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Executive Summary 

The degree to which wind power can contribute to resource adequacy requirements, also known as its capacity 

credit (CC), varies with wind resource and correlation to net load. CC, usually expressed as a percentage relative to 

a resource’s nameplate capacity, is an important metric widely used for resource planning and resource adequacy 

assessments. Furthermore, CC describes one potential component of the value of wind and thus has implications 

for future deployment. However, there are multiple methods for estimating CC, depending on specific needs, access 

to data, and computational resources. For example, probabilistic resource adequacy tools are useful for calculating 

marginal CCs, but they can require sophisticated methods and data sets. As a result, simpler approximation methods 

are widely used in capacity expansion models and for energy system planning. To evaluate the importance of method 

choices, we use a probabilistic resource adequacy tool and multiple approximation methods to systematically assess 

the CC of wind for near-term deployment in a Texas Interconnection test system. We compare CCs across these 

methods and discuss how the difference in approaches and assumptions can impact the resulting CCs. 

Initially using NREL’s Probabilistic Resource Adequacy Suite (PRAS) tool, we observe a relatively low marginal 

wind CC in the Texas Interconnection test system that is influenced by substantial existing wind deployment as well 

as wind patterns that are not well correlated with periods of high net load, usually occurring during the summer 

when wind output is lower. To weigh the trade-offs associated with the simplifications, we compare our PRAS 

results to the approximation-based calculations, which involve finding the average capacity factor of a marginal 

resource during times of elevated system risk but also methodological choices and parameters for both methods. 

We find that approximation methods can capture the important relationships between wind availability and system 

needs; however, the chosen approximation method can impact the resulting CCs. An important consideration is 

transmission—whether or not wind will be able to address reliability needs in neighboring regions. In this case 

study, we find that several approximation methods do come close to the CC calculated by more robust probabilistic 

methods (PRAS), however can vary substantially. PRAS results are less sensitive to modeling criteria in this system. 

Finally, choosing the correct criteria for approximating the CC can be difficult because the best approximation 

method can vary on a case-by-case basis and the best method for this Texas case study may not be universal. 
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1 Introduction 

Wind energy capacity in the United States has seen a dramatic increase in recent years, totalling 118 GW through the 

end of 2020 (U.S. Energy Information Administration 2021). Declining costs and renewable energy goals will likely 

continue to drive this trend (Stehly, Beiter, and Duffy 2020, Barbose 2021). Because wind generation is variable and 

weather dependent, evaluating its contribution to power system reliability and adequacy can be complicated. The 

metric of capacity credit (CC) is often used to facilitate comparisons between the firm capacity offerings of various 

generation types, including wind. CC quantifies the percentage capacity contribution of a specific resource to overall 

system adequacy relative to its nameplate capacity (Garrido 2019, Ibanez and Milligan 2014). 

Two main methods are used to estimate CC1: reliability-based and approximation-based methods (Sioshansi, 

Madaeni, and Denholm 2013). Reliability-based methods typically use resource adequacy models to calculate 

metrics such as the loss-of-load probability (LOLP) or expected unserved energy (EUE) given inputs such as hourly 

loads, generator information, and often transmission network data (Corporation 2018, Jorgenson et al. 2021, Mills 

and Rodriguez 2020). These methods can calculate the CC of an incremental resource by computing the reliability 

metric before and after the addition of the new resource, with any change in the metric attributed to the incremen- 

tal resource. Simpler approximation-based methods usually calculate the CC of a unit based on the capacity factor 

(CF), which is the percentage output of a plant relative to its nameplate capacity, during a predetermined period. 

This period generally covers the hours where the system is expected to be under stress, such as hours of peak load 

or peak net load2. These methods use an estimate for when capacity is expected to be the most constrained, but they 

might miss certain factors such as the impact of incremental resources on shifting the highest risk periods and inter- 

temporal constraints on energy-limited resources (Milligan 2000, Milligan 1997). Although both approximation- 

and reliability-based methods might not include transmission constraints, they can usually be considered when using 

simulation-based Monte Carlo methods3. For all these reasons, reliability-based resource adequacy methods are 

preferred whenever data and computational capabilities are available (Milligan 1997, Keane et al. 2010, Soder and 

Amelin 2008). Approximation-based methods to calculate CC are still widely used and can provide useful insight, 

particularly for future system planning with capacity expansion models (Milligan and Porter 2008, Dent, Keane, and 

Bialek 2010). 

Previous work on a case study in the western United States finds that CF approximation methods averaging the top 

100 net load hours of the year give good CC approximations for solar photovoltaic (PV) resources (Stephen, Hale, 

and Cowiestoll 2020). At higher PV contributions, choosing the top 10 net load hours gave a closer approximation 

by 2%–5% (Stephen, Hale, and Cowiestoll 2020). Other case studies for both solar PV (with and without storage) 

and concentrating solar power in the United States find CF approximation methods to be close to full reliability- 

based methods (Madaeni, Sioshansi, and Denholm 2013, Madaeni, Sioshansi, and Denholm 2012, Mills and Ro- 

driguez 2020, Heath and Figueroa-Acevedo 2018). Existing work evaluating CC calculations for wind energy is 

more sparse. However, a case study of wind in Portugal evaluates approximation-based and probabilistic methods 

and concludes that both calculation methods are useful, but chronological approximation methods might be better 

suited for system operators, whereas probabilistic methods are better suited for system planning (Castro and Ferreira 

2001). Another evaluation of wind in Alberta finds that simpler CF approximation methods might overestimate the 

CC of wind in that system (Awara et al. 2018, Awara 2019). 

