Funding provided by U.S. Department of Energy Advanced Research Projects Agency–Energy (ARPA-E) under ARPA-E Award No. DE-AR001274 and Work Authorization No. 19/CJ000/07/08. The views expressed in the presentation do not necessarily represent the views of the DOE or the U.S. Government.
Outline

• Context
• Flexibility Options
• Key Observations and Next Steps
By 2050, almost 70% of electricity generation globally will come from solar photovoltaics and wind.

System operators and flexible resources must manage challenging energy imbalances.

Dataset: January 2017 to March 2019
Operational Flexibility for Managing Energy Imbalances

As lead time reduces, ...

- uncertainty with respect to energy imbalance decreases
- supply curves for Real-Time operational flexibility become steeper
Research Question

How will introducing a new *flexibility option* product in day-ahead ISO auction contribute to market efficiency and power system reliability?

Flexibility Options

Day-ahead Hour-ahead Minutes-ahead Real-time operations

Endogenously consider cost of operational flexibility to manage imbalances
Outline

• Context

• Flexibility Options
 – Participants (Who?)
 – Product Definition (What?)
 – Formulation and Settlements (How?)

• Key Observations and Next Steps
Outline

• Context

• Flexibility Options
 – Participants (Who?)
 – Product Definition (What?)
 – Formulation and Settlements (How?)

• Key Observations and Next Steps
Identify cost-effective hedging of energy imbalances with flexibility options.

BUYERS OF FLEXIBILITY OPTIONS

Uncertainty

Solar plants
Wind plants
Load-serving entities

SELLERS OF FLEXIBILITY OPTIONS

Flexibility

Power plants
Storage
Electric vehicles
Water heaters
Smart heating/cooling
Distributed energy resource aggregators
ISO Day-Ahead Markets

Uncertainty

BUYERS OF FLEXIBILITY OPTIONS

Solar plants
Wind plants
Load-serving entities

Identify cost-effective hedging of energy imbalances with flexibility options.

Set of percentiles (Ω_S)
Probability of shortfall ($\Pi_{s,t}$)

SELLERS OF FLEXIBILITY OPTIONS

Power plants
Storage
Electric vehicles
Water heaters
Smart heating/cooling
Distributed energy resource aggregators
Uncertainty

BUYERS OF FLEXIBILITY OPTIONS

- Solar plants
- Wind plants
- Load-serving entities

SELLERS OF FLEXIBILITY OPTIONS

- Power plants
- Storage
- Electric vehicles
- Water heaters
- Smart heating/cooling
- Distributed energy resource aggregators

ISO Day-Ahead Markets

Identify cost-effective hedging of energy imbalances with *flexibility options*.

- $P_{i,s,t}$: Generation or consumption
- $CAP_{i,r,t}^{1}$: Willingness to pay for hedging generation shortfalls.

Set of percentiles (Ω_{S})
Probability of shortfall ($\Pi_{s,t}$)
ISO Day-Ahead Markets

BUYERS OF FLEXIBILITY OPTIONS

Uncertainty

• $P_{i,s,t}$: Generation or consumption
• $\text{CAP}^{i}_{i,r,t}$: Willingness to pay for hedging generation shortfalls.

Identify cost-effective hedging of energy imbalances with flexibility options.

Set of percentiles (Ω_s)
Probability of shortfall ($\Pi_{s,t}$)

SELLERS OF FLEXIBILITY OPTIONS

Flexibility

• $C^{\uparrow}_{i,r,t}$: strike price at which they would supply Real-Time energy.
• $C^{\downarrow}_{i,r,t}$: strike price at which they would buy Real-Time energy.
Outline

• Context
• Flexibility Options
 – Participants (Who?)
 – Product Definition (What?)
 – Formulation and Settlements (How?)
• Key Observations and Next Steps
A contract issuing rights to its purchaser to buy or sell energy *imbalance* during a market interval at a strike price.
A contract issuing rights to its purchaser to buy or sell energy **imbalance**s during a market interval at a strike price.

Day-ahead energy award

Real-time physical availability

- **Negative imbalance**
 - **Upward option**
 - “Call” option to purchase up to x MW at strike price.
 - Can be exercised only when imbalance is negative.

- **Positive imbalance**
 - **Downward option**
 - “Put” option to sell up to x MW at strike price.
 - Can be exercised only when imbalance is positive.
A contract issuing rights to its purchaser to buy or sell energy *imbalance* during a market interval at a strike price.

- **Day-ahead energy award**
- **Real-time physical availability**

Negative Imbalance
- **Upward option**
 - “Call” option to purchase up to x MW at strike price.
 - Can be exercised only when imbalance is negative.

