of the Kuhn-Munkres algorithm [26, 

27], using the H3 cell distance between vehicle and request as the cost function. A tiebreaker rule prefers matching 

instructions when a vehicle is instructed to both charge and match—only the matching instruction is delivered to the 

vehicle. 

The default matching dispatcher does not solve the pooling assignment. Although the underlying simulation physics 

for pooling exist in HIVE, the integration of a baseline pooling algorithm is left for future work.

 

Figure 8. Example of using H3 for a charging station search. The vehicle is seeking a charg- 

ing location at one of a set of station alternatives, shown as drop points on the map. The search 

is conducted over an expanding ring of H3 hex grid cells at a higher level of aggregation. 

Driver-Level Control 

In addition to instructions generated at the fleet level, the driver of a vehicle can generate instructions that override 

any fleet-level instructions. This design is useful for distinguishing between fleet-level and vehicle-level control. The 

behaviors associated with each driver state (autonomous, human available, and human unavailable) are described 

below. 

The autonomous driver will monitor its time spent idling, and if it exceeds a configurable threshold, the driver will 

instruct the vehicle to drive to the nearest base location. The vehicle will either charge or transition to a reserve state 

where the vehicle becomes inactive. In addition, the autonomous driver monitors energy levels during a charge event 

and instructs the vehicle to stop charging if the state of charge exceeds a configurable threshold. 

The human-available driver will monitor its time spent idling and instruct the vehicle to reposition if the time ex- 

ceeds a configurable threshold. The reposition location is determined as the centroid of the search-level index that 

has the highest density of active requests. The human-available driver will monitor a charge event in a similar fash- 

ion as the autonomous driver. 
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When a driver enters a human-unavailable driver state, it has reached the end of its scheduled work time and will 

instruct the vehicle to return to the home base location, assuming it is in an interruptable vehicle state. The driver 

will decide if additional fueling is required in order to guarantee that the vehicle energy exceeds a start-of-shift 

threshold (configurable) prior to beginning service on the following day. The vehicle may be fueled on the journey to 

the home location or plugged into a possible home charger in order to meet this threshold. 

An example of the process for updating vehicles is shown in Figure 9. In this example, the default HIVE control 

module is used, and one single update event (at time t ) for a single vehicle is considered. The vehicle begins in the 

idle state and is examined by the charging dispatcher. The dispatcher determines that the vehicle needs to charge 

and issues a charge instruction. Next, the matching dispatcher determines that this vehicle matches the request 

in the system and issues a dispatch trip instruction. Finally, the driver control module, with full knowledge of the 

vehicle state and the two instructions that have already been generated, decides to not issue a final instruction. The 

instruction that was issued last in the pipeline of controllers is popped from the instruction stack and applied to the 

vehicle. In this case, the dispatch trip instruction takes priority over the charge instruction and the vehicle transitions 

into the dispatch trip state.

 

Figure 9. Example vehicle state update 

2.3.3 Execution Context 

It is only when HIVE is run in an execution context that the simulation is advanced beyond the current snapshot 

captured in the simulation state. HIVE will execute this in a fixed-increment, discrete event simulation governed 

by a series of update functions, which can modify different aspects of HIVE. Updates occur via a fixed-increment 

time progression versus next-event time progression, as every vehicle requires a state update in every time interval. 

Running a complete day of HIVE is simply the repeated application of update functions until the configured stop 

time. The following sections describe time stepping and instantaneous simulation updates. 

Time Stepping Update 

Advancing time in HIVE involves calling a step method on all state machines (vehicle and driver). By default, if no 

instructions are issued, a step will continue the current activity governed by the vehicle state, unless overridden by 

the driver state or if a terminal state is reached, where a passive transition will be applied. In the case that an instruc- 

tion is issued by the control module, it will be applied, which may fail. Instructions are not trusted; for example, a 
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user-created dispatcher module may incorrectly dispatch a vehicle to a location outside of the road network. If an 

instruction such as this fails to apply, the vehicle remains with its default step behavior. 

Instantaneous Updates 

Included in HIVE are three default update functions that manage updating state to resources based on the time of 

day. 

The requests update function reads in a file stream of requests and adds them to the simulation if the origin time falls 

within the window of [ t − 1 , t ] . 

The cancel requests update function removes any requests that have expired, meaning their origin time plus a request 

cancel time delta (configurable) is less than the current simulation time. 

The charging price update function updates the cost of energy throughout the simulation. The cost of energy is 

provided as step function of cost (dollars/kWh) over time. A unique step function can be specified for each station, 

or a unique step function can be specified over an entire H3 hexagon of any resolution. 