Despite the fact that CC is a commonly used metric for resource comparison, it is not a perfect metric. Although it 

might provide an estimate of the amount of firm capacity a generator might provide, the actual capacity available 

during emergent times can vary considerably from the predicted value. As an example, a stand-alone PV plant 

could have a CC of 20%; however, if capacity was needed during nighttime, it would not be available at all. In 

addition, CC is only one factor that might influence the deployment of various generator types (including wind), and 

it can often be lower priority than selecting high CF resource areas or transmission access, which can be important 

1The terms capacity credit and capacity value are often used interchangeably in the literature; however, in this paper, we follow an estab- 

lished convention to refer only to physical capacity rather than monetary or economic value (Mills and Wiser 2012). 

2Net load is the demand less contributions from variable generation resources such as wind and solar. 

3Other reliability-based methods such as convolution are not often amenable to transmission modeling. 
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drivers to capital cost (Jorgenson et al. 2021). In short, calculating CC is a useful but imperfect means to incorporate 

weather-dependent resources into established resource adequacy assessment and integrated planning processes. 

This work uses a Texas Interconnection test system to examine the impact of methods and assumptions on the result- 

ing marginal wind CCs of both land-based and offshore wind for near-term deployment. Specifically, we compare 

reliability-based resource adequacy methods using the National Renewable Energy Laboratory’s (NREL’s) Proba- 

bilistic Resource Adequacy Suite (PRAS) model with approximation methods, along with methodological choices 

and parameters for both methods. First, for the reliability-based resource adequacy calculations, we consider the 

impact that the starting system assumptions have on the reported CC. Second, for the CF-based approximation meth- 

ods, we examine the impact of considering the contributions of existing variable generation sources, varying the 

number of hours averaged, seasonal calculations, and transmission access assumptions. This paper can provide in- 

sight into how underlying assumptions can impact resulting wind CC by comparing across multiple CC calculation 

methods. 
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2 Methodology and Assumptions 

This analysis uses a case study to conduct a sensitivity on various CC calculation methods. We examine land-based 

and offshore wind in the Texas Interconnection test system, under the footprint of the Electric Reliability Council 

of Texas (ERCOT), which covers much of the state of Texas. We use the Texas Interconnection because it is an 

electrically isolated, relatively small power system with diverse resources for both wind and solar. In this section, we 

first detail the Texas Interconnection test system, then discuss the methodologies for using a probabilistic assessment 

of marginal wind CC with NREL’s PRAS model as well as various approximation methods. 

2.1 Texas Interconnection Test System 

A full resource adequacy assessment of large power systems requires extensive data, including generator charac- 

teristics, transmission topology, and time-series profiles such as load. For this test system, we use generator data, 

load profiles, and existing renewable energy output time series for the Texas Interconnection test system (shown 

in Figure 1) from NREL’s North American Renewable Integration Study (NARIS) using seven time-synchronous 

years of weather and load data (Brinkman et al. 2021). We derived the generation capacity for 2024 initially from 

NARIS, which includes 24% of total generation coming from wind and 12% from PV, before curtailment4. From 

that starting point, we removed generator capacity (mostly natural gas and coal units5) to create a system with ob- 

servable shortfall, indicated by nonzero EUE (or curtailed load). We refer to this as our Base Case system, and Table 

1 shows this fleet. This analysis does not include any planned or scheduled maintenance outages, which could re- 

duce generator availability, particularly during the nonpeak (or shoulder) seasons7. As shown in Figure 1, the system 

has seven modeled zones within the Texas Interconnection test system. The numbers on the map correspond to the 

modeled balancing areas in NREL’s Regional Energy Deployment System (ReEDS) (Brown et al. 2020). We include 

transmission capacity limits between these zones but not within. 

4As of 2020, wind generation comprised approximately 23% of total generation in the Texas Interconnection, with PV at approximately 2% 

( ERCOT Quick Facts February 2021). 

5For our Base Case system, we removed approximately 19 GW of capacity from the Texas Interconnection system. We removed generators 

with the lowest CFs and continued until we observed nonzero EUE6. Removing generator capacity inherently changes the system and might 

impact results, which is why we include variations on this Base Case in later sections. 

7Typically planned maintenance would not occur during times of system need and is unlikely to impact the CC in this analysis. However, this 

shortcoming should be addressed in future work. 
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Figure 1. Map of the modeled footprint, including the seven modeled zones with num- 

bers corresponding to the ReEDS modeled balancing areas (Brown et al. 2020).

