
Evaluating Distributed Generation Cost and Resilience with REopt Lite

ENERGY EXCHANGE • CONNECTING THE FUTURE • AUGUST 2-6, 2021

Kate Anderson

Chief of Staff

Energy Systems Integration Directorate National Renewable Energy Laboratory

Battery Discharging
PV Exporting to Grid
PV Charging Battery
PV Serving Load
Grid Charging Battery

REopt Lite Web Tool Transforms Complex Decisions Into Actionable Results

- The free, publicly available web tool guides investment in economic, resilient energy technologies
- Transforms complex decisions into actionable results for building owners, utilities, and industry
- Integrating CHP enables analysis of hybrid CHP (CHP + PV, wind, and/or storage)
- Open Source API access to the tool enables analysis at scale

Will Distributed Energy Work for Your Site?

Many factors affect whether distributed energy technologies can provide cost savings and resilience to your site, and they must be evaluated concurrently.

How Does REopt Lite Work?

REopt Lite considers the trade-off between ownership costs and savings across multiple value streams to recommend optimal size and dispatch

REopt Lite Provides Solutions for a Range of Users

Researchers, developers, building owners, utilities, and industry

What is the optimal size of DERs to minimize my cost of energy?

How do I optimize system control across multiple value streams to maximize project value?

Where do market opportunities for DERs exist? Now and in the future?

What will it cost to meet a sustainability or on-site generation goal?

What is the most cost-effective way to survive a grid outage spanning 1 day? What about 9 days?

REopt Lite

- REopt Lite is a web tool that offers a nocost subset of NREL's more comprehensive REopt model
- Financial mode optimizes technology sizes and dispatch strategy to minimize life cycle cost of energy
- Resilience mode optimizes technology mix to sustain critical load during grid outages and to minimize life cycle cost of energy
- To access REopt Lite: <u>https://reopt.nrel.gov/tool</u>

Step 3: Enter Your Site Data

Enter information about your site and adjust the default values as needed to see your results.

오 Si	ite and Utility (mquime)	Ð
all Lo	Dad Profile (required)	Ð
\$ Fi	nancial	Ð
ا ک	missions	Ð
∲ P\	v	Ð
📼 Ba	attery	Ð
La Co	ombined Heat & Power	Ð

REopt Lite Key Outputs

System Size and Net Present Value

4000 kW 100% Reset zoom \$200 kW 2400 kW 60% - Total Electric Load Battery to Grid PV Exporting to Grid 1600 kW 40% CHP Exporting to Grid PV Charging Battery CHP Charging Battery 500 kW Grid Charging Battery Battery Discharging PV Serving Load CHP Serving Load 0 kW Grid Serving Load 1. Jun 2. Jun 3. Jun 4. lun S. Jun S. Jun ---- Battery State of Charge 14 Zoom Out a Week Zoom In a Week Download Sys. Performance Dispatch Spreadshee

Detailed Financial and Energy Outputs

Summary Financial Metrics					
Total Upfront Capital Cost Before Incentives	N/A	\$4,828,681	N/A		
Total Upfront Capital Cost After Incentives 💡	N/A	\$3,070,132	\$3,070,132		
Lifecycle O&M and replacement costs, after tax	N/A	\$1,399,584	\$1,399,584		
Total Life Cycle Costs 💡	\$15,056,424	\$12,243,179	\$2,813,245		
Net Present Value 💡	\$0	\$2,813,245	\$2,813,245		
Payback Period 💡	N/A	5.56 yrs	5.56 yrs		
PV Levelized Cost of Energy 🥹	N/A	\$0.074	\$0.074		
Internal Rate of Return 🤢	N/A	16.23%	16.23%		

Hourly Dispatch

ENERGY EXCHANGE • CONNECTING THE FUTURE • AUGUST 2-6, 2021

Critical Infrastructure Resilience

- System designed to sustain 24-hour outage at wastewater treatment plant
- Free on-site biogas resource for CHP
- Adding hybrid CHP-PVbattery system provides economic savings and reduces diesel fuel use

	Diesel Only	Hybrid System		
System Size	1204 kW Diesel generator	478 kW Diesel generator 1,508 kW Solar PV 203 kW; 1279 kWh Battery 448 kW CHP		
Net Present Value	-\$777,530	-\$57,009		
Diesel fuel used	2,021 gallons	660 gallons		
3000 kW	Outage Duration	100% Reset zoom 80% 60% Cr		
1200 KW 600 KW 0 KW 18. Aug 12:00 19.	Aug 12:00 20. Aug 12:00	- Total Electric Load PV Curtailed Generation PV Charging Battery CHP Charging Battery CHP Charging Battery CHP Charging Battery CHP Charging Battery Battery Serving Load Diesel Generator Serving Load PV Serving Load CHP Serving Load		

- REopt website (analysis services and case studies): reopt.nrel.gov/
- Send tool feedback and ask a question: <u>reopt@nrel.gov</u>

CALL ROAD

Finewable Energy Laboratory, open VOE) under Contract No. DE AC 6-0 Efficiency and Ren wable Provide From ily regresent the rises of the DOE of d-up_freevorable, worldwide license by Alliance for Sustainable Energy, 8308. Funding provided by the U.S. Energy Management Program. The S. Government. The U.S. by th or reproduce the published