2.4 Model Inputs 

There are a variety of file dependencies in order to run a HIVE simulation, as shown in Figure 10. Each entity file 

type lists unique identifiers and attributes of the various entities in a simulation. The optional fleets file assigns the 

membership relations between entities. VehicleTypes and schedules extend the capabilities of vehicles with corre- 

sponding ID assignments. Chargers lists the types of chargers in a simulation that can be referenced by a station. 

Additional files set the behaviors for the supply-side modeling. 

Some files and fields within files are purely optional. For example, omitting a station ID for a base indicates that 

there is no on-base charging infrastructure. Independent files are referenced in a top-level scenario input file, which 

can be used to create a suite of test cases and model versioning.

 

Figure 10. Inputs to the HIVE model 
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3 Case Study 

3.1 Case Study Inputs 

This section introduces a sample application of HIVE, which is intended to demonstrate many of the features of the 

model. The scenario discussed is available as an in-built example and comes prepackaged in the model repository. 

Note that the purpose of this section is illustrative and not intended to closely depict real-world inputs or convey 

research findings. Descriptions of key input variables follow. 

• The case study models a fleet of 1,000 human-driven vehicles across two fleets––250 Yellow Cab Taxis (YCB) 

and 750 for-hire vehicles (FHVs)-—responding to requests in Manhattan. 

• Trip requests for each fleet segment are sourced from the New York Taxi Cab and Limousine Commission 

[28]. In total, 20,000 YCB requests and 15,000 FHV requests are sourced from March 8, 2019, a day of 

significant ride-hailing activity. The vehicles and requests selected produce an intentionally undersized YCB 

fleet (80 requests per vehicle) and an adequately sized FHV fleet (20 requests per vehicle). Requests are 

exclusively available to the corresponding fleet segment, as enforced through the membership field. 

• Driver shift times are synthesized from shift distributions provided by the Taxi Cab and Limousine Commis- 

sion [29]. Shift end times are calculated by assuming shift lengths of between 6–8 hours for FHVs and 10–14 

hours for YCBs, reflecting observed differences in typical hours of operation across segments. These variables 

contribute to dynamic fleet sizing throughout the day, as individual drivers transition between being on- and 

off-shift. 

• Vehicle home locations are sampled randomly throughout the fleet geofence within Manhattan. 

• Eighty-five 50-kW charging plugs are sited across 10 stations throughout Manhattan. These stations––containing 

either 5 or 15 plugs-—are also modeled as either exclusive to a single fleet or shared across all vehicles. No 

overnight charging access is provided to vehicles. 

• Vehicles are modeled as sedans with 62.5-kWh batteries, 50-kW peak charge acceptance, and an efficiency of 

250 Wh/mi. 

• Finally, the fleet is initialized with each vehicle starting at its home location with state-of-charge values sam- 

pled randomly from 30% to 70%. 

3.2 Results 

The following discussion of results illustrates sample outcomes from the simulation, but represents only a portion 

of available insights from simulation logs. HIVE’s flexible reporting enables logging results across all assets at each 

time step, providing insight into results at the vehicle, asset, and fleet levels. Figure 11 provides an overview of sam- 

ple information available for each vehicle during the simulation. The figure illustrates the full activity of a sample 

YCB vehicle modeled as being on-shift from approximately 7 a.m. to 7:30 p.m. servicing trip requests throughout 

Manhattan. The vehicle trajectory contains a variety of different driving states including commuting, repositioning, 

dispatching to trips, performing trips, and dispatching to charge. During each driving event, the vehicle is required 

to traverse the roadway network with travel times determined by road link speeds. Although links in Manhattan are 

low-speed, the vehicle accumulates significant mileage throughout the day––over 150 miles—-requiring a fast charge 

at a station in midtown Manhattan before continuing to service trips throughout the remainder of its shift. Upon 

completing its shift, the vehicle completes its final ride to its home location in uptown Manhattan. 