 

Modeled Generating Capacity by Type in the Texas Interconnection Test System

 

Wind

 

24,000 MW

 

PV

 

23,400 MW

 

Coal

 

5,000 MW

 

Natural gas

 

50,400 MW

 

Nuclear

 

5,000 MW

 

Other8

 

550 MW

 

Total

 

108,000 MW

 

Demand Characteristics

 

Peak hourly load

 

75,000 (7-yr Range: 72,800–75,000) MW

 

Peak hourly net load

 

62,800 (7-yr Range: 59,700–62,800) MW

 

Average annual load

 

365 TWh/yr

 

Average annual net load

 

224 TWh/yr

 

Table 1. Assumptions for the modeled Base Case generating capacity by type, along with system demand. 

The hourly profiles for existing wind, utility-scale PV, and distributed PV are from the Wind Integration National 

Dataset (WIND) Toolkit (Draxl et al. 2015) and the National Solar Radiation Database (Sengupta et al. 2018), pro- 

cessed through NREL’s System Advisor Model (Blair et al. 2018) with specific technology assumptions to generate 

8Includes hydropower, storage, and biofuel. 
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CF profiles (Maclaurin et al. 2019). For representing new wind resource, we also use the WIND Toolkit, which con- 

tains wind data for 2-km by 2-km grid cells for this footprint over 7 weather years (Draxl et al. 2015); however, to 

reduce computational demands and to more closely match the footprint of modern wind power plants, we aggregated 

profiles to a resolution of 20 km by 20 km9 (Jorgenson et al. 2021). We consider two turbine types: one technol- 

ogy for land-based sites and one for offshore sites. Table 2 shows the technology specifications we use to generate 

the profiles for the incremental wind (Jorgenson et al. 2021)10. We employ 7 years of system load, wind, and solar 

profiles (2007 through 2013). Using multiple years of weather data more fully captures the impact of interannual 

variability, as is recommended for a robust analysis of CC (Milligan 1997, Keane et al. 2010, Milligan et al. 2017). 

Figure 2 shows the geographic footprint with the 7-year average CF for wind at all of the 20-km by 20-km grid cells, 

indicating both land-based and offshore sites. The map shows particularly high CFs for central Texas as well as 

offshore sites in the Gulf of Mexico. Although there is currently no operating offshore wind in the Gulf of Mexico, 

there is interest in future development (Musial et al. 2020).

 

Technology

 

Land-Based

 

Offshore

 

Rotor diameter (m)

 

108

 

222

 

Capacity (MW)

 

2.1

 

12

 

Hub height (m)

 

80

 

136

 

Specific power (W/m2)

 

229

 

310

 

Swept area (m2)

 

9160

 

38700

 

Turbine losses (%)11

 

16.7

 

16.7

 

Table 2. Turbine specifications used to generate the CF profiles for the incremental wind capacity. 

9Here, we evaluate all grid cells without screening for other economic or suitability factors. This includes cells with existing wind turbines 

and those without. 

10Note that the technology specifications in Table 2 do not necessarily represent installed wind turbines in the Texas Interconnection. Since 

we are evaluating incremental wind capacity, we use these parameters as a reasonable proxy for the characteristics wind turbines being installed 

currently. 

11Here, turbine losses are applied as a fixed percentage in every hour, which is a shortcoming since in some hours the losses would be much 

less (or perhaps even greater). Future work should evaluate the drivers of turbine losses. 
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Figure 2. Map of the 7-year average CF calculated from WIND Toolkit data for 2007–2013. 

Figure 3 illustrates the 7-year average hourly diurnal demand curves (top panel) and net load (bottom panel) for each 

month. The solid line indicates the average observation, with the orange ribbons indicating the observed percentiles. 

The peak demand occurs in the summer months, in the late afternoon or evening. The lightest orange ribbons (0– 

100) indicate that there is significant variation in demand in some months, especially January and February. The net 

load shows even wider ranges in many months because of the additional variation imposed by the wind and solar 

resources. The solar and wind resources reduce the net load (relative to the gross load), particularly in the middle of 

the day, when solar availability is the highest. Peak net load is lower than peak load, but it still occurs generally in 

the summer, though in some cases it is later in the day. On some days, the orange ribbons indicating computed net 

load actually drop below 0 GW, indicating that available solar and wind exceed demand12. 

12The Texas Interconnection test system has 23% wind and 12% PV contribution before curtailment. Many hours have substantially more (or 

less) than that. 
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Figure 3. Average diurnal load and net load profiles by month for the Texas Interconnection test sys- 

tem, with ribbons indicating the observed percentiles over the 7 years of data (2007–2013). This re- 

flects our Base Case generator fleet, with 24% generation contribution from wind and 12% from solar. 

Figure 4 illustrates the average 7-year diurnal wind CF curves for each month of the year. The black line indicates 

the average observation based on all years and 20-km by 20-km sites. The green ribbons indicate the observed 

percentiles13. First, we note that both land-based and offshore wind exhibit a typical diurnal curve in which wind 

generation generally decreases in the middle of the day and is highest overnight. This midday reduction in wind CF 

in Texas has been observed previously (Musial et al. 2020, AWS Truepower 2015). Second, we note that offshore 

wind (the top panel) has overall higher CFs during the non-summer months and is more consistent throughout 

the course of the day than land-based wind; however, offshore wind output is significantly reduced in the summer 

months (June–August). In fact, on average it shows a lower CF than land-based wind during those months, especially 

in the evening and early morning hours. 