Positive Imbalance
- **Downward option**
 - “Put” option to sell up to x MW at strike price.
 - Can be exercised only when imbalance is positive.

Option “tier” indicates the frequency at which the option can be exercised.
Outline

• Context
• Flexibility Options
 – Participants (Who?)
 – Product Definition (What?)
 – Formulation and Settlements (How?)
• Key Observations and Next Steps
Co-optimized within DA markets Formulation

Existing terms in objective function such as energy cost

\[
\min_{\Xi} \sum_{i \in \Omega_G' \cap \Omega_T} C_{i,t} \cdot p_{i,t} \cdot I_m + \cdots + \sum_{i \in \Omega_G' \cap \Omega_T} y_{i,s,t} \cdot y + \sum_{i \in \Omega_G' \cap \Omega_T} \left(\sum_{r \in \Omega_{R,t}} \left(\Pi_{r,t} \cdot C_{i,t} \cdot h_{i,r,t} \right) - \sum_{r \in \Omega_{R,t}} \left(\Pi_{r,t} \cdot C_{i,t} \cdot h_{i,r,t} \right) \right)
\]

Expected cost for flexibility deployment

Expected costs for fast start units

Expected “cost” of flexibility deficits

Preliminary and non-exhaustive
Co-optimized within DA markets Formulation

Existing terms in objective function such as energy cost

\[
\begin{align*}
\min \sum_{i \in \Omega G, t \in \Omega T} C_{i,t} \cdot p_{i,t} \cdot I_m & + \cdots + \sum_{i \in \Omega G, t \in \Omega T} y_{i,s,t} \cdot \gamma + \sum_{i \in \Omega G', t \in \Omega T} I_m \cdot \left(\sum_{r \in \Omega R_t} (\uparrow C A P_i, r, t \cdot \uparrow f_s a_i, r, t) \right) & \\
\end{align*}
\]

Expected cost for flexibility deployment

Expected costs for fast start units

Expected "cost" of flexibility deficits

Constraints related to the co-optimized flexibility auction

\[
\begin{align*}
\sum_{i \in \Omega G'} \uparrow h s_{i, r, t} &= \sum_{i \in \Omega G} \uparrow h d_{i, r, t} (\lambda_{r, t}^{F E L X \uparrow}) \\
\sum_{i \in \Omega G'} \downarrow h s_{i, r, t} &= \sum_{i \in \Omega G} \downarrow h d_{i, r, t} (\lambda_{r, t}^{F E L X \downarrow}) \\
\end{align*}
\]

Flexibility demand

\[
\begin{align*}
\sum_{r = \{1, \ldots, s-1\}} & \uparrow h d_{i, r, t} + \sum_{s \neq 1 \ldots |\Omega S_t|} \uparrow h d_{i, r, t} \leq y_{i,s,t} \\
\sum_{r = \{s, \ldots, |\Omega S_t|\}} & \uparrow h d_{i, r, t} + \uparrow f_s a_{i, r, t} \geq p_{i,t} - p_{i,s,t} \\
y_{i,s,t} \geq & \left| p_{i,t} - p_{i,s,t} \right|
\end{align*}
\]

Flexibility supply

\[
\begin{align*}
p_{i,t} + \sum_{r \in \Omega R_t} \uparrow h s_{i, r, t} & \leq p_{i,t}^{\max} \cdot u_{i,t} + \min(p_{i,t}^{\max}, R R_i) \cdot u f_{i,r=1,t} \\
p_{i,t} - \sum_{r \in \Omega R_t} \downarrow h s_{i, r, t} & \geq p_{i,t}^{\min} \cdot u_{i,t} \\
+ & \text{ramping constraints}
\end{align*}
\]
Two-Settlement System

Option pricing in Day-Ahead
Option pay-off in Real-Time
Two-Settlement System

Option pricing in Day-Ahead

Buyer of upward flexibility option:

$$- (\lambda_{r,t}^{FLEX} - \uparrow \Pi_{r,t} \cdot \text{strike price}^*) \cdot \uparrow h_{i,r,t}$$

Seller of upward flexibility option:

$$(\lambda_{r,t}^{FLEX} - \uparrow \Pi_{r,t} \cdot C_{i,r,t}^\uparrow) \cdot \uparrow h_{s_i,r,t}$$

Option pay-off in Real-Time

* Strike price is MW-weighted average of $C_{i,r,t}^\uparrow$
Two-Settlement System

Day-ahead energy award \(p_i \)

Real-time physical availability \(RTP \)

Option pricing in Day-Ahead

Buyer of upward flexibility option:

\[-(\lambda_{r,t}^{FLEX} \uparrow - \uparrow \Pi_{r,t} \cdot \text{strike price}^*) \cdot \uparrow h_{i,r,t}\]

