Modeling lithium diffusion in battery cathodes considering chemo-mechanically induced damage

Jeffery M. Allen, Peter J. Weddle, Ankit Verma, Anudeep Mallarapu, Francois Usseglio-Viretta, Donal P. Finegan, Andrew M. Colclasure, Weijie Mai, Volker Schmidt, Orkun Furat, David Diercks, Tanvir Tanim, Kandler Smith

Background

A Li-ion battery has two electrodes, the anode and the cathode, with electrolyte percolating between them. When cycling, the battery can lose capacity. Diagnosing reasons for this capacity loss and developing design/control strategies to address this capacity loss is of great interest.

One possible source of capacity loss is cathode degradation. The cathode is composed of numerous secondary particles bound together electrolytically by an electronically conductive carbon-binder. These secondary particles are made of smaller primary particles commonly referred to as grains. The goal of this study is to develop a continuum-damage model that investigates conditions that can lead to NMC332 (cathode) secondary particle degradation. The conditions studied here are the charge rate, secondary particle size, and primary particle size. The continuum model is written in such a way to improve computational speed and efficiency.

Continuum Damage Electro-Mechanical Model

- Lithium Transport: Solid-Phase Potential:
 \[\frac{\partial N_s}{\partial t} + \nabla \cdot (D_i \nabla N_s) = 0 \]
 \[N_s = \frac{1}{\beta_s} \]

- Mechanics:
 \[\sigma_{ij} = -R \frac{\partial \phi}{\partial x_j} \]

- Anisotropy:
 \[\beta = \frac{1}{2} \left(\sqrt{\lambda_s} \sigma_{ij} \right) \]

- Damage Factor:
 \[D_{ij} = \min(1, D_{ij}) \]

- Boundary Conditions:
 \[J_{\text{lim}} = \text{current required to completely charge a particle in one hour, usually denoted:1C} \]

Simulation Setup

All simulations are run using a Python package built on the FEniCS project [2]. The meshes were around 800k degrees of freedom for the electro-mechanical system and a single charge/discharge cycle ran in 1 hr 40 min on 72 processors.

Four sets of charge conditions are determined. Before cycling, a formation procedure is simulated consisting of three, C/10 cycles followed by an additional three, C/2 cycles. After formation, each cycle is cycled an additional 25 times at 1C, 4C, 6C, and 9C charging for 60, 15, 10, and 10 minutes, respectively. The constant-current constant-voltage charge has a cut-off voltage of 4.2 V. Particles are then discharged at a C/2 rate until 3.4 V.

Reference performance tests (RPT) of C/20 charge/discharge are simulated and after 25 cycles and after for each condition. The RPT discharge capacities are compared to determine cathode capacity fade. Below are results for the Baseline Geometry after 25 cycles.

Results

Above are results from all simulations. The left column computed capacity loss by comparing the C/20 discharge capacity after formation and after 25 cycles. The right column is the same calculation but using a C/2 rate. Parts a) and c) compare the geometries with varying secondary particle size and b) and d) compare the geometries with varying grains. For the secondary particle size study, the smaller particle performs better in terms of capacity retention regardless charge rate. The larger particles have worse capacity retention due to the relatively longer diffusion lengths, which result in larger concentration gradients resulting in increased stress/damage.

For grain size study, the trend is less obvious. When comparing C/20 discharge times in b), there seems to be no preference between small and large grains. However, for C/2 in d) there is a slight preference for large grains. This is because at slow charge rates, the mismatch of grain orientation does not significantly hinder diffusion, but at faster charge rates, Li must take more tortuous paths through the mismatch to reach the center. This results in longer effective diffusion lengths for geometries with smaller grains.

Conclusions

Damage/capacity loss seems to be strongly tied to the effective diffusion length of the secondary particle geometry. Because of this, smaller NMC332 secondary particles with large grains experience less capacity loss due to chemo-mechanical effects.

References

Note: The charge rate (used to calculate \(\text{J}_{\text{lim}} \)) is the current required to completely charge a particle in one hour, usually denoted: 1C. A C-rate of 6C is the current required to charge in a sixth of an hour and C/2 charges in 2 hours.