13The hourly CF never exceeds 83% because of turbine losses, which are applied as a fixed percentage in every hour, as noted in Table 2. 
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Figure 4. Average diurnal wind CFs from the 7 years of WIND Toolkit 

data for all grid cells, with ribbons indicating the observed percentiles. 

2.2 CC Methods 

Probabilistic resource adequacy tools quantify the risk of being unable to serve demand at all times with metrics 

such as EUE or normalized expected unserved energy (NEUE).14 These tools analyze the distribution of possible 

system states, given the probability of unit outages, generation from variable generation resources such as solar and 

wind, and demand. Using random sampling, probabilistic resource adequacy models assess a large number of pos- 

sible system states and calculate these probabilistic reliability metrics. To conduct a probabilistic resource adequacy 

analysis, we apply NREL’s Probabilistic Resource Adequacy Suite (PRAS) tool (Stephen 2019). PRAS uses inter- 

regional power transfer constraints and Monte Carlo draws from probability distributions for generator availability 

to calculate the loss of load resulting from supply shortfall or transmission constraints15 (Beiter et al. 2020, Frew 

et al. 2019, Stephen, Hale, and Cowiestoll 2020, Stephen 2021). For each hour, we use 100,000 Monte Carlo draws 

of forced generator outages to compute the EUE for a given level of net load16, which are aggregated into annual 

values. As discussed, we created our Base Case (Table 1) to have nonzero EUE. Then, we express CC using a com- 

mon reliability-based metric, equivalent firm capacity (EFC) (Soder and Amelin 2008). EFC expresses the CC of 

the incremental wind in terms of a 100% reliable (fully firm) unit. We use EUE as the probabilistic resource ade- 

quacy metric to quantify system risk to capture the impact of the new resource in reducing both the magnitude and 

the duration of shortfalls. For example, if a 100-MW wind installation reduces the EUE by 100 GWh and a 45-MW 

firm capacity unit also reduces the EUE by 100 GWh, the CC of the 100-MW wind farm is 45 MW, or 45%. We 

calculate the system-wide EUE during 7 years of operations, before and after adding wind to each grid cell. We then 

determine the level of firm capacity that, when added to the same region, would result in an identical reduction in 

system-wide EUE. The firm capacity divided by the incremental rated capacity of wind (in this case, 500 MW per 

cell) gives the CC. 

In this analysis, we evaluate the impact of assumptions and methods on the resulting marginal CCs. First, we com- 

pare various system cases in our probabilistic resource adequacy tool (PRAS) to assess the starting criteria on result- 

ing CC, and we compare the results to our original Base Case, shown in the first column of Table 3 and discussed 

in Section 3. Then, we further compare this Base Case PRAS-calculated CC to various CF approximation methods 

to explore what might be lost or gained from using these simpler approximation methods, shown on the right four 

14NEUE is the total EUE, typically measured in MWh or GWh, divided by the total load (also in MWh or GWh), often reported in terms of 

parts per million (ppm). 

15For this analysis, we assume that the transmission links between modeled zones are 100% reliable. 

16The net load is a deterministic value for each hour in the seven year set. 
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columns of Table 3, discussed in Section 4.

 

Sensitivities on PRAS CC

 

Sensitivities on CF-Approximation Methods

 

Impact of VG

 

Impact of No. of Hours

 

Impact of Transmission

 

Impact of Seasonality

 

Original fleet (Base Case)

 

Top load hours

 

Top 1 hour

 

Region net load

 

CC by season

 

Double Winter FOR

 

Top net load hours

 

Top 10 hours

 

System net load

 

Scale Load

 

Top 100 hours

 

Remove Extra 3 GW

 

Top 1000 hours

 

Table 3. Sensitivities of the starting point for PRAS-calculated CC and on CF approximation methods explored here. 
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3 Sensitivities on PRAS CC 

As discussed in the previous section, reliability-based resource adequacy calculations rely on many modeling de- 

cisions. These modeling decisions might or might not have a dramatic impact on the resulting resource adequacy 

metrics (and thus marginal wind CC assessed here). First, we compare various system cases in PRAS to assess the 

starting criteria on the resulting CC. As mentioned, computing the CC of a marginal resource requires first creating a 

system with nonzero EUE; however, the route to creating a system with nonzero EUE is not always clear. So, we cre- 

ate variations to see how the decisions involved in creating the Base Case impact the results. We first consider a case 

with a doubled generator forced outage rate in the winter months (December through February) because our starting 

case uses a constant year-round value for outage rates, whereas in reality generators often have increased forced 

outage rates in cold temperatures (Murphy, Lavin, and Apt 2020, Murphy, Sowell, and Apt 2020). We also consider a 

sensitivity in which we uniformly scale load by a factor of 1.26 in each hour, rather than remove generator capacity, 

which achieves the same goal of creating nonzero EUE. One consideration of this method is that scaling load without 

increasing the capacity of transmission lines changes the relative amount of power that can be exchanged between 

zones and thus can impact the estimations for CC, particularly for zones that rely on imports. In addition, scaling 

load would not necessarily account for changes in the load shape, which could be driven by diffusion of technolo- 

gies such as electric vehicles or heating. Last, we evaluate the sensitivity to the initial generator fleet in Table 1 by 

removing 3 GW of additional thermal generation capacity, resulting in a higher level of observed shortfall. 

PRAS identifies periods when the system is the most stressed and generator capacity is the most essential. These 

times of system stress determine the periods that will most heavily influence the CC for marginal generators— 

in this case, wind. Figure 5 illustrates the average diurnal system EUEs for each month of the 7 years considered 

here. Each row represents one PRAS formulation in the first column of Table 3. The figure demonstrates that for 

all years and sensitivities, the highest levels of EUE occur during the summer in the late afternoon or early evening. 

Historically, this is when many parts of the country, including Texas, see peak demand. For much of the United 

States, hot summer temperatures lead to sizeable air-conditioning load, which, when combined with other electricity 

use, results in peak electricity demand17). Generators that are available to produce electricity in these periods can 

help reduce the EUE and will exhibit higher CC. The availability of the wind during periods of EUE, subject to zonal 

transmission constraints, will determine the marginal CC of wind. We note that Figure 5 shows similar times of EUE 

for each scenario that we evaluate here. Although the EUE can vary in terms of magnitude across scenarios, the same 

pattern emerges for each PRAS sensitivity 

17Not all regions of the United States experience peak demand in the summer, especially regions with more temperature summers. Extreme 

storms and cold weather events can also impact when peak demand occurs (The Electric Reliability Council of Texas 2021). 
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Figure 5. Average diurnal system-wide EUE calculated by PRAS for the 7 years studied here by month, time of day, and scenario. 

Figure 6 shows the resulting CCs for the Base Case. The CC varies by location, but the simple average CC for all 

land-based cells in the footprint is 12.7% (ranging between 4% and 42%) and for average offshore is 6.7% (ranging 

between 2% and 27%). Generally, the average CC is relatively small compared to other regions of the United States, 

particularly for offshore wind (Jorgenson et al. 2021, Beiter et al. 2020, New England Wind Integration Study 2010, 

Dvorak et al. 2013). Notably, the Texas Interconnection test system already has substantial deployment of land-based 

wind technology, and sites are generally well correlated because of the smaller footprint compared to the other U.S. 

interconnections. As discussed, the wind availability in the evening during the summer (when shortfalls tend to 

occur) is lower than the average wind availability, and it is even lower for offshore wind than for land-based, leading 

to generally low CCs. For example, the CF for the average offshore wind cell for the month of August (when most 

EUE occurs in this system) is 40% lower than the average August CF for land-based sites. 
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Figure 6. Base Case PRAS-computed marginal CC for each grid cell in the footprint. 

Figure 7 shows the difference between the Base Case PRAS-computed marginal CC for each grid cell compared to 

three different variations on the starting PRAS case. A positive value indicates that the new starting point increased 

the marginal CC, whereas a negative value represents a reduced CC. Across the Texas Interconnection footprint, 

different starting point plots show mild differences in terms of overall of wind CCs, which generally agrees with the 

observation from Figure 5, which showed similar times of system need across scenarios. For example, the overall 

average marginal CC for wind in the Base Case is 11.7%, whereas it is 12.4% in the Double Winter FOR Case, 8.8% 

in the Scale Load scenario, and 11.9% in the Remove 3 GW Case. 
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Figure 7. The difference between the Base Case PRAS-computed marginal CC for each grid cell 

compared to three different variations on the starting PRAS case. A positive indicates the new 

starting point increased the marginal CC, whereas a negative value represents a reduced CC. 

However, the map does indicate more significant changes to specific grid cells or regions. The Scale Load sensitivity 

generally indicates lower CCs than the generator removal technique indicated in the Base Case. In this sensitivity, 

the load is scaled by a factor of 1.26 in each hour18. The increased load puts additional stress on the transmission 

lines, leading to more congestion. That congestion ties up the transmission lines, which slightly reduces the ability of 

wind generation to be able to effectively reduce EUE; however, the impact is still relatively minor and does not dra- 

matically change the CC magnitudes or geographic patterns. But this impact could become even more pronounced in 

regions or scenarios with greater load scaling for nonzero EUE. 

In the Double Winter FOR case, the CC of wind increases from 12.7% for land-based to 13.0%, and from 6.7% 

for offshore to 9.8%. Figure 5 shows that the EUE remains the same in the summer months and slightly increases 

in the winter months. The slightly increased risk in the winter months favors wind generation patterns (Figure 4), 

leading to a slightly higher CC, especially for offshore wind; however, the impact is relatively minor because the vast 

majority of EUE still occurs in the summer months. 