Seller of upward flexibility option:

\[(\lambda_{r,t}^{FLEX} \uparrow - \uparrow \Pi_{r,t} \cdot C_{i,r,t}) \cdot \uparrow h_{i,r,t}\]

Option pay-off in Real-Time

\[\max(0, \lambda_{t}^{RT-EN} - \text{strike price}^*) \cdot \max(0, \min(P_{i,r-1,t} + \uparrow h_{i,r,t}, p_i) - \max(RTP, P_{i,r-1,t}))\]

\[-\max(0, \lambda_{t}^{RT-EN} - C_{i,r,t}) \cdot \uparrow h_{i,r,t}\]

* Strike price is MW-weighted average of \(C_{i,r,t} \)
Outline

• Context

• Flexibility Options
 – Participants
 – Product Definition
 – Formulation
 – Settlements.

• Key Observations and Next Steps
Simple Example

Flexibility buyers

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Probability</th>
<th>Renewable 1</th>
<th>Renewable 2</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>20%</td>
<td>67</td>
<td>64</td>
<td>131</td>
</tr>
<tr>
<td>S2</td>
<td>20%</td>
<td>74</td>
<td>67</td>
<td>141</td>
</tr>
<tr>
<td>S3</td>
<td>20%</td>
<td>83</td>
<td>72</td>
<td>155</td>
</tr>
<tr>
<td>S4</td>
<td>20%</td>
<td>90</td>
<td>75</td>
<td>165</td>
</tr>
<tr>
<td>S5</td>
<td>20%</td>
<td>95</td>
<td>77</td>
<td>172</td>
</tr>
</tbody>
</table>

Correlation of R1 & R2 ~1

Flexibility suppliers

<table>
<thead>
<tr>
<th>Variable cost ($/MWh)</th>
<th>Max capacity (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 1</td>
<td>20</td>
</tr>
<tr>
<td>CT 2</td>
<td>35</td>
</tr>
<tr>
<td>CT 3</td>
<td>50</td>
</tr>
<tr>
<td>CT 4</td>
<td>60</td>
</tr>
</tbody>
</table>

Energy-only participants

Load: 200 MW

Strike price = Variable Cost

Ramp Rate = Capacity

SIMPLE EXAMPLE presented at https://cms.ferc.gov/media/w3-spyrou
Standard deviation of day-ahead and real-time profits expected to decrease

Simple example presented at https://cms.ferc.gov/media/w3-spyrou
Simple Example [Modified: Unit Commitment]

Load: 200 MW

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Probability</th>
<th>Renewable 1</th>
<th>Renewable 2</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>20%</td>
<td>67</td>
<td>64</td>
<td>131</td>
</tr>
<tr>
<td>S2</td>
<td>20%</td>
<td>74</td>
<td>67</td>
<td>141</td>
</tr>
<tr>
<td>S3</td>
<td>20%</td>
<td>83</td>
<td>72</td>
<td>155</td>
</tr>
<tr>
<td>S4</td>
<td>20%</td>
<td>90</td>
<td>75</td>
<td>165</td>
</tr>
<tr>
<td>S5</td>
<td>20%</td>
<td>95</td>
<td>77</td>
<td>172</td>
</tr>
</tbody>
</table>

Correlation of R1 to R2: ~1

Energy-only participants

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Min capacity</th>
<th>Variable cost ($/MWh)</th>
<th>Max capacity (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1 (DA start)</td>
<td>44</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>ST2 (DA start)</td>
<td>25</td>
<td>22</td>
<td>50</td>
</tr>
<tr>
<td>CT 2</td>
<td>0</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>CT 3</td>
<td>0</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>CT 4</td>
<td>0</td>
<td>60</td>
<td>10</td>
</tr>
</tbody>
</table>

Strike price = Variable Cost
Ramp Rate = Capacity

SIMPLE EXAMPLE presented at https://cms.ferc.gov/media/w3-spyrou
Expected production cost and perfect forecast gap expected to decrease

100 100 90 110 264 17 0

SIMPLE EXAMPLE presented at https://cms.ferc.gov/media/w3-spyrou

Less steep RT supply curve for operational flexibility down (> 6 MW)
Next Steps

Simulations with ARPA-E PERFORM Texas system in FESTIV* to analyze the value of the introduction of flexibility options

- Comparison with other hedging instruments
- Analysis on risks for all parties involved

Performance analysis for distributed energy resource aggregators acting as flexibility suppliers

Thank you!

elina.spyrou@nrel.gov

NREL/PR-5D00-80535

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Advanced Research Projects Agency–Energy (ARPA-E) under ARPA-E Award No. DE-AR001274 and Work Authorization No. 19/CJ000/07/08. The views expressed in the presentation do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the presentation for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.