In addition to vehicle information, HIVE files also contain a summary of charging station data. Figure 12 illustrates 

load profiles corresponding to three sample stations sited and used by the fleet during the day simulated. The stations 

selected vary by fleet membership affiliation, including an FHV exclusive station, a YCB exclusive station, and 

a shared station. Although only a minority of station loads are shown, inspection of the results from these three 

stations reveals several interesting insights. First, the majority of the charging load is attributed to the YCB fleet 

despite it only comprising 25% of fleet vehicles. This is due to the larger number of requests exposed to the YCB 

fleet and the longer shift lengths assumed versus the FHV fleet. Additionally, the FHV and YCB fleets appear to 
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Figure 11. Sample vehicle trajectory and state-of-charge evolution throughout a 24-hour simulation 

require charging at similar times, resulting in competition for plugs at shared stations. The timing of charge events is 

predominantly influenced by shift start times and request dynamics that induce vehicles to drive and consume battery 

energy. Finally, the loads across stations are observed to be highly variable throughout the day, with no charging 

during overnight hours while the majority of the fleet is off-shift. Although not shown, fleetwide load profiles may be 

trivially calculated by aggregating the fleet load across all stations and overnight chargers.

 

Figure 12. Sample load profiles from stations in HIVE with varying mem- 

bership access types (FHV exclusive, YCB exclusive, and shared) 

Finally, HIVE logs provide insight regarding the performance of the overall fleet. Figure 13 shows the timing of all 

requests exposed to the fleet segments, categorized as either being served or unserved. Requests are categorized as 

served if a vehicle is available to transport a passenger and unserved if a vehicle cannot arrive in a specified amount 

of time after the request appears (10 minutes in this case). Outcomes at the fleet level demonstrate the importance of 

fleet sizing relative to request quantity. Whereas the FHV fleet effectively serves nearly all requests, the YCB fleet 

completes only 64.4% of requests due to fewer vehicles available to accommodate passengers. 
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Figure 13. Request service across YCB and FHV fleets exposed to distinct request populations 

Although limited in size and geographic scale, the sample use case demonstrates the flexibility of HIVE to model 

ride-hailing fleets and capture trade-offs between input variables of interest (in this case, the fleet size on load pro- 

files and quality of service). Note that the functionality of HIVE extends well beyond considerations discussed 

here. Additional opportunities for inquiry are vast, including topics ranging from trade-offs between vehicle battery 

investment and charging investment, autonomous fleet operation versus human-driven fleets, and more. 
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4 Conclusion and Future Work 

This report describes the motivation behind creation of the HIVE simulation tool and model architecture, and demon- 

strates its functionality with a simple case study. The tool was developed to support internal research programs and 

to be integrated with existing in-lab platforms. The model architecture is broken out into three distinct levels and was 

crafted to support future extension points and flexibility of introducing new control strategies. The case study high- 

lights the model usage and some of the insights that can be derived from the high-density outputs. Some immediate 

areas for future work exist in the areas of co-simulation, high-performance computing, and learning-based control. 

While built on simple constructs, HIVE reveals an emergent complexity due to the interaction of many agents in 

an agent-based model. Within the simulation period, there are opportunities to produce more realistic results by 

integrating HIVE with other simulation tools “in the loop.” For example, an electric grid model based on real- 

world grid data could replace the tabular charging prices lookup approach, in order to study the effects of electric 

MoD load on the power grid. HIVE could also read link speed outputs from traffic simulations in order to evaluate 

runs using simulated congestion effects. Also, replacing tabular engine models with dynamic co-simulation would 

produce more realistic energy consumption. 

As simulation sizes scale, agent-based models like HIVE are subject to a nonlinear increase in complexity pro- 

portional to the density of active agents. Additionally, certain aspects of HIVE such as matching dispatch rely on 

matrix-based representations, which become intractable when simulating many agents. One can observe in the mod- 

eling of MoD services that an intuitive means for dividing into sub-problems falls along the lines of dispatch regions. 

By applying geofencing, the problem can be subdivided into a set of distributed dispatchers, all covering separate, 

disjointed, and contiguous regions of the study area. The ability to reformulate HIVE as a distributed simulation 

composed of geofenced HIVE instances comes “for free” as a result of making these assumptions. The speed of a 

HIVE simulation can then be improved, or HIVE can then be run for arbitrarily large scenarios or at a finer level 

of modeling detail. For example, exploring regional-scale scenarios with very large, heterogeneous fleets becomes 

feasible. 

Finally, data-driven control policies for fleets of MoDs is an emerging area of active research. In many simulation 

models, the non-stationarity of the state space due to traffic simulation poses a great challenge to optimal policy 

learning. Such effects are not present in the HIVE model. Although this is a shortcoming for certain research prob- 

lems, it can be an acceptable assumption when learning strategies for fleet management. Additionally, the learned 

policy may be transferred after training to the more complex model. In particular, the driver control module, along 

with the repositioning and charging assignment fleet control modules, are suitable applications for both centralized 

and multi-agent deep reinforcement learning algorithms. 
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