Last, the Remove 3 GW case shows very little difference in terms of overall average (11.9% compared to 11.7% in 

the Base Case). Most grid cells on the map show small differences compared to the Base Case except for a red region 

in zone 64 located geographically between Austin and Houston. For these dozen grid cells, the change in the timing 

of the EUE (Figure 5) heavily weights the importance of hours when wind production (for that specific geographic 

region) is less favorable, leading to a very localized negative impact on wind CC. For most grid cells, however, the 

impact is not dramatic and does not change the overall picture of wind CC in the Texas Interconnection test system. 

Overall, the map of these various starting points for the PRAS CC calculation actually illustrates more similarities 

than differences in terms of calculated CCs, and the main conclusion remains constant across these scenarios: the 

CC for wind in this Texas Interconnection test system is relatively low, and it is even lower for offshore wind than 

land-based. However, the sensitivities do indicate some limitations for the CC metric generally, since transmission 

constraints do impact wind CC and including those constraints is not always straightforward. We discuss these 

trade-offs with more detail in the following section. 

18We chose the 1.26 scaling factor since it resulted in a similar level of EUE compared to the Base Case scenario. 
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4 Comparisons with Approximation Methods 

As previously discussed, approximation methods for calculating the CC of marginal resources, including wind, 

are widely used, in large part because of the relative simplicity of the methods compared to reliability-based ap- 

proaches such as PRAS. Similar to resource adequacy models, however, there are many criteria and considerations 

that can potentially impact the resulting CC. In this section, we first compare the approximation-based methods to 

the reliability-based method (in this case, the Base Case scenario using PRAS). Then, we explore the sensitivity 

of the resulting wind CC to various chosen approximation methods, as shown in the right four columns of Table 3. 

In most of these approximation-based methods, the CC is estimated by calculating the average CF during key time 

periods, chosen to represent times of system stress. These approximation methods are widely used with various as- 

sumptions (Stephen, Hale, and Cowiestoll 2020, Mills and Rodriguez 2019, Cole et al. 2020). We choose these key 

periods with multiple selection criteria to compare across various methodologies typically encountered. First, we 

evaluate the impact of transmission by calculating a CF approximation with either the “regional” criteria (that is, 

for each of the seven modeled zones) or the overall “system” criteria (for the Texas Interconnection test system as a 

whole). For this approximation, we use a weighted CF approximation, which weights each hour based on the EUE 

experienced each hour. Second, we examine the impact of variable generation (VG) by comparing the CC calculated 

as the simple average for the top load hours to the top net load hours. Third, we examine the impact of the numbers 

of hours included in the CF approximation by evaluating the CC by again taking the simple average of the CF dur- 

ing the top 1, 10, 100, and 1000 hours each year. Fourth, we evaluate the impact of seasonality by calculating the 

CF-approximated CC during each season rather than the average for the whole year. 

4.1 CC Computed with EUE-Weighted CF 

First, we examine a CF approximation method that considers the hourly EUE profiles shown in Figure 5. In the 

previous section, we use PRAS to assess the improvement in EUE with the incremental wind, thus giving the CC 

for each grid cell. For this approximation method, instead of using PRAS to compute the CC for each grid cell, we 

approximate by comparing the hourly CF profiles for each grid cell with the hourly EUE. We simply weight the 

hourly CF by the EUE time series. This method still relies on PRAS to generate the initial hourly EUE profiles, but it 

does not require running PRAS for each grid cell representing incremental wind. 

We compute these CC approximations under two assumptions: one where we compute the EUE-weighted CF using 

the Texas system-wide hourly EUE profile and one where we compute the EUE-weighted CF based on the regional 

EUE time series corresponding to the zones shown in Figure 1. Figure 8 shows these CC approximations plotted 

against the PRAS-computed CCs in the Base Case formulation, with the corresponding difference maps shown in 

Figures 9. Initially, we note much tighter agreement for the system EUE-weighted approximation for both land- 

based and offshore wind sites; however, the system EUE approximation generally slightly over estimates the CC 

because this method assumes that wind at each grid cell can address EUE anywhere, whereas the PRAS-computed 

CC includes regional transmission constraints that could restrict CC. The right side of Figure 9 plots the difference 

between the PRAS estimate and the system EUE-weighted CF on the map, which shows relatively small differences. 

The zone EUE-weighted approximation (on the left side of Figure 9) results in a wider scatter, however, where the 

approximation both over- and under estimates the PRAS-estimated CC, depending on the relative contribution of 

each system to the Texas system-wide EUE. This method assumes that incremental wind can address only shortfall 

within its own modeled zone. Key to understanding this result is the fact that this calculation assumes that wind in 

one region will not be able to address shortfall in another region, and the seven modeled zones do not experience 

EUE uniformly. In fact, zone 63 experiences 79.2% of the modeled EUE, and zone 61 experiences 17.3%, with the 

other 3.5% split between the remaining four zones. So, zones 63 and 61 show region EUE-weighted CCs that look 

very similar to the system EUE-weighted CCs, whereas the calculation for the rest of the regions ends up highly 

weighting hours that turn out to be less important when considering the entire system. 
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Figure 8. Comparison of zone EUE- and system EUE-weighted CF to the Base Case PRAS-computed CCs.

 

Figure 9. The difference between the CC approximation calculated by the CF weighted 

by either the Texas system-wide EUE or zone EUE and the Base Case PRAS CC. 

Although these two approximation methods give somewhat similar average CCs (13.1% for the system EUE- 

weighted CF and 12.8% for the zone EUE-weighted CF, compared to the PRAS-computed average CC of 11.7%), 

Figures 8 and 9 indicate a much better agreement between PRAS and the Texas system-wide EUE-weighted CF 

approximation method despite slightly overstating the CCs due to the omission of transmission constraints. This 

underscores the importance of the proper consideration of transmission constraints when evaluating the marginal CC 

of wind resources. For example, for transmission-constrained systems, considering zone-specific EUE will give a 

better picture of wind’s CC, but in a system that is not limited by transmission, the system EUE calculation might 

give a better estimate. Further, this methodology does not consider intra-regional constraints, which might inhibit CC 

even further in specific locations. 

4.2 CC Estimated By Measures of Load 

Other commonly used CF approximation methods for CC rely on quantifying times of peak system load or net 

load, which generally are most likely to encounter shortfall conditions. These methods often choose a set number 
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of hours per year (such as 10 or 100 hours) and then average CF during those hours to approximate CC for marginal 

variable resources. In this section, we compare various CF approximation methods using gross load and net load. We 

examine sensitivities on the number of hours chosen and the impact of considering regional (here, modeled zones) or 

system (here, total Texas Interconnection test system) load. 

Figure 10 compares the CC computed with measures of load to the CC computed by the Base Case in PRAS. The 

four panels show CC computed by averaging the CF during the top 10 hours per year for each of the 7 years, either 

using load or net load (load less variable generation resources), and also comparing overall system load/net load to 

regional load/net load. Of the four methods depicted, Figure 10 shows the smallest spread in scatter plot points be- 

tween PRAS and the CF approximation method that uses the overall system net load (top left). However, this method 

(using overall system net load) also tends to consistently overestimate the CC because it gives no consideration to 

transmission constraints, resulting in a higher estimation for CC compared to PRAS (16% compared to 12%). 

Comparing the regional net load to PRAS (upper right panel of the plot) results in significant disagreement between 

PRAS and the estimate, despite the overall average site CC being similar (12% for PRAS, 10% for regional net load 

calculation). The regional net load calculation method tends to underestimate the CC of wind because it does not 

capture the ability of the incremental wind to contribute to reducing net load in other regions. 

Although the system has more wind than solar, solar’s more predictable diurnal shape tends to shift the peak net 

load to later in the evening (as shown in Figure 3, comparing load and net load shapes). This slightly favors the wind 

profiles, which tend to increase later in the evening. Although Figure 10 has considerable spread comparing system 

load, the average CF during the highest load hours actually tends to underestimate the overall wind CC compared to 

PRAS (10% compared to 12%). 

The bottom two scatter plots (system versus regional load-estimated CC) are very similar to each other. The demand 

shape is quite uniform across regions, meaning that each region bears roughly the same shape as the total system 

load, but the same cannot be said for net load. That is because there is a significant regional variation in variable gen- 

eration contribution (ranging from 0% wind penetration relative to load in zone 67 to 600% wind penetration in zone 

60, and from 3% solar in zone 63 to 166% in zone 60). So, considering the regional versus system net load (top two 

panels) is an important distinction, whereas considering regional versus system native load is not. This conclusion is 

specific to the Texas Interconnection test system, and in a system with more load diversity, then considering regional 

variation in load might become important. 
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Figure 10. Comparison of marginal CC approximated by average CF during top 10 hours per year to PRAS-computed CCs. 

Figure 11 illustrates a comparison of the CC computed by averaging the top system net load hours compared to the 

PRAS-computed CC. The bottom panels illustrate the estimated CC by averaging the CF during the top 1, 10, 100, 

and 1000 hours for each of the 7 years. The top panels illustrate the estimated CC by averaging the CF during the 

top 7, 70, 700, and 7000 hours across all 7 years together. First, comparing the upper and lower panels in Figure 

11 shows that more hours (100 and 1000) makes the scatter plots similar—indicating that using a large sample 

(compared to averaging seven smaller ones) is less important when more hours are considered. On the other hand, 

having very few hours (one per year or 7 per 7 years) does seem to make a substantial difference. 

The bottom four panels illustrate the estimated CC by averaging the wind CF during either the top 1 net load hour 

(averaging 22%), top 10 net load hours (averaging 12.4%), top 100 net load hours (averaging 12.7%), and top 1000 

net load in every year (averaging 14.1%). Overall, there is not much difference between 10 and 100 hours, but 

there is more significant difference with 1 hour and 1000 hours. Choosing very few hours (such as 1 hour per year), 

seems to give an inaccurate picture of CC, overestimating the CC, illustrating the danger in relying too much on 

specific hours that might not be representative. Considering a large fraction of hours (1000, in this case) also seems 

to overestimate the CC by including hours that increase the average output. So, a more reasonable approach is to 

consider 10 or 100 hours for this system. 
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Figure 11. Comparison of CC approximated by average CF during top hours to PRAS-computed CCs. 

4.3 CC Computed on a Seasonal Basis 

As discussed previously, the highest EUE periods in the Texas Interconnection test system occur mostly in the sum- 

mer months because of the cooling load. However, electricity demand is constantly evolving with new technology, 

and increased deployment of technologies such as electric heating could increase demand in (and perhaps even shift 

peak load into) the winter (Mai et al. 2018). Unusual cold snaps in the winter, particularly in regions with electrified 

heating sources, can create abnormally high demand for electricity as well. Additionally, the availability of gen- 

eration resources (such as wind and solar, but also including conventional generators) can vary by season as well 

(Murphy, Lavin, and Apt 2020, Murphy, Sowell, and Apt 2020). These factors have led to a push to evaluate the 

resource adequacy implications of shifting the peak net loads to seasons other than summer (Cole et al. 2020). In 

fact, some organizations within the United States have started to incorporate temporal aspects into resource adequacy 

planning, considering needs on a monthly or seasonal basis because of varying load profiles and resource availability 

(PJM 2018, Operator 2020). 

For the Base Case from PRAS, nearly all (99%) observed EUE falls in the summer months (June, July, and August). 

Approximately 0.7% occur in the fall (September, October, and November), with the remaining 0.3% in the winter 

months (December, January, and February). There is zero observed EUE in the spring months (March, April, and 

May). We can approximate a seasonal CC by taking the system EUE-weighted CF for each of the four seasons 

individually. Note that this method cannot give an estimate for spring because there was zero EUE during those 

months. Figure 12 shows the resulting CCs. 

18 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications



 

Figure 12. Comparison of CC approximated by weighting of CF by 

hourly Texas system-wide EUE-weighted during each of four seasons. 

Both land-based and offshore wind have the lowest estimated CC in the summer. However, because summer has the 

most seasonal EUE, those hours are weighted the most toward the overall CC, which means that the overall CC is 

very close to the summer CC. We note a much higher CC for offshore wind technology in the winter (82%), which is 

not surprising given the high and consistent CF of offshore wind during the winter months, as shown in Figure 4. 

However, the winter and fall estimated CCs from Figure 12 are highly weighted to the CF in a very few number of 

hours, so we also compare to the CC approximated by averaging the CF during the top 10 net load hours for each 

season in each of the 7 years. Figure 13 shows the resulting CCs. Again, this method shows a relatively low CC 

during the summer, giving numbers that are very consistent with the PRAS-computed CC as well as the summer 

EUE estimates from Figure 12. We again note a very high CC for offshore wind technology in the winter. 
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Figure 13. Comparison of CC approximated by average CF during the top 10 hours during each of four seasons. 

This analysis shows dramatically different CCs for wind depending on the season considered—and these computed 

CCs rely solely on 7 years of historical data. Changes that are occurring in the power system could potentially shift 

needs to different seasons and could end up telling a different story about the marginal CC of wind in this region. 

Further electrification of heating load as well as extreme weather events that further increase electricity demand 

could underscore the importance of the seasonal consideration of resource needs in the future. 
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5 Conclusions 

Wind CC is an important metric because it describes one potential component of the value of wind, and the con- 

tribution wind provides to system resource adequacy. Our analysis examines this important metric using a Texas 

Interconnection test system to compare different measures of marginal wind CC for both land-based and offshore 

technologies. First, we employ a probabilistic resource adequacy tool (PRAS) to evaluate the marginal CC of land- 

based and offshore wind in 20-km by 20-km grid cells covering the footprint. We find relatively low average CCs— 

12.7% for land-based and 6.7% for offshore—because of a low correlation between hourly wind CF and likely times 

of system need. We compare this initial Base Case to various versions of the PRAS computation, varying starting 

generator capacity and load scaling factors to determine the sensitivity of resulting CCs. Generally, resulting wind 

CCs vary little between the various modeling assumptions; however, that might not be the case for all systems. 

Although probabilistic resource adequacy methods can give good approximations for marginal CCs, they require 

relatively sophisticated tools and data sets. So, we also compare the PRAS-computed CCs with various approxima- 

tion methods. Generally, we find that approximation methods can capture the important relationships between wind 

availability and system needs; however, the chosen approximation method can impact the resulting CCs. An impor- 

tant consideration is transmission—whether or not wind will be able to address the needs in neighboring regions. 

Other CF approximations give reasonably similar results (especially those considering 10–100 hours per year), and 

consideration of seasonal or monthly CC is important because they can yield very different outcomes, especially for 

offshore wind. Overall, PRAS-calculated CCs seem less sensitive to modeling criteria, whereas assumptions around 

the CF approximation methods (such as comparing system versus regional, load versus net load) can result in varied 

estimations. 

This analysis considers current wind generation levels in the Texas Interconnection test system (with no current 

offshore wind deployment) with the intent to inform near-term planning decisions and investments. We illustrate 

a need to continue to explore how changes in the timing of system stress (such as higher demand in winter from 

possible increased deployment of electric heating and extreme weather events) might change the resource adequacy 

role of wind in the future. Further, we will continue to explore the importance of transmission in assessing wind CC 

because this analysis has shown it to be an essential consideration